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Abstract. The objective of this paper is to describe a new method for identification of a continuous-time multi-input and multi-
output bilinear system. The approach is to make judicious use of the linear-model properties of the bilinear system when subjected
to a constant input. Two steps are required in the identification process. The first step is to use a set of pulse responses resulting
from a constant input of one sample period to identify the state matrix, the output matrix, and the direct transmission matrix. The
second step is to use another set of pulse responses with the same constant input over multiple sample periods to identify the input
matrix and the coefficient matrices associated with the coupling terms between the state and the inputs. Numerical examples are
given to illustrate the concept and the computational algorithm for the identification method.
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1. Introduction

System identification is a methodology used to characterize a dynamical or other engineering system
with measurements of the input–output signals. Mathematicians and engineers have developed a number
of approaches to address the identification problem. The identification of a linear time-invariant system
is relatively well understood and theoretically well developed [1, 2]. This is not true for the identification
of a nonlinear system, although some progress has been made in the identification of nonlinear systems
over the past few decades [3–19].

There is a class of nonlinear systems called bilinear systems whose dynamics are jointly linear in
the state and the force variables. It is a simple nonlinear extension of a linear system. The concept
of bilinear systems was introduced in the 1960’s (see the surveys of Bruni et al. [5] and Mohler et
al. [6]). Mohler [7] and Elliott [8]) provide a survey of bilinear-related system-theory methods and
their contributions to problems such as stabilization, controllability, and observability. Bilinear systems
have been studied extensively and applied successfully to several problems [15]. Recently, research
activities in identification of bilinear systems have been focused on the so-called “discrete-time” model
identification [19]. The discrete-time model is an approximation obtained by linearizing the continuous
one with a method such as the finite difference. In contrast, we focus on the identification of a continuous-
time bilinear system without any approximation.

A new method is introduced in this paper for identification of a continuous-time multi-input and
multi-output bilinear system. When the input of a bilinear system is a constant, the bilinear system
becomes a linear system. This special characteristic is the basis for the identification method. Two steps
are required for the identification process. The first step begins with generating a set of pulse responses
with a constant input applied one at a time over one sample period. The pulse responses are then used
to form a Hankel matrix consisting of system Markov parameters to identify the state matrix, the output
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matrix, and the direct transmission matrix. The identification step is quite similar, if not identical, to
the identification of a linear system [1, 2]. This step establishes a specific set of coordinates for the
whole identification process. This set of coordinates is not unique, depending mainly on the size of
Hankel matrix and the resulting choice of matrix that represents the observability matrix. The second
step starts by generating another set of pulse responses with the same constant input as the first step but
for multiple sample periods. These multiple-pulse responses are used to define another set of Markov
parameters to form a Hankel-like matrix for each input. The observability matrix obtained in the first
step is then applied to the Hankel-like matrix to compute the corresponding controllability matrix of the
input to identify the input vector and the coefficient matrix associated with the coupling terms between
the state and the input.

Simple examples are given to demonstrate how to apply the method to identify a continuous-time
bilinear system and how to transfer the identified model from one set of coordinates to the other
set of coordinates. The coordinate transformation also serves as a way of verifying the identified
system.

2. Basic Formulation

Let x and Ac be the state vector of dimension n × 1 and its corresponding state matrix of n × n, and u
and Bc be the input vector of r × 1 and its corresponding input matrix of n × r . Subscript c signifies the
associated quantity in the continuous-time domain. The bilinear state equation in the continuous-time
domain is commonly expressed by

ẋ = Acx + Bcu +
r∑

i=1

Nci xui (1)

where the coupling term xui between the state vector x and each individual ui (i = 1, . . . , r ) in the
input vector u is weighted by the matrix Nci of n × n. The measurement equation is identical to the one
for a linear system that is commonly described by

y = Cx + Du (2)

where y is the output measurement vector of m × 1, C is the output matrix of m × n and D is the direct
transmission matrix of m × r .

For simplicity, consider only one input at a time. Equation (1) reduces to

ẋ = Acx + bci ui + Nci xui (3)

where bci is the i th column of Bc associated with the input ui . Assuming ui = υi where υi is a
pre-specified constant, the continuous-time state equation (3) further reduces to

ẋ = (Ac + υi Nci )x + bciυi (4)

The discrete-time model of this system is

x(k + 1) = Āi x(k) + b̄i ; i = 1, 2, . . . , r (5)
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with the measurement equation

yi (k) = Cx(k) + d̄ i (6)

where the quantities Āi , b̄i , and d̄ i are determined by

Āi = e(Ac+υi Nci )�t (7)

b̄i =
∫ �t

0
e(Ac+υi Nci )τ dτ bciυi (8)

d̄ i = diυi (9)

and di is the i th column of D associated with the input ui . The quantity �t is the time interval for data
sampling. Assuming that the initial state x(0) is a zero vector of n by 1, i.e., x(0) = 0n×1, the state
response for the discrete-time model described by Equation (5) can be computed by:

x(0) = 0n×1

x(1) = Āi x(0) + b̄i = b̄i

x(2) = Āi x(1) + b̄i = Āi b̄i + b̄i

x(3) = Āi x(2) + b̄i = Ā2
i b̄i + Āi b̄i + b̄i (10)

...

x(N ) = Āi x(N − 1) + b̄i = ĀN−1
i b̄i + ĀN−2

i b̄i + · · · + Āi b̄i + b̄i

After the time t ≥ N�t , let ui (t) = 0. Note that in the discrete-time domain, the input force ui (k)
at time index k implies that ui (t) is constant over the time period (k + 1)�t > t ≥ k�t . The state
Equation (3) reduces to the simple form

ẋ = Acx (11)

Its discrete-time model is

x(k + 1) = Ax(k) (12)

where

A = eAc�t (13)

The free decay response after t > N�tbecomes

x(N + 1) = Ax(N ) = A
(

ĀN−1
i b̄i + ĀN−2

i b̄i + · · · + Āi b̄i + b̄i
)

x(N + 2) = A2x(N ) = A2
(

ĀN−1
i b̄i + ĀN−2

i b̄i + · · · + Āi b̄i + b̄i
)

... (14)

x(N + �) = A�x(N ) = A�
(

ĀN−1
i b̄i + ĀN−2

i b̄i + · · · + Āi b̄i + b̄i
)
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where � is an integer indicating the data length of the free-decay response.
From Equations (2), (10), and (14), the measurement quantities yi (k)for k = 0, 1, · · · , N + � due to

the force excitation of ui = υi (constant force) for k < N can thus be computed as

yi (0) = Cx(0) + d̄ i = d̄ i

yi (1) = Cx(1) + d̄ i = Cb̄i + d̄ i

yi (2) = Cx(2) + d̄ i = C
(

Āi b̄i + b̄i
) + d̄ i

...

yi (N ) = Cx(N ) = C
(

ĀN−1
i b̄i + ĀN−2

i b̄i + · · · + Āi b̄i + b̄i
)

(15)

yi (N + 1) = Cx(N + 1) = C A
(

ĀN−1
i b̄i + ĀN−2

i b̄i + · · · + Āi b̄i + b̄i
)

...

yi (N + �) = Cx(N + �) = C A�
(

ĀN−1
i b̄i + ĀN−2

i b̄i + · · · + Āi b̄i + b̄i
)

The upper portion, yi (0), yi (1), · · · , yi (N − 1), of Equation (15), corresponds to the multiple-pulse
response resulting from a constant force over multiple sample periods. But the lower portion,
yi (N ), yi (N + 1), · · · , yi (N + �), corresponds to the free-decay response.

It is clear that the continuous-time system matrices/vectors, Ac, bci , Nci , C, di , are embedded in the
output quantities shown in Equation (15). First of all, we need to use the output measurements to extract
the discrete-time matrices/vectors, A, C, Āi , b̄i , di . It is worth to stress that the multiple-pulse response
and the free-decay response result from two different discrete models.

The free-decay response, yi (N ), yi (N + 1), . . . , yi (N + �), after t > N�t is quite similar, if not
identical, to the pulse response for a linear system. Any linear system identification technique may be
applied to compute the state matrix A and the output matrix C . The key idea is to make judicious use
of this linear portion of the bilinear system. The identification problems for linear systems have been
extensively studied and many good techniques have been developed and implemented [1, 2].

3. System Identification Method

The identification method requires two steps. The first step is to identify the state matrix Ac, the output
matrix C , and the data transmission matrix D. The second step is to determine the input matrices Bc,
and Ni for the coupling term between the state vector x and the i th input ui .

3.1. IDENTIFICATION OF Ac, C, AND D

First, let us apply a pulse of magnitude υ1 to the system for one time step �t to generate the pulse
response for the first input u1. From Equation (15) for N = 1, the pulse response has the following
expression.

y1(0) = d̄1

y1(1) = Cb̄1

y1(2) = C Ab̄1 (16)
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...

y1(� + 1) = C A�b̄1

All other input pulse responses can be similarly generated to yield

y2(0) = d̄2 · · · yr (0) = d̄r

y2(1) = Cb̄2 · · · yr (1) = Cb̄r

y2(2) = C Ab̄2 · · · yr (2) = C Ab̄r
...

...
...

y2(� + 1) = C A�b̄2 · · · yr (� + 1) = C A�b̄r

(17)

Equation (17) is obtained by replacing the subscript 1 representing the first input with the other input
integers 2 through r . Let us define the system Markov parameters to be

Y1(0) = [ y1(0) y2(0) · · · yr (0) ] = [ d̄1 d̄2 · · · d̄r ] = D̄

Y1(1) = [ y1(1) y2(1) · · · yr (1) ] = [ Cb̄1 Cb̄2 · · · Cb̄r ]

Y1(2) = [ y1(2) y2(2) · · · yr (2) ] = [ C Ab̄1 C Ab̄2 · · · C Ab̄r ] (18)

...

Y1(� + 1) = [ y1(� + 1) y2(� + 1) · · · yr (� + 1) ] = [ C A�b̄1 C A�b̄2 · · · C A�b̄r ]

The use of the subscript 1 for Y1(k) (k = 1, 2, . . . , � + 1 ) is intended to signify one-time-step pulse
response. Equation (18) provides the basic parameters for system identification. Indeed, let us form a
Hankel matrix as follows.

H1 =




Y1(1) Y1(2) · · · Y1(β)
Y1(2) Y1(3) · · · Y1(β + 1)

...
...

. . .
...

Y1(α) Y1(α + 1) · · · Y1(α + β − 1)


 =




C
C A

...
C Aα−1


 [ B̄1 AB̄1 · · · Aβ−1 B̄1 ] (19)

where

B̄1 = [ b̄1 b̄2 · · · b̄r ] (20)

The matrix product on the right-hand side of Equation (19) shows the relationship between the system
Markov parameters and the discrete-time system matrices. Obviously the Hankel matrix H1 has the
rank n that is the order of the state matrix A if we choose α and β such that αm and βr are larger than
or equal to n where m is the number of outputs and r is the number of inputs. Using the singular value
decomposition (SVD) to decompose the Hankel matrix H1 yields

H1 = U1�1V T
1 (21)

where �1of n×n is a square matrix containing n non-zero singular values. The matrix U1 is of dimension
αm × n and the matrix V1 is of dimension βr × n.
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From Equation (19), one may choose

U1 =




C
C A

...
C Aα−1


 (22)

and

�1V T
1 = [ B̄1 AB̄1 · · · Aβ−1 B̄1 ] (23)

This choice is not unique. Many other choices are also valid. The other common choice is

U1�
1/2
1 =




C
C A

...
C Aα−1


 (24)

and

�
1/2
1 V T

1 = [ B̄1 AB̄1 · · · Aβ−1 B̄1 ] (25)

Note that the choice of Equation (22) has the advantage that

U T
1 U1 = In×n ⇒ U †

1 = U T
1 (26)

because U1 is a unitary matrix resulting from the property of the SVD. Nevertheless, the choice of
Equations (24) and (25) has a nice property of balanced coordinates. Equation (22) or (24) is commonly
called observability matrix whereas Equation (23) or (25) is referred to as the controllability matrix.

Equations (22) and (23) produce the following solutions

C = the first m rows of U1 (27)

B̄1 = the first r columns of �1V T
1 (28)

Since the choices of controllability and observability matrices are not unique, the identified matrices
Cand B̄1 are not unique. To determine the state matrix A, let us first define and observe the following
matrices.

U1↑ =




C
C A

...
C Aα−2


 (29)
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and

U1↓ =




C A
C A2

...
C Aα−1


 = U1↑ A (30)

Deleting the last m rows of U1 forms the matrix U1↑ whereas deleting the first m rows of U1 yields the
matrix U1↓. It is then clear that the state matrix A can be determined by

A = U †
1↑U1↓ (31)

For the identified state matrix to have the rank n, both (α − 1)m × n matrices U1↑ and U1↓ must also
have the rank n. This implies that α must be chosen such that (α − 1)m > n, i.e., αm > n. Of course,
we have assumed that the pulse force υi for i = 1, 2, . . . , r are chosen so that all system modes are
excitable and observable.

With the aid of Equation (13), Equation (31) produces the continuous-time state matrix as

Ac = 1

�t
log(A) = 1

�t
log(U †

1↑U1↓) (32)

Note that the conversion from a discrete-time state matrix to a continuous-time state matrix may not be
unique.

To this end, we have determined Ac from Equation (32), C from Equation (27), B̄1 from Equation
(28), and D̄ from Equation (18). The original transmission matrix D can be recovered using Equation
(9) to have

D = D̄ diag[ 1/υ1 1/υ2 · · · 1/υr ] (33)

Let us stress that the identified matrices Ac, B̄1 and C are not uniquely determined but D is coordinate
invariant and so is uniquely determined.

3.2. IDENTIFICATION OF Bc AND Nci

The second step begins with generating the two-sample-period pulse response for all inputs with one
input at a time, i.e., a force is applied with the same magnitude as above to the system for two time
steps 2�t . From Equation (15) for N = 2, we obtain

y1(0) = d̄1 · · · yr (0) = d̄r

y1(1) = Cb̄1 + d̄1 · · · yr (1) = Cb̄r + d̄r

y1(2) = C[ Ā1b̄1 + b̄1] · · · yr (2) = C[ Ār b̄r + b̄r ] (34)

... ...
...

y1(� + 2) = C A�[ Ā1b̄1 + b̄1] · · · yr (� + 2) = C A�[ Ār b̄r + b̄r ]
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Now define the system Markov parameters from the two-sample-period pulse response as

Y2(2) = [ y1(2) y2(2) · · · yr (2) ]

= [ C( Ā1b̄1 + b̄1) C( Ā2b̄2 + b̄2) · · · C( Ār b̄r + b̄r ) ]

Y2(3) = [ y1(3) y2(3) · · · yr (3) ]

= [ C A( Ā1b̄1 + b̄1) C A( Ā2b̄2 + b̄2) · · · C A( Ār b̄r + b̄r ) ] (35)

...

Y2(� + 2) = [ y1(� + 2) y2(� + 2) · · · yr (� + 2) ]

= [ C A�( Ā1b̄1 + b̄1) C A�( Ā2b̄2 + b̄2) · · · C A�( Ār b̄r + b̄r ) ]

Subscript 2 for Y2(k) (k = 2, 3, . . . , � + 2) signifies two-sample-period pulse response. Let us form a
αm × r matrix as follows.

H2 =




Y2(2)
Y2(3)

...
Y2(α + 1)


 =




C
C A

...
C Aα−1


 B̄2 (36)

where

B̄2 = [ ( Ā1b̄1 + b̄1) ( Ā2b̄2 + b̄2) · · · ( Ār b̄r + b̄r ) ] (37)

With the help of Equation (22), the n × r matrix B̄2 in Equation (36) can be solved by

B̄2 =




C
C A

...
C Aα−1




†

H2 = U †
1 H2 (38)

Similarly, we may continue the process to generate three-sample-period pulse response, four-sample-
period pulse response, etc. up to the p-sample-period pulse response for all inputs with one input at a
time using a force of the same magnitude as earlier applied to the system for p time periods p�t . From
Equation (15) for N = p, we have

y1(p) = C
(

Ā p−1
1 b̄1 + · · · + b̄1

) · · · yr (p) = C
(

Ā p−1
r b̄r + · · · + b̄r

)
y1(p + 1) = C A

(
Ā p−1

1 b̄1 + · · · + b̄1
) · · · yr (p + 1) = C A

(
Ā p−1

r b̄r + · · · + b̄r
)

y1(p + 2) = C A2
(

Ā p−1
1 b̄1 + · · · + b̄1

) · · · yr (p + 2) = C A2
(

Ā p−1
r b̄r + · · · + b̄r

)
(39)

... ...
...

y1(p + �) = C A�
(

Ā p−1
1 b̄1 + · · · + b̄1

) · · · yr (p + �) = C A�
(

Ā p−1
r b̄r + · · · + b̄r

)
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Now define the system Markov parameters for the p-sample-period pulse response as

Yp(p) = [ y1(p) y2(p) · · · yr (p) ]

= [
C

(
Ā p−1

1 b̄1 + · · · + b̄1
)

C
(

Ā p−1
2 b̄2 + · · · + b̄2

) · · · C
(

Ā p−1
r b̄r + · · · + b̄r

) ]
Yp(p + 1) = [ y1(p + 1) y2(p + 1) · · · yr (p + 1) ]

= [
C A

(
Ā p−1

1 b̄1 + · · · + b̄1
)

C A
(

Ā p−1
2 b̄2 + · · · + b̄2

) · · · C A
(

Ā p−1
r b̄r + · · · + b̄r

) ]
...

Yp(p + �) = [ y1(p + �) y2(p + �) · · · yr (p + �) ]

= [
C A�

(
Ā p−1

1 b̄1 + · · · + b̄1
)

C A�
(

Ā p−1
2 b̄2 + · · · + b̄2

) · · · C A�
(

Ā p−1
r b̄r + · · · + b̄r

) ]
(40)

Let us form a αm × rmatrix as follows.

Hp =




Yp(p)
Yp(p + 1)

...
Yp(p + α − 1)


 =




C
C A

...
C Aα−1


 B̄p (41)

where

B̄p = [ (
Ā p−1

1 b̄1 + · · · + b̄1
) (

Ā p−1
2 b̄2 + · · · + b̄2

) · · · (
Ā p−1

r b̄r + · · · + b̄r
) ]

(42)

With the help of Equation (22), the n × rmatrix B̄p in Equation (41) can be solved by

B̄p =




C
C A

...
C Aα−1




†

Hp = U †
1 Hp (43)

To determine Bc, let us first observe the matrices B̄1, B̄2, · · · , B̄p defined in Equations (20), (37),
and (42), and determined by Equations (28), (38), and (43), i.e.,

B̄1 = [
b̄1 b̄2 · · · b̄r

]
B̄2 = [ (

Ā1b̄1 + b̄1
) (

Ā2b̄2 + b̄2
) · · · (

Ār b̄r + b̄r
) ]

(44)

...

B̄p = [ (
Ā p−1

1 b̄1 + · · · + b̄1
) (

Ā p−1
2 b̄2 + · · · + b̄2

) · · · (
Ā p−1

r b̄r + · · · + b̄r
) ]
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Applying the recursive formula

B̄k − B̄k−1; k = 2, 3, · · · , p (45)

yields the controllability like matrices,

Ci = [
b̄i Āi b̄i · · · Ā p−1

i b̄i

]
; i = 1, 2, · · · , r (46)

To determine the state matrix Āi , let us first define the two matrices

Ci← = [
b̄i Āi b̄i · · · Ā p−2

i b̄i

]
(47)

and

Ci→ = [
Āi b̄i Ā2

i b̄i · · · Ā p−1
i b̄i

] = ĀiCi← (48)

Deleting the last r columns of Ci forms the matrix Ci← whereas deleting the first r columns of Ci yields
the matrix Ci→. Equations (47) and (48) produce the solutions:

b̄i = the first r columns of Ci (49)

Āi = Ci→C
†
i← (50)

for i = 1, 2, . . . , r . For the identified matrix Āi to have the rank n, both n × (p − 1) matrices Ci← and
Ci→ must also have the rank n. It implies that p must be chosen such that p − 1 ≥ n. This indicates
that the system identification method requires a total of at least (n + 1) sets of responses generated by
(n + 1) different time periods of pulse input.

Based on Equations (7) and (8) for the definitions of Āi and b̄i , taking the conversion from discrete-
time to continuous-time produces

Ac + υi Nci = 1

�t
log( Āi ) = 1

�t
log(Ci→C

†
i←) (51)

and

bci = 1

υi

[
In×n�t + 1

2!
(Ac + υi Nci )(�t)2 + 1

3!
(Ac + υi Nci )

2(�t)3 + · · ·
]−1

b̄i (52)

for i = 1, 2, . . . , r where In×n is a n × n identity matrix, that, in turns, yields

Bc = [
bc1 bc2 · · · bcr

]
(53)

Again, one should be cautious to take the conversion because of its non-uniqueness problem [1]. From
Equations (32) and (51), the matrices Nci (i = 1, 2, . . . , r ) are determined by

Nci = 1

υi

[
1

�t
log( Āi ) − Ac

]
= 1

υi�t
[log(Ci→C

†
i←) − log(U+

1↑U1↓)] (54)
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To this end, we have identified all continuous-time system matrices Ac, Bc, Nci , C , and D for the
bilinear system described by Equations (1) and (2) from pulse responses generated by pre-specified
pulse inputs.

4. Coordinate Transformation

Let the state vector x of n × 1 in Equations (1) and (2) be transformed to the new state vector x̃ of n × 1
by the nonsingular transformation matrix � of n × n. Equations (1) and (2) become

˙̃x = Ãc x̃ + B̃cu + �r
i=1 Ñci x̃ui (55)

and

y = C̃ x̃ + Du (56)

where

x̃ = �−1x
Ãc = �−1 Ac�

Ñci = �−1 Nci�

B̃c = �−1 Bc

C̃ = C�

(57)

It is clear that the transformed matrix Ãc is similar to the original matrix Ac in the sense that their
eigenvalues are identical. The same statement is also true for the matrices Ñ ci and Nci . One question that
may arise is, given two sets of matrices representing the same bilinear system, what is the transformation
matrix to convert from one coordinate to the other.

First, form the observability matrices for both sets of system matrices

Q =




C
C Ac

...
C An−1

c


 (58)

and

Q̃ =




C̃
C̃ Ãc

...
C̃ Ãn−1

c


 (59)
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Substituting the relationship from Equation (57) into Equation (59) yields

Q̃ =




C̃
C̃ Ãc

...
C̃ Ãn−1

c


 =




C
C Ac

...
C An−1

c


 � = Q� (60)

that in turn provide the following solution for computing the transformation matrix �

� = Q† Q̃ (61)

This transformation matrix � will transform the original system coordinate to another system coordinate
without changing the input-to-output map.

5. Numerical Example

Consider the following example presented in Bruni et al. [4]

ẋ = Acx + Bcu + Nc1xu1 + Nc2xu2

y = Cx
(62)

where

Ac =
[−1 0

1 −2

]
; Nc1 =

[
0 0

1 1

]
; Nc2 =

[
1 1

0 0

]

Bc =
[

1 0

0 1

]
; C = [ 0 1 ]

(63)

Assume that we do not know the order of the system. Let us generate five sets of data with the time
period �t = 1 s. The first set of data with one input at a time is generated by a unit force of period 1
s. The second set of data with one input at a time is obtained by applying a unit force of period 2 s and
the fifth set of data is computed with a unit force of period 5 s. The number of time points is set to be
20 for each data record.

Figure 1 shows a total of 10 (p × m × r ) responses from 2 inputs (r = 2), 1 output (m =1),
and 5 different multiple-pulse inputs (p = 5). Each response sampled at 1 Hz has 20 data points.
These ten responses are obtained by numerically integrating the bilinear system shown in Equation
(62). With α = 5 and β = 6, the Hankel matrix H1 shown in Equation (19) should have the size
of 5 × 12 (αm × βr ). The state matrix and the output matrix identified from this Hankel matrix
are

Ãc =
[−1.0629 3.9782

0.0148 −1.9371

]
; C̃ = [− 0.9355 0.3497 ] (64)
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Figure 1. Five sets of pulse responses sampled at 1 Hz from two different-size inputs over five different sample periods, spp:
sample-period pulse.

The singular values of this Hankel matrix are

�1 = diag[ 0.8347 0.0543 0 0 0 ]

implying that the order of the system is n = 2. The other matrices Hk for k = 2, 3, . . . , p shown in
Equations (36) and (41) are of the size of 5×2, that produce the matrices B̄1, B̄2, · · · , B̄5 of 2×2 each
shown in Equation (44), and in turn yield C1 and C2 of 2 × 5 each shown in Equation (47). Applying
Equations (45) through (54), the quantities Bc, Nc1, and Nc2 can thus be identified as

Ñc1 =
[

1.7752 3.2911

−0.4182 −0.7752

]
; Ñc2 =

[
0.1678 0.3111

0.4489 0.8322

]

B̃c =
[−0.0929 −0.9824

−0.2484 0.2314

] (65)

The tilt on the top of Bc, Nc1, and Nc2 signifies the identified quantities that are not uniquely determined.
The quality of the identified system is evaluated next. The following transformation matrix is computed
from Equation (61)

� =
[−0.8715 −3.6998

−0.9355 0.3497

]
(66)

The matrices Ãc, B̃c, C̃, Ñc1 and Ñc2would then be transformed by using Equation (57) to become
Ac, Bc, C , Nc1, and Nc2 shown in Equation (63).
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Let us examine another case where we keep the unit force for the first input but change to 0.5 for
the second input. Figure 2 shows the 10 multiple-pulse responses. Applying the same identification
procedure as above, we obtain the following system matrices

Ãc =
[−0.9509 3.9503

0.0131 −2.094

]
; C̃ =

[
− 0.9253 0.3760

]
(67)

and

Ñc1 =
[

1.8543 3.2168

−0.4925 −0.8543

]
; Ñc2 =

[
0.1898 0.3292

0.4670 0.8102

]

B̃c =
[−0.0998 −0.9755

−0.2457 0.2591

] (68)

with the transformation matrix

� =
[−0.9757 −3.6737

−0.9253 0.3760

]
(69)

Note that the Hankel singular values are

�1 = diag
[

0.6753 0.0489 0 0 0
]
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Figure 2. Five sets of pulse responses sampled at 1 Hz from two inputs of unit pulse over five different sample periods, spp:
sample-period pulse, sphp: sample-period half pulse.
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This set of system matrices also represents the bilinear system, because it can be transformed back to
the original system exactly.

6. Concluding Remarks

A new method is introduced for identification of a continuous-time multi-input and multi-output bilinear
system. The approach is to make judicious use of the linear-model properties of the bilinear system
when subjected to a constant input. It has been shown in this paper that a bilinear system can be treated
as a combination of two linear systems in the identification process. The first linear system is the one
obtained by deleting the nonlinear terms of the bilinear system. The second linear system is given by
assuming a constant input. Due to this latter property, the identification process for the bilinear system
becomes a combination of two linear-system identification processes. The key is to combine these two
linear-system identification processes in the same coordinate system. The resulting identified system
matrices would be similar to the original ones in the sense that they represent the same bilinear system
but in different coordinates. With a proper coordinate transformation, both the original model and the
identified model are identical.
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