
Nonlinear Dynamics (2005) 45: 45–53
DOI: 10.1007/s11071-006-1890-z c© Springer 2005

Pseudo Almost Periodic Solutions to a Class of Semilinear

Differential Equations

TOKA DIAGANA
Department of Mathematics, Howard University, 2441, 6th Street N.W., Washington, D.C. 20059, USA;
(e-mail: tdiagana@howard.edu)

(Received: 22 March 2005; accepted: 29 July 2005)

Abstract. This paper is concerned with the existence and uniqueness of pseudo almost periodic solutions to a class of semilinear
differential equations involving the algebraic sum of two (possibly noncommuting) densely defined closed linear operators acting
on a Hilbert space. Sufficient conditions for the existence and uniqueness of pseudo almost periodic solutions to those semilinear
equations are obtained.
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1. Introduction

Let (H, ‖ · ‖, 〈·, ·〉) be a Hilbert space. In [1] the author had shown through the so-called method of the
invariant subspaces for unbounded linear operators [1–4] that under some suitable assumptions, every
bounded solution to the abstract differential equation

u′(t) = Au(t) + Bu(t) + g(t), t ∈ R, (1)

where A, B are densely defined closed linear operators on H, and g : R �→ H is a continuous function,
is pseudo almost periodic.

In this paper, we combine the above-mentioned method and the classical Banach fixed-point principle
to obtain some sufficient conditions, which do guarantee the existence and uniqueness of a pseudo almost
periodic solution to the class of the semilinear differential equations

u′(t) = Au(t) + Bu(t) + f (t, Cu(t)), t ∈ R, (2)

where A, B are densely defined closed (possibly noncommuting) linear operators on H, C : H �→ H is
a nonzero bounded linear operator, and f : R × H �→ H is a jointly continuous function.

The concept of the pseudo almost periodicity, which is the central question in this paper was first
initiated by Zhang in [5–7] and is a natural generalization of the of the classical (Bochner) almost
periodicity. Thus, this new concept is welcome to implement another existing generalization of the
(Bochner) almost periodicity, the so-called notion of asymptotically almost periodicity due to Fréchet,
see e.g., [4, 8–10]. More details on the concepts of almost periodicity and pseudo almost periodicity
and related applications can be found in [1, 4–7, 9, 11–17] and the references therein.
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The existence and uniqueness of pseudo almost periodic solutions to some semilinear differential
equations has been studied in [5–7, 11–13, 16] and the references therein. Here, it goes back to examine
some sufficient conditions which do guarantee the existence and uniqueness of a pseudo almost periodic
solution to Equation (2), by using the above-mentioned techniques.

Let us recall some definitions and notations that we shall use in the sequel.

2. Preliminaries

2.1. INVARIANT AND REDUCING SUBSPACES FOR LINEAR OPERATORS

Let (H, ‖ · ‖, 〈·, ·〉) be a Hilbert space and let M ⊂ H be a closed subspace. Let A be a densely defined
closed unbounded linear operator on H and let PM denote the orthogonal projection onto the closed
subspace M.

Definition 2.1. M ⊂ H is called an invariant subspace for A if the linear operator A maps D(A) ∩M
into M.

Example 2.2. Let H be a Hilbert space and let A : D(A) ⊂ H �→ H be a densely defined closed linear
operator on H.
(i) M = N (A) = {u ∈ D(A) : Au = 0} is an invariant subspace for A.

(ii) If A is self-adjoint, then each eigenspace Mλ = N (λI − A) is invariant for the linear operator A.

Example 2.3 Let H = L2([α, β]). If V ∈ L2([α, β] × [α, β]), let A be the integral operator defined by

(Aφ)(s) :=
∫ s

α

V (s, t)φ(t) dt, s ∈ [α, β].

Setting Mγ = {φ ∈ L2([α, β]) : φ = 0 a.e. on [α, γ ]}, it is not hard to see that (Mγ )γ∈[α,β] is invariant
for A.

Theorem 2.4. The equality PMAPM = APM is a necessary and sufficient condition for a subspace
M to be invariant for a linear operator A.

Proof. Suppose PMAPM = APM. If x ∈ D(A) ∩ M, then x = PMx ∈ D(A), and so, Ax =
APMx = PMAPMx ∈ M.

Conversely, if M is invariant for A; let x ∈ H such that PMx ∈ D(A). Then APMx ∈ M and
so PMAPMx = APMx , hence APM ⊂ PMAPM. Since D(APM) = D(PMAPM) it follows that
APM = PMAPM.

Definition 2.5. A closed proper subspace M of the Hilbert space H is said to reduce an operator A if
PMD(A) ⊂ D(A) and both M and H � M, the orthogonal complement of M, are invariant for A.

Theorem 2.6. A closed subspace M of H reduces an operator A if and only if PMA ⊂ APM.

Proof. See the proof of [18, Theorem 4.11., p. 29].
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Remark 2.7. Notice that the inclusion PMA ⊂ APM yields if x ∈ D(A), then PMx ∈ D(A) and
PMAx = APMx .

From now on, (H, ‖·‖, 〈·, ·〉), D(T ), R(T ) and N (T ) stand for a Hilbert space, the domain, the range, and
the kernel of a given (possibly unbounded) linear operator T , respectively. If S, T are densely defined
closed (unbounded) linear operators on H, then their algebraic sum is the linear operator defined by
D(S + T ) = D(S) ∩ D(T ) and (S + T )u := Su + T u, for each u ∈ D(S) ∩ D(T ).

Throughout the rest of the paper, we suppose that the algebraic sum A + B of A and B appearing in
Equation (2) is densely defined.

2.2. PSEUDO ALMOST PERIODIC FUNCTIONS

Let (BC(H), ‖ · ‖∞) be the Banach space of bounded continuous functions g : R �→ H endowed with
the sup norm defined by ‖g‖∞ := supt∈R ‖g(t)‖. Similarly, BC(R×�) where � ⊂ H is an open subset
denotes the vector space of bounded continuous functions F : R × � �→ H.

Definition 2.8 [8] A function f ∈ BC(H) is called almost periodic if for each ε > 0, there exists
lε > 0 such that every interval of length lε contains a number τ with the following property

‖ f (t + τ ) − f (t)‖ < ε (t ∈ R).

The number τ above is called an ε-translation number of f , and the collection of such functions will
be denoted AP(H).

Similarly,

Definition 2.9. A function F ∈ BC(R×�) is called almost periodic in t ∈ R uniformly in any K ⊂ �

a bounded subset if for each ε > 0, there exists lε > 0 such that every interval of length lε > 0 contains
a number τ with the following property

‖F(t + τ, x) − F(t, x)‖ < ε, (t ∈ R, x ∈ K ).

Here again, the number τ above is called an ε-translation number of F, and the class of such functions
will be denoted AP(R × �).

More details on properties of almost periodic functions f : R �→ H and as well as those of the form
F : R × H �→ H can be found in the literature, especially in [4, 8, 9, 17] and the references therein.

From now on, one supposes that � = H and set

AP0(H) :=
{

f ∈ BC(H) : lim
r→∞

1

2r

∫ r

−r
‖ f (s)‖ds = 0

}
, and

AP0(R × H) =
{

F ∈ BC(R × H) : lim
r→∞

1

2r

∫ r

−r
‖F(t, u)‖dt = 0, ∀u ∈ H

}
.
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Definition 2.10. A function f ∈ BC(H) is called pseudo almost periodic if it can be expressed as

f = g + φ,

where g ∈ AP(H) and φ ∈ AP0(H).
The collection of such functions will be denoted by P AP(H).

Let us mention that the functions g and φ appearing in Definition 2.10 are respectively called the
almost periodic and the ergodic perturbation components of f . Furthermore, the decomposition in
Definition 2.10 is unique [5].

We now equip PAP(H) the collection of pseudo almost periodic functions from R into H with the
sup norm. It is well-known that (PAP(H), ‖ · ‖∞) is a Banach space, see e.g., [16].

Definition 2.11. A function f ∈ BC(R × H) is called pseudo almost periodic in t ∈ R uniformly in
x ∈ H if it can be expressed as

f = g + φ,

where g ∈ AP(R × H) and φ ∈ AP0(R × H).
The collection of such functions will be denoted by PAP(R × H).

The following assumptions will be made:
(H.1) The function f : R × H �→ H, (t, u) �→ f (t, u) is pseudo almost periodic in t ∈ R uniformly

in u ∈ H, i.e. f = g + φ, where g ∈ AP(R × H) and φ ∈ AP0(R × H); and that f satisfies
Lipschitz condition in u ∈ H for each t ∈ R, i.e., there exists L > 0,

‖ f (t, u) − f (t, v)‖ ≤ L . ‖u − v‖,
for all u, v ∈ H and t ∈ R;

(H.2) there exists M ⊂ H a closed subspace which reduces both A and B. In this event, we denote by
PM, QM = (I − PM) = PH�M, the orthogonal projections onto M and H � M, respectively;

(H.3) A, B are the infinitesimal generators of c0-groups of bounded operators (T (s))s∈R, (R(s))s∈R,
respectively, such that, there exist M, K , c, d > 0 with

‖T (s − σ )PM‖ ≤ Me−c(s−σ ) for each s ≥ σ, and

‖T (s − σ )QM‖ ≤ Me−c(σ−s) for each s ≤ σ, and

‖R(s − σ )PM‖ ≤ K e−d(s−σ ) for each s ≥ σ, and

‖R(s − σ )QM‖ ≤ K e−d(σ−s) for each s ≤ σ ;

(H.4) R(A) ⊂ R(PM) = N (QM);
(H.5) R(B) ⊂ R(QM) = N (PM).

Remark 2.12
(i) If A, B are infinitesimal generators of c0-groups of bounded operators, then their algebraic sum

A + B need not be the infinitesimal generator of a c0-group of bounded operators.
(ii) Since A + B is assumed to be densely defined, then from the assumption (H.2) it follows that both

M and [H � M] are invariant for A + B.
(iii) The method of the invariant subspaces consists of imposing the assumptions (H.2), (H.4), and (H.5)

on A and B.
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3. Existence and Uniqueness of Pseudo Almost Periodic Solutions

Throughout the rest of the paper, C :H �→ H denotes a nonzero bounded linear operator.

Theorem 3.1 Under assumptions (H.1), (H.2), (H.3), (H.4), and (H.5), Equation (2) has a unique
pseudo almost periodic solution whenever

‖C‖ <
1

L

[(
M
c

)
+

(
K
d

)]−1

.

The proof of our main result (Theorem 3.1) requires the following technical lemmas:

Lemma 3.2. Under assumptions (H.1), (H.2), (H.3), (H.4), and (H.5), every bounded solution to
Equation (2) can be expressed as: u = ζ (u) + ξ (u), where

ζ (u)(t) :=
∫ t

−∞
T (t − s)PMg(s, Cu(s)) ds +

∫ t

−∞
R(t − s)QMg(s, Cu(s)) ds, and

ξ (u)(t) :=
∫ t

−∞
T (t − s)PMφ(s, Cu(s)) ds +

∫ t

−∞
R(t − s)QMφ(s, Cu(s)) ds.

Proof. (Lemma 3.2). Let u be a bounded solution to Equation (2). In view of (H.2), u can be decom-
posed as

u(t) = PMu(t) + (I − PM)u(t), ∀t ∈ R,

where PMu(t) ∈ R(PM) = N (QM) and QMu(t) ∈ N (PM) = R(QM).
We have

d
dt

(PMu(t)) = PM
d
dt

u(t)

= PMAu(t) + PMBu(t) + PM f (t, Cu(t))

= APMu(t) + PMBu(t) + PM f (t, Cu(t)), by (H.2),

= APMu(t) + PM f (t, Cu(t)), by (H.5).

From the previous equation and the fact that PM is a bounded linear operator on H it is clear that
PMu(t) is a bounded solution to the differential equation

d
dt

(z(t)) = Az(t) + PM f (t, Cu(t)).

It follows that (see [13]):

PMu(t) =
∫ t

−∞
T (t − s)PM f (s, Cu(s)) ds.

And hence,

PMu(t) =
∫ t

−∞
T (t − s)PMg(s, Cu(s)) ds +

∫ t

−∞
T (t − s)PMφ(s, Cu(s)) ds,
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by (H.1).
Arguing similarly as above, it follows that

QMu(t) =
∫ t

−∞
R(t − s)QM f (s, Cu(s)) ds,

and therefore

QMu(t) =
∫ t

−∞
R(t − s)QMg(s, Cu(s)) ds +

∫ t

−∞
R(t − s)QMφ(s, Cu(s)) ds,

by (H.1).
One completes the proof by combining expressions of both PMu and QMu above.

Lemma 3.3. Under assumptions (H.1), (H.2), (H.3), (H.4), and (H.5), if u ∈ P AP(H) is a solution
to Equation (2), then u = ζ (u) + ξ (u), where ζ (u) ∈ AP(H) and ξ (u) ∈ AP0(H) (ζ and ξ being as in
Lemma 3.2).

Proof. (Lemma 3.3). Let u ∈ PAP(H). Clearly, u is bounded. If u is a solution to Equation (2), then
u = ζ (u) + ξ (u), by Lemma 3.2.

First of all, let us notice that since f ∈ PAP(R × H) and satisfies Lipschitz condition, (H.1), for each
v ∈ P AP(H), the function f (·, v(·)) belongs to P AP(H), see, e.g., [14, Proposition 2.2]. Furthermore,
g(·, v(·)) and φ(·, v(·)) are respectively the almost periodic and ergodic perturbation components of
f (·, v(·)). In particular, g(·, u(·)) ∈ AP(H) and φ(·, u(·)) ∈ AP0(H).

We next show that ζ (u) ∈ AP(H). Since C is bounded, it follows that t �→ Cu(t) is almost periodic,
and hence g(·, Cu(·)) ∈ AP(H). Thus for every ε > 0, there exists δ > 0 such that for all γ , there is
τ ∈ [γ, γ + δ] with

‖g(s + τ, Cu(s + τ )) − g(s, Cu(s))‖ < μ . ε, ∀s ∈ R,

where

μ =
(

M
c

+ K
d

)−1

.

Considering ζ (u)(t + τ ) − ζ (u)(t) and using the assumption (H.3) it easily follows that

‖ζ (u)(t + τ ) − ζ (u)(t)‖ < ε, ∀t ∈ R,

and hence t �→ ζ (t) is an almost periodic function.
It remains to show that t �→ ξ (u)(t) is in AP0(H). For that, write

ξ (u)(t) = YT (t) + YR(t),

where

YT (t) :=
∫ t

−∞
T (t − s)PMφ(s, Cu(s)) ds,
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and

YR(t) :=
∫ t

−∞
R(t − s)QMφ(s, Cu(s)) ds.

We will only show that YT ∈ AP0(H) since the proof for YR follows along the same lines. Indeed, it is
clear that s �→ YT (s) is a bounded continuous function. Thus, the remaining task is to show that

lim
r→∞

1

2r

∫ r

−r
‖YT (t)‖ dt = 0.

Using the assumption (H.3) it follows that,

lim
r→∞

1

2r

∫ r

−r
‖YT (t)‖ dt ≤ I + J,

where

I := lim
r→∞

M
2r

∫ r

−r
dt

(∫ t

−r
e−c(t−s) ‖φ(s, Cu(s))‖ ds

)
,

and

J := lim
r→∞

M
2r

∫ r

−r
dt

∫ −r

−∞
e−c(t−s) ‖φ(s, Cu(s))‖ ds.

To complete the proof we must show that I = J = 0. For that, we mainly use the facts that φ(·, Cu(·)) ∈
AP0(H) and G = supt∈R ‖φ(t, Cu(t))‖ < ∞. Indeed,

I = lim
r→∞

M
2r

∫ r

−r
‖φ(t, Cu(t))‖ dt

( ∫ t

−r
e−c(t−s) ds

)

= lim
r→∞

M
2r

∫ r

−r
‖φ(t, Cu(t))‖ dt

(
1

c
[1 − e−c(t+r )]

)

≤ M
c

. lim
r→∞

1

2r

∫ r

−r
‖φ(t, Cu(t))‖ dt

= 0,

by φ(·, Cu(·)) ∈ AP0(H).
Similarly,

J = lim
r→∞

M
2r

∫ −r

−∞
ecs‖φ(s, Cu(s))‖ ds

∫ r

−r
e−ct dt

≤ lim
r→∞

MG
2r

∫ −r

−∞
ecs ds

(
1

c
[ecr − e−cr ]

)
= lim

r→∞
MG
2rc2

(1 − e−2cr )

= 0.
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Thus s �→ YT (s) belongs to AP0(H). In this way, s �→ YR(s) is also in AP0(H), and therefore
ξ (u) ∈ AP0(H).

Proof. (Theorem 3.1). In view of Lemma 3.2, each bounded solution to Equation (2) can be written
as �(u) := ζ (u) + ξ (u), where

�(u)(t) =
∫ t

−∞
T (t − s)PM f (s, Cu(s)) ds +

∫ t

−∞
R(t − s)QM f (s, Cu(s)) ds.

Now using Lemma 3.2 it follows that � given above maps PAP(H) into itself. To complete the proof
we must show that � is a strict contraction from (PAP(H), ‖ · ‖∞) into itself.

Let u, v ∈ PAP(H),∥∥∥∥∥
∫ t

−∞
T (t − s)PM[ f (s, Cu(s)) − f (s, Cv(s))] ds

∥∥∥∥∥ ≤ α‖u − v‖∞
∫ t

−∞
e−c(t−s) ds

≤ α

c
. ‖u − v‖∞

for each t ∈ R with α = L M‖C‖.
Consequently,

sup
t∈R

∥∥∥∥∥
∫ t

−∞
T (t − s)PM[ f (s, Cu(s)) − f (s, Cv(s))] ds

∥∥∥∥∥ ≤
(

L M‖C‖
c

)
. ‖u − v‖∞.

Similarly,∥∥∥∥∥
∫ t

−∞
R(t − s)QM[ f (s, Cu(s)) − f (s, Cv(s))] ds

∥∥∥∥∥ ≤ β

d
. ‖u − v‖∞

for each t ∈ R with β = L K‖C‖. And hence,

sup
t∈R

∥∥∥∥∥
∫ t

−∞
R(t − s)QM[ f (s, Cu(s)) − f (s, Cv(s))] ds

∥∥∥∥∥ ≤
(

L K‖C‖
d

)
. ‖u − v‖∞.

In summary,

‖�(u) − �(v)‖∞ ≤
[(

L M‖C‖
c

)
+

(
L K‖C‖

d

)]
. ‖u − v‖∞

=
[(

M
c

)
+

(
K
d

)]
‖C‖ . L . ‖u − v‖∞.

Thus, if

‖C‖ <
1

L

[(
M
c

)
+

(
K
d

)]−1

,

then the nonlinear operator �: (PAP(H), ‖.‖∞) �→ (PAP(H), ‖.‖∞) is a strict contraction, and therefore
by the Banach fixed point principle there exists a unique u0 ∈ PAP(H) such that �(u0) = u0.
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