c Springer 2005

Pseudo Almost Periodic Solutions to a Class of Semilinear Differential Equations

TOKA DIAGANA

Department of Mathematics, Howard University, 2441, 6th Street N.W., Washington, D.C. 20059, USA; (e-mail: tdiagana@howard.edu)

(Received: 22 March 2005; accepted: 29 July 2005)

Abstract. This paper is concerned with the existence and uniqueness of pseudo almost periodic solutions to a class of semilinear differential equations involving the algebraic sum of two (possibly noncommuting) densely defined closed linear operators acting on a Hilbert space. Sufficient conditions for the existence and uniqueness of pseudo almost periodic solutions to those semilinear equations are obtained.

Key words: almost periodic function, Banach fixed-point principle, existence and uniqueness of a pseudo almost periodic solution, infinitesimal generator of a c_0 -group, pseudo almost periodic function, the method of the invariant subspaces for unbounded linear operators

1. Introduction

Let $(\mathbb{H}, \| \cdot \|, \langle \cdot, \cdot \rangle)$ be a Hilbert space. In [1] the author had shown through the so-called method of the *invariant subspaces* for unbounded linear operators [1–4] that under some suitable assumptions, every bounded solution to the abstract differential equation

$$
u'(t) = Au(t) + Bu(t) + g(t), \quad t \in \mathbb{R},
$$
\n
$$
(1)
$$

where *A*, *B* are densely defined closed linear operators on \mathbb{H} , and $g : \mathbb{R} \mapsto \mathbb{H}$ is a continuous function, is *pseudo almost periodic*.

In this paper, we combine the above-mentioned method and the classical Banach fixed-point principle to obtain some sufficient conditions, which do guarantee the existence and uniqueness of a pseudo almost periodic solution to the class of the semilinear differential equations

$$
u'(t) = Au(t) + Bu(t) + f(t, Cu(t)), \quad t \in \mathbb{R},
$$
\n(2)

where *A*, *B* are densely defined closed (possibly noncommuting) linear operators on $\mathbb{H}, C: \mathbb{H} \mapsto \mathbb{H}$ is a nonzero bounded linear operator, and $f: \mathbb{R} \times \mathbb{H} \mapsto \mathbb{H}$ is a jointly continuous function.

The concept of the pseudo almost periodicity, which is the central question in this paper was first initiated by Zhang in [5–7] and is a natural generalization of the of the classical (Bochner) almost periodicity. Thus, this new concept is welcome to implement another existing generalization of the (Bochner) almost periodicity, the so-called notion of asymptotically almost periodicity due to Fréchet, see e.g., [4, 8–10]. More details on the concepts of almost periodicity and pseudo almost periodicity and related applications can be found in [1, 4–7, 9, 11–17] and the references therein.

The existence and uniqueness of pseudo almost periodic solutions to some semilinear differential equations has been studied in [5–7, 11–13, 16] and the references therein. Here, it goes back to examine some sufficient conditions which do guarantee the existence and uniqueness of a pseudo almost periodic solution to Equation (2), by using the above-mentioned techniques.

Let us recall some definitions and notations that we shall use in the sequel.

2. Preliminaries

2.1. INVARIANT AND REDUCING SUBSPACES FOR LINEAR OPERATORS

Let ($\mathbb{H},\|\cdot\|,\langle\cdot,\cdot\rangle)$ be a Hilbert space and let $\mathcal{M}\subset\mathbb{H}$ be a closed subspace. Let A be a densely defined closed unbounded linear operator on $\mathbb H$ and let P_M denote the orthogonal projection onto the closed subspace M.

Definition 2.1. $M \subset \mathbb{H}$ is called an invariant subspace for *A* if the linear operator *A* maps $D(A) \cap M$ into M.

Example 2.2. Let \mathbb{H} be a Hilbert space and let $A: D(A) \subset \mathbb{H} \mapsto \mathbb{H}$ be a densely defined closed linear operator on H.

(i) $M = N(A) = \{u \in D(A) : Au = 0\}$ is an invariant subspace for A.

(ii) If *A* is self-adjoint, then each eigenspace $\mathcal{M}_{\lambda} = N(\lambda I - A)$ is invariant for the linear operator *A*.

Example 2.3 Let $\mathbb{H} = L^2([\alpha, \beta])$. If $V \in L^2([\alpha, \beta] \times [\alpha, \beta])$, let *A* be the integral operator defined by

$$
(A\phi)(s) := \int_{\alpha}^{s} V(s, t)\phi(t) dt, \quad s \in [\alpha, \beta].
$$

Setting $M_{\gamma} = {\phi \in L^2((\alpha, \beta)) : \phi = 0 \text{ a.e. on } [\alpha, \gamma]},$ it is not hard to see that $(M_{\gamma})_{\gamma \in [\alpha, \beta]}$ is invariant for *A*.

Theorem 2.4. *The equality* $P_{\mathcal{M}} A P_{\mathcal{M}} = A P_{\mathcal{M}}$ *is a necessary and sufficient condition for a subspace* M *to be invariant for a linear operator A.*

Proof. Suppose $P_M AP_M = AP_M$. If $x \in D(A) \cap M$, then $x = P_M x \in D(A)$, and so, $Ax =$ $AP_{\mathcal{M}}x = P_{\mathcal{M}}AP_{\mathcal{M}}x \in \mathcal{M}.$

Conversely, if M is invariant for A; let $x \in \mathbb{H}$ such that $P_M x \in D(A)$. Then $AP_M x \in M$ and so $P_{\mathcal{M}} A P_{\mathcal{M}} x = A P_{\mathcal{M}} x$, hence $A P_{\mathcal{M}} \subset P_{\mathcal{M}} A P_{\mathcal{M}}$. Since $D(A P_{\mathcal{M}}) = D(P_{\mathcal{M}} A P_{\mathcal{M}})$ it follows that $AP_{\mathcal{M}} = P_{\mathcal{M}}AP_{\mathcal{M}}.$ \Box

Definition 2.5. A closed proper subspace M of the Hilbert space $\mathbb H$ is said to reduce an operator A if $P_M D(A) \subset D(A)$ and both M and $H \ominus M$, the orthogonal complement of M, are invariant for A.

Theorem 2.6. *A closed subspace* M of \mathbb{H} *reduces an operator A if and only if* $P_M A \subset AP_M$.

Proof. See the proof of [18, Theorem 4.11., p. 29].

Remark 2.7. Notice that the inclusion $P_M A \subset AP_M$ yields if $x \in D(A)$, then $P_M x \in D(A)$ and $P_{\mathcal{M}} A x = A P_{\mathcal{M}} x.$

From now on, $(\mathbb{H}, \|\cdot\|, \langle \cdot, \cdot \rangle)$, $D(T)$, $R(T)$ and $N(T)$ stand for a Hilbert space, the domain, the range, and the kernel of a given (possibly unbounded) linear operator *T* , respectively. If *S*, *T* are densely defined closed (unbounded) linear operators on H, then their algebraic sum is the linear operator defined by *D*(*S* + *T*) = *D*(*S*) ∩ *D*(*T*) and (*S* + *T*)*u* := *Su* + *Tu*, for each *u* ∈ *D*(*S*) ∩ *D*(*T*).

Throughout the rest of the paper, we suppose that the algebraic sum $A + B$ of A and B appearing in Equation (2) is densely defined.

2.2. PSEUDO ALMOST PERIODIC FUNCTIONS

Let $(BC(\mathbb{H}), \|\cdot\|_{\infty})$ be the Banach space of bounded continuous functions $g : \mathbb{R} \mapsto \mathbb{H}$ endowed with the sup norm defined by $\|g\|_{\infty} := \sup_{t \in \mathbb{R}} \|g(t)\|$. Similarly, $BC(\mathbb{R} \times \Omega)$ where $\Omega \subset \mathbb{H}$ is an open subset denotes the vector space of bounded continuous functions $F: \mathbb{R} \times \Omega \mapsto \mathbb{H}$.

Definition 2.8 [8] A function $f \in BC(\mathbb{H})$ is called almost periodic if for each $\varepsilon > 0$, there exists $l_{\varepsilon} > 0$ such that every interval of length l_{ε} contains a number τ with the following property

 $|| f(t + \tau) - f(t) || < \varepsilon \quad (t \in \mathbb{R}).$

The number τ above is called an *ε-translation number* of f, and the collection of such functions will be denoted $AP(\mathbb{H})$.

Similarly,

Definition 2.9. A function $F \in BC(\mathbb{R} \times \Omega)$ is called almost periodic in $t \in \mathbb{R}$ uniformly in any $K \subset \Omega$ a bounded subset if for each $\varepsilon > 0$, there exists $l_{\varepsilon} > 0$ such that every interval of length $l_{\varepsilon} > 0$ contains a number τ with the following property

 $||F(t + \tau, x) - F(t, x)|| < \varepsilon, \quad (t \in \mathbb{R}, x \in K).$

Here again, the number τ above is called an ε -translation number of F, and the class of such functions will be denoted $AP(\mathbb{R} \times \Omega)$.

More details on properties of almost periodic functions $f: \mathbb{R} \mapsto \mathbb{H}$ and as well as those of the form $F: \mathbb{R} \times \mathbb{H} \mapsto \mathbb{H}$ can be found in the literature, especially in [4, 8, 9, 17] and the references therein.

From now on, one supposes that $\Omega = \mathbb{H}$ and set

$$
AP_0(\mathbb{H}) := \left\{ f \in BC(\mathbb{H}) : \lim_{r \to \infty} \frac{1}{2r} \int_{-r}^r ||f(s)|| ds = 0 \right\}, \text{ and}
$$

$$
AP_0(\mathbb{R} \times \mathbb{H}) = \left\{ F \in BC(\mathbb{R} \times \mathbb{H}) : \lim_{r \to \infty} \frac{1}{2r} \int_{-r}^r ||F(t, u)|| dt = 0, \forall u \in \mathbb{H} \right\}.
$$

Definition 2.10. A function $f \in BC(\mathbb{H})$ is called pseudo almost periodic if it can be expressed as

 $f = g + \phi$,

where $g \in AP(\mathbb{H})$ and $\phi \in AP_0(\mathbb{H})$.

The collection of such functions will be denoted by *PAP*(H).

Let us mention that the functions *g* and ϕ appearing in Definition 2.10 are respectively called the almost periodic and the ergodic perturbation components of *f* . Furthermore, the decomposition in Definition 2.10 is unique [5].

We now equip $PAP(\mathbb{H})$ the collection of pseudo almost periodic functions from $\mathbb R$ into $\mathbb H$ with the sup norm. It is well-known that $(PAP(\mathbb{H}), \| \cdot \|_{\infty})$ is a Banach space, see e.g., [16].

Definition 2.11. A function $f \in BC(\mathbb{R} \times \mathbb{H})$ is called pseudo almost periodic in $t \in \mathbb{R}$ uniformly in $x \in \mathbb{H}$ if it can be expressed as

 $f = g + \phi$,

where $g \in AP(\mathbb{R} \times \mathbb{H})$ and $\phi \in AP_0(\mathbb{R} \times \mathbb{H})$.

The collection of such functions will be denoted by $PAP(\mathbb{R} \times \mathbb{H})$.

The following assumptions will be made:

(H.1) The function $f: \mathbb{R} \times \mathbb{H} \mapsto \mathbb{H}$, $(t, u) \mapsto f(t, u)$ is pseudo almost periodic in $t \in \mathbb{R}$ uniformly in $u \in \mathbb{H}$, i.e. $f = g + \phi$, where $g \in AP(\mathbb{R} \times \mathbb{H})$ and $\phi \in AP_0(\mathbb{R} \times \mathbb{H})$; and that *f* satisfies Lipschitz condition in $u \in \mathbb{H}$ for each $t \in \mathbb{R}$, i.e., there exists $L > 0$,

 $|| f(t, u) - f(t, v) || \leq L$. $||u - v||$,

for all $u, v \in \mathbb{H}$ and $t \in \mathbb{R}$;

- (H.2) there exists $M \subset \mathbb{H}$ a closed subspace which reduces both *A* and *B*. In this event, we denote by P_M , $Q_M = (I - P_M) = P_{\text{H}\oplus M}$, the orthogonal projections onto M and $\mathbb{H}\oplus M$, respectively;
- (H.3) *A*, *B* are the infinitesimal generators of *c*₀-groups of bounded operators $(T(s))_{s \in \mathbb{R}}$, $(R(s))_{s \in \mathbb{R}}$ respectively, such that, there exist $M, K, c, d > 0$ with

 $||T(s - \sigma)P_M|| \le Me^{-c(s-\sigma)}$ for each $s \ge \sigma$, and $||T(s - σ)Q_M||$ ≤ *Me*^{−*c*(σ−*s*) for each *s* ≤ σ, and} $||R(s - \sigma)P_M|| \leq Ke^{-d(s - \sigma)}$ for each $s \geq \sigma$, and $||R(s - \sigma)Q_M|| \leq Ke^{-d(\sigma - s)}$ for each *s* ≤ σ ;

 (RA) $R(A)$ \subset $R(P_M)$ = $N(Q_M);$ $(R.5)$ $R(B) \subset R(Q_M) = N(P_M).$

Remark 2.12

- (i) If A, B are infinitesimal generators of c_0 -groups of bounded operators, then their algebraic sum $A + B$ need not be the infinitesimal generator of a c_0 -group of bounded operators.
- (ii) Since $A + B$ is assumed to be densely defined, then from the assumption (H.2) it follows that both M and $[\mathbb{H} \ominus M]$ are invariant for $A + B$.
- (iii) The method of the invariant subspaces consists of imposing the assumptions (H.2), (H.4), and (H.5) on *A* and *B*.

3. Existence and Uniqueness of Pseudo Almost Periodic Solutions

Throughout the rest of the paper, $C: \mathbb{H} \mapsto \mathbb{H}$ denotes a nonzero bounded linear operator.

Theorem 3.1 *Under assumptions (H.1), (H.2), (H.3), (H.4), and (H.5), Equation (2) has a unique pseudo almost periodic solution whenever*

$$
\|C\| < \frac{1}{L} \left[\left(\frac{M}{c} \right) + \left(\frac{K}{d} \right) \right]^{-1}.
$$

The proof of our main result (Theorem 3.1) requires the following technical lemmas:

Lemma 3.2. *Under assumptions (H.1), (H.2), (H.3), (H.4), and (H.5), every bounded solution to Equation (2) can be expressed as:* $u = \zeta(u) + \xi(u)$ *, where*

$$
\zeta(u)(t) := \int_{-\infty}^{t} T(t-s)P_{\mathcal{M}}g(s, Cu(s)) ds + \int_{-\infty}^{t} R(t-s)Q_{\mathcal{M}}g(s, Cu(s)) ds, \text{ and}
$$

$$
\xi(u)(t) := \int_{-\infty}^{t} T(t-s)P_{\mathcal{M}}\phi(s, Cu(s)) ds + \int_{-\infty}^{t} R(t-s)Q_{\mathcal{M}}\phi(s, Cu(s)) ds.
$$

Proof. (Lemma 3.2). Let *u* be a bounded solution to Equation (2). In view of (H.2), *u* can be decomposed as

$$
u(t) = P_{\mathcal{M}}u(t) + (I - P_{\mathcal{M}})u(t), \ \forall t \in \mathbb{R},
$$

where $P_M u(t) \in R(P_M) = N(Q_M)$ and $Q_M u(t) \in N(P_M) = R(Q_M)$. We have

$$
\frac{d}{dt}(P_{\mathcal{M}}u(t)) = P_{\mathcal{M}}\frac{d}{dt}u(t)
$$
\n
$$
= P_{\mathcal{M}}Au(t) + P_{\mathcal{M}}Bu(t) + P_{\mathcal{M}}f(t, Cu(t))
$$
\n
$$
= AP_{\mathcal{M}}u(t) + P_{\mathcal{M}}Bu(t) + P_{\mathcal{M}}f(t, Cu(t)), \text{ by (H.2)},
$$
\n
$$
= AP_{\mathcal{M}}u(t) + P_{\mathcal{M}}f(t, Cu(t)), \text{ by (H.5)}.
$$

From the previous equation and the fact that P_M is a bounded linear operator on $\mathbb H$ it is clear that $P_M u(t)$ is a bounded solution to the differential equation

$$
\frac{d}{dt}(z(t)) = Az(t) + P_M f(t, Cu(t)).
$$

It follows that (see [13]):

$$
P_{\mathcal{M}}u(t) = \int_{-\infty}^{t} T(t-s)P_{\mathcal{M}}f(s,Cu(s)) ds.
$$

And hence,

$$
P_{\mathcal{M}}u(t) = \int_{-\infty}^{t} T(t-s)P_{\mathcal{M}}g(s,Cu(s)) ds + \int_{-\infty}^{t} T(t-s)P_{\mathcal{M}}\phi(s,Cu(s)) ds,
$$

by (H.1).

Arguing similarly as above, it follows that

$$
Q_{\mathcal{M}}u(t) = \int_{-\infty}^{t} R(t-s)Q_{\mathcal{M}}f(s,Cu(s)) ds,
$$

and therefore

$$
Q_M u(t) = \int_{-\infty}^t R(t-s)Q_M g(s, Cu(s)) ds + \int_{-\infty}^t R(t-s)Q_M \phi(s, Cu(s)) ds,
$$

by (H.1).

One completes the proof by combining expressions of both $P_M u$ and $Q_M u$ above.

 \Box

Lemma 3.3. *Under assumptions (H.1), (H.2), (H.3), (H.4), and (H.5), if* $u \in PAP(\mathbb{H})$ *is a solution to Equation (2), then* $u = \zeta(u) + \xi(u)$ *, where* $\zeta(u) \in AP(\mathbb{H})$ *and* $\xi(u) \in AP_0(\mathbb{H})$ *(* ζ *and* ξ *<i>being as in Lemma 3.2).*

Proof. (Lemma 3.3). Let $u \in PAP(\mathbb{H})$. Clearly, *u* is bounded. If *u* is a solution to Equation (2), then $u = \zeta(u) + \xi(u)$, by Lemma 3.2.

First of all, let us notice that since $f \in PAP(\mathbb{R} \times \mathbb{H})$ and satisfies Lipschitz condition, (H.1), for each $v \in PAP(\mathbb{H})$, the function $f(\cdot, v(\cdot))$ belongs to $PAP(\mathbb{H})$, see, e.g., [14, Proposition 2.2]. Furthermore, $g(\cdot, v(\cdot))$ and $\phi(\cdot, v(\cdot))$ are respectively the almost periodic and ergodic perturbation components of *f* (·, *v*(·)). In particular, $g(\cdot, u(\cdot)) \in AP(\mathbb{H})$ and $\phi(\cdot, u(\cdot)) \in AP_0(\mathbb{H})$.

We next show that $\zeta(u) \in AP(\mathbb{H})$. Since *C* is bounded, it follows that $t \mapsto Cu(t)$ is almost periodic, and hence $g(\cdot, Cu(\cdot)) \in AP(\mathbb{H})$. Thus for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all γ , there is $\tau \in [\gamma, \gamma + \delta]$ with

$$
||g(s+\tau,Cu(s+\tau))-g(s,Cu(s))|| < \mu \cdot \varepsilon, \quad \forall s \in \mathbb{R},
$$

where

$$
\mu = \left(\frac{M}{c} + \frac{K}{d}\right)^{-1}.
$$

Considering $\zeta(u)(t + \tau) - \zeta(u)(t)$ and using the assumption (H.3) it easily follows that

$$
\|\zeta(u)(t+\tau)-\zeta(u)(t)\|<\varepsilon,\quad\forall t\in\mathbb{R},
$$

and hence $t \mapsto \zeta(t)$ is an almost periodic function.

It remains to show that $t \mapsto \xi(u)(t)$ is in $AP_0(\mathbb{H})$. For that, write

$$
\xi(u)(t) = Y_T(t) + Y_R(t),
$$

where

$$
Y_T(t) := \int_{-\infty}^t T(t-s) P_{\mathcal{M}} \phi(s, C u(s)) ds,
$$

$$
Y_R(t) := \int_{-\infty}^t R(t-s) Q_M \phi(s, Cu(s)) ds.
$$

We will only show that $Y_T \in AP_0(\mathbb{H})$ since the proof for Y_R follows along the same lines. Indeed, it is clear that $s \mapsto Y_T(s)$ is a bounded continuous function. Thus, the remaining task is to show that

$$
\lim_{r \to \infty} \frac{1}{2r} \int_{-r}^{r} ||Y_T(t)|| dt = 0.
$$

Using the assumption (H.3) it follows that,

$$
\lim_{r \to \infty} \frac{1}{2r} \int_{-r}^{r} \|Y_T(t)\| \, dt \le I + J,
$$

where

$$
I := \lim_{r \to \infty} \frac{M}{2r} \int_{-r}^{r} dt \left(\int_{-r}^{t} e^{-c(t-s)} \left\| \phi(s, Cu(s)) \right\| ds \right),
$$

and

$$
J := \lim_{r \to \infty} \frac{M}{2r} \int_{-r}^{r} dt \int_{-\infty}^{-r} e^{-c(t-s)} \|\phi(s, Cu(s))\| ds.
$$

To complete the proof we must show that $I = J = 0$. For that, we mainly use the facts that $\phi(\cdot, Cu(\cdot)) \in$ $AP_0(\mathbb{H})$ and $G = \sup_{t \in \mathbb{R}} ||\phi(t, Cu(t))|| < \infty$. Indeed,

$$
I = \lim_{r \to \infty} \frac{M}{2r} \int_{-r}^{r} \|\phi(t, Cu(t))\| dt \left(\int_{-r}^{t} e^{-c(t-s)} ds \right)
$$

=
$$
\lim_{r \to \infty} \frac{M}{2r} \int_{-r}^{r} \|\phi(t, Cu(t))\| dt \left(\frac{1}{c} [1 - e^{-c(t+r)}] \right)
$$

$$
\leq \frac{M}{c} \cdot \lim_{r \to \infty} \frac{1}{2r} \int_{-r}^{r} \|\phi(t, Cu(t))\| dt
$$

= 0,

by $\phi(\cdot, Cu(\cdot)) \in AP_0(\mathbb{H})$. Similarly,

$$
J = \lim_{r \to \infty} \frac{M}{2r} \int_{-\infty}^{-r} e^{cs} \|\phi(s, Cu(s))\| ds \int_{-r}^{r} e^{-ct} dt
$$

\n
$$
\leq \lim_{r \to \infty} \frac{MG}{2r} \int_{-\infty}^{-r} e^{cs} ds \left(\frac{1}{c} [e^{cr} - e^{-cr}] \right)
$$

\n
$$
= \lim_{r \to \infty} \frac{MG}{2rc^2} (1 - e^{-2cr})
$$

\n
$$
= 0.
$$

and

Thus $s \mapsto Y_T(s)$ belongs to $AP_0(\mathbb{H})$. In this way, $s \mapsto Y_R(s)$ is also in $AP_0(\mathbb{H})$, and therefore $\xi(u) \in AP_0(\mathbb{H}).$ \Box

Proof. (Theorem 3.1). In view of Lemma 3.2, each bounded solution to Equation (2) can be written as $\Lambda(u) := \zeta(u) + \xi(u)$, where

$$
\Lambda(u)(t) = \int_{-\infty}^t T(t-s)P_{\mathcal{M}}f(s, Cu(s)) ds + \int_{-\infty}^t R(t-s)Q_{\mathcal{M}}f(s, Cu(s)) ds.
$$

Now using Lemma 3.2 it follows that Λ given above maps $PAP(\mathbb{H})$ into itself. To complete the proof we must show that Λ is a strict contraction from $(PAP(\mathbb{H}), \| \cdot \|_{\infty})$ into itself.

Let $u, v \in PAP(\mathbb{H}),$

$$
\left\| \int_{-\infty}^{t} T(t-s) P_{\mathcal{M}}[f(s, Cu(s)) - f(s, Cv(s))] ds \right\| \leq \alpha \|u - v\|_{\infty} \int_{-\infty}^{t} e^{-c(t-s)} ds
$$

$$
\leq \frac{\alpha}{c} \cdot \|u - v\|_{\infty}
$$

for each $t \in \mathbb{R}$ with $\alpha = LM || C ||$.

Consequently,

$$
\sup_{t\in\mathbb{R}}\left\|\int_{-\infty}^t T(t-s)P_{\mathcal{M}}[f(s,Cu(s))-f(s,Cv(s))]ds\right\|\leq \left(\frac{LM\|C\|}{c}\right).\|u-v\|_{\infty}.
$$

Similarly,

$$
\left\| \int_{-\infty}^t R(t-s) Q_\mathcal{M}[f(s, C u(s)) - f(s, C v(s))] \, ds \right\| \leq \frac{\beta}{d} \cdot \|u - v\|_\infty
$$

for each $t \in \mathbb{R}$ with $\beta = LK || C ||$. And hence,

$$
\sup_{t\in\mathbb{R}}\left\|\int_{-\infty}^t R(t-s)Q_\mathcal{M}[f(s,Cu(s))-f(s,Cv(s))]ds\right\|\leq \left(\frac{LK\|C\|}{d}\right).\|u-v\|_\infty.
$$

In summary,

$$
\|\Lambda(u) - \Lambda(v)\|_{\infty} \le \left[\left(\frac{LM \|C\|}{c} \right) + \left(\frac{LK \|C\|}{d} \right) \right] \cdot \|u - v\|_{\infty}
$$

$$
= \left[\left(\frac{M}{c} \right) + \left(\frac{K}{d} \right) \right] \|C\| \cdot L \cdot \|u - v\|_{\infty}.
$$

Thus, if

$$
\|C\| < \frac{1}{L} \bigg[\bigg(\frac{M}{c} \bigg) + \bigg(\frac{K}{d} \bigg) \bigg]^{-1},
$$

then the nonlinear operator $\Lambda: (PAP(\mathbb{H}), \|.\|_{\infty}) \mapsto (PAP(\mathbb{H}), \|.\|_{\infty})$ is a strict contraction, and therefore by the Banach fixed point principle there exists a unique $u_0 \in PAP(\mathbb{H})$ such that $\Lambda(u_0) = u_0$.

 \Box

References

- 1. Diagana, T., 'Pseudo almost periodic solutions to some differential equations', *Nonlinear Analysis* **60**(7), 2005, 1277–1286.
- 2. Diagana, T., 'Some remarks on some second-order hyperbolic differential equations', *Semigroup Forum* **68**(3), 2004, 357– 364.
- 3. Diagana, T. and N'Gu´er´ekata, G. M., 'Some extension of the Bohr-Neugebauer-N'Guerekata Theorem', *Journal of Analysis and Applications* **2**(1), 2004, 1–10.
- 4. N'Guérékata, G. M., *Topics in Almost Automorphy*, Springer, New York, 2005.
- 5. Zhang, C. Y., 'Pseudo almost periodic solutions of some differential equations', *Journal of Mathematical Analysis and Application* **151**, 1994, 62–76.
- 6. Zhang, C. Y., 'Pseudo almost periodic solutions of some differential equations II', *Journal of Mathematical Analysis and Application* **192**, 1995, 543–561.
- 7. Zhang, C. Y., 'Integration of vector-valued pseudo almost periodic functions', *Proceedings of the American Mathematical Society* **121**, 1994, 167–174.
- 8. Corduneanu, C., *Almost Periodic Functions*, 2nd edn., Chelsea, New York, 1989.
- 9. Fink, A. M., *Almost Periodic Differential Equations*, Lecture Notes in Mathematics **377**, Springer-Verlag, New York-Berlin, 1974.
- 10. N'Guérékata, G. M., *Almost Automorphic Functions and Almost Periodic Functions in Abstract Spaces*, Kluwer Academic/Plenum Publishers, New York, 2001.
- 11. Ait Dads, E., Ezzinbi, K., and Arino, O., 'Pseudo almost periodic solutions for some differential equations in a banach space', *Nonlinear Analysis* **28**(7), 1997, 1141–1155.
- 12. Ait Dads, E. and Arino, O., 'Exponential dichotomy and existence of pseudo almost periodic solutions of some differential equations', *Nonlinear Analysis* **27**(4), 1996, 369–386.
- 13. Amir, B. and Maniar, L., 'Composition of pseudo-almost periodic functions and Cauchy problems with operator of nondense domain', *Annales Mathematiques Blaise Pascal* **6**(1), 1999, 1–11.
- 14. Cuevas, C. and Pinto, M., 'Existence and uniqueness of pseudo almost periodic solutions of semilinear Cauchy problems with non-dense domain', *Nonlinear Analysis* **45**, 2001, 73–83.
- 15. Hino, Y., Naito, T., Minh, N. V., and Shin, J. S., *Almost Periodic Solutions of Differential Equations in Banach Spaces*, Stability and Control: Theory, Methods and Applications, vol. 15, Taylor and Francis, London, 2002.
- 16. Huang, F. L., Li, H. X., and Li, J. Y., 'Composition of pseudo almost-periodic functions and semilinear differential equations', *Journal of Mathematical Analysis and Application* **255**(2), 2001, 436–446.
- 17. Zaidman, S., *Topics in Abstract Differential Equations*, Pitman Research Notes in Mathematics Ser. II, John Wiley and Sons, New York, 1994–1995.
- 18. Locker, J., *Spectral Theory of Non-Self-Adjoint Two-Point Differential Operators*, AMS Mathematical Surveys and Monographs, vol. 73, 2000.
- 19. Diagana, T., N'Guérékata, G. M., and Minh, N. V., 'Almost Automorphic Solutions of Evolution Equations', Proceedings *of the American Mathematical Society* **134**(11), 2004, 3289–3298.
- 20. Diagana, T. and N'Guérékata, G. M., 'On some perturbations of some abstract differential equations', *Comment. Math. Prace Mat.* **XLIII**(2), 2003, 201–206.