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Abstract
This research addressed on the crucial concern of soil erosion in the post-fire Mediter-
ranean landscapes, regarding disastrous wildfires in Greece during 2021. These fires 
broke out at the Varympompi, Schinos, and Ancient Olympia-Gortynia. To accomplish 
these goals, the Revised Universal Soil Loss Equation (RUSLE) and Earth Observation 
(EO) data coupled with Google Earth Engine (GEE) were used to quantify the wildfire 
effects on erosion dynamics in the burned areas as well as the regulation provided from 
the emergency post-fire rehabilitation treatments. High-resolution EO data such as Senti-
nel-2 imagery and climate data from ERA5-Land were processed over the GEE platform 
to assess soil erosion factor changes before and after the fire occurrence. The analysis was 
followed up by measurements of the vegetation recovery and rainfall erosivity, which are 
crucial for the knowledge of erosion processes in such regions. Results displayed great 
increases in soil erosion post-fire, with rates at Ancient Olympia-Gortynia rising to 118.3 t 
ha−1 y−1 in the first hydrological year after fire from pre-fire rates of 9.8 t ha−1 y−1. At Schi-
nos site, rates increased from a pre-fire average of 11.6 to 72.2 t ha−1 y−1, and in Varym-
pompi, from 4.8 to 28.8 t ha−1 y−1. Post-fire restoration works reduced erosion processes 
by approximately 18%. Coupling RUSLE with GEE offers a novel opportunity for dynamic 
monitoring of soil erosion towards informing land management and policy formulation 
in the fire-prone Mediterranean ecosystems in relation to the mitigation of erosion. The 
policy formulation on land management within fire-prone Mediterranean-type ecosystems 
stands to be influenced by the findings of the current study. Indeed, this is of worldwide 
importance, whereby management practices need to be adopted to ensure that ecosystems 
recover rapidly and effectively after fires for the conservation of soil resources.
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1  Introduction

Fire, arguably one of the strongest ecological agents (Bond et al. 2005; Pausas and Ribeiro 
2017), is a key determinant in the composition of plant communities in the world’s ter-
restrial ecosystems. Evidence from the Mediterranean basin is that the fires have occurred 
during the late Quaternary time, extending much earlier ages as demonstrated by (Carrión 
et al. 2003). Many species have developed adaptive mechanisms to persist and regenerate 
after recurrent fires, justifying that wildfires are part and parcel of Mediterranean ecosys-
tems (Spanos et al. 2000; Pausas et al. 2004). Since fires in the Mediterranean basin are 
a natural phenomenon that has gone on for millions of years has resulted in the develop-
ment of adaptive mechanisms by plants. Wildfires have been major architects for shaping 
the Mediterranean landscapes in current mosaic-like patterns with levels of regeneration 
and degradation varied in space. With this context in mind, fires should not be treated as 
ecological disasters but seen as part of the natural process (Pausas et al. 2008). However, 
ecological disasters have taken place since ancient Greece when fires, grazing and erosion 
happened in successional steps. The philosopher Plato described the Greek mountains that 
suffered these steps as the bones of a diseased person.

The Mediterranean region in the Southern Europe is with hot and long dry summers, 
together with vegetation, which is flammable, and complex terrain favoring wildfire initia-
tion and spread, adds to human activities. In fact, the population of Southern Europe has 
increased over the last decades, and gradually the wildland–urban interface (WUI), that is, 
the distance between housing and forested areas, decreases (Mitsopoulos et al. 2020). The 
problem of wildfires is a major issue for the entire region. More specifically, the anthropo-
genic pressure on natural ecosystems, in addition to its contribution to the climate crisis, 
has lately increased both the number of wildfires and the affected areas, and, consequently, 
the socio-economic and environmental impacts (Vilar et  al. 2016; Pausas and Keeley 
2021). To that end, the scientific community has paid attention to the footprint of the wild-
fires on ecosystem services (Lecina-Diaz et al. 2021; Silvestro et al. 2021). Studies have 
shown the increased susceptibility to erosion in post-fire scenarios, highlighting the impor-
tance of effective monitoring and management strategies (Valkanou et al. 2022).

Important changes in the hydrological and erosion regimes under post-wildfire con-
ditions arise from the depletion of vegetation, transformed properties of the soil, and 
increased runoff (Shakesby and Doerr 2006; Moody et al. 2013; Akin et al. 2023). These 
favorable conditions further add to the detachment and transportation of soil particles, 
especially under rainy conditions, which further lead to the continuous deterioration of soil 
through the process of accelerated erosion in the areas affected by fires. In addition, the 
micrometeorological, hydraulic, physical and chemical properties of the ecosystems are 
greatly affected (Proutsos et al. 2023; Michopoulos et al. 2023; Solomou et al. 2023; Bashir 
et al. 2024a). The soil loss through fire is a process that involves many factors: the most 
important ones are burning severity, slope, texture of the soil, and composition, among 
others. An additional imperative factor is the pre-fire weather effect. In the aftermath of 
wildfires, a key priority is the protection of forest soils, which underlines the crucial need 
for erosion control. In this respect, post-fire, site-specific restoration works have the double 
task of avoiding land degradation and allowing natural regeneration on the one side and 
conveying information on the effective quantification of soil erosion in post-wildfire sce-
narios on the other hand (Girona-García et al. 2021; Bombino et al. 2023). The assessment 
and management of natural and technological hazards are crucial for sustainable devel-
opment emphasize the need for integrated planning solutions (Skilodimou and Bathrellos 



Natural Hazards	

2021). Certainly, a clear, quantitative characterization of soil erosion in burned areas is of 
paramount importance for the delivery of information to policymakers regarding the mag-
nitude of the post-fire associated erosion risk; it is also valuable in designing and imple-
menting targeted mitigation measures, including urgent hillslope recovery actions and thor-
ough watershed stabilization plans (Myronidis and Arabatzis 2009; Robichaud & Ashmun 
2012).

Numerous scholars have investigated post-fire erosion using both empirical models 
(Karamesouti et al. 2016; Mallinis et al. 2016; Lanorte et al. 2019; Efthimiou et al. 2020a) 
and field measurements (Stefanidis et  al. 2002; Robichaud 2005; Spigel and Robichaud 
2007). While direct measurements serve as crucial ground truth data for calibrating and 
verifying models, systematic field measurements are prohibitively expensive, requiring 
increased human and technological resources. Additionally, field plots are usually lim-
ited to selected sites and, therefore, results from this survey method do not sufficiently 
cover fire-affected areas. Measurements are not systematic but carried out for a limited 
period, so the results are representative of the local conditions, and this hampers extrapo-
lation to larger scales and different environments (Vanmaercke et  al. 2012; Bashir et  al. 
2024b). The integration of GIS and remote sensing (RS) technologies provides a powerful 
tool for assessing and mapping soil erosion susceptibility, as demonstrated in various stud-
ies (Islam et al. 2022). Despite inherent uncertainties in predicting erosion with empirical 
models (Lopes et al. 2021), their widespread application is attributed to their straightfor-
ward design and minimal data needs, enabling large-scale quantitative monitoring of soil 
loss rates.

The USLE model proposed in 1978 by Wischmeier & Smith and its modification 
RUSLE by Renard et al. in 1991, are among the widely used experimental models for ero-
sion estimation (Sestras et al. 2023). The (R) USLE help provide spatially distributed esti-
mates over vast areas. For this reason, the success of this type of model lies in its low 
demands in terms of data availability and simplicity of interpretation, while offering uncer-
tainty levels comparable to much more complex models that are also demonstrate global 
transferability (Alewell et al. 2019; Bammou et al. 2024a; Sadkaoui et al. 2024). Accord-
ingly, the revised modeling application approach has been very well applied to the entire 
Mediterranean region, demonstrating enhanced efficiency in the calculation of soil loss 
rates (Efthimiou 2016; Duarte et al. 2021). Since the RUSLE describes a low number of 
parameters, and with new possibilities emerging from the already existing availability of 
Earth Observation (EO) sensor data, the update is presented for the spatial determination 
of these parameters. This feature makes this model suitable for dynamically monitoring 
erosion processes at different scales (Alewell et al. 2019). The advent of cloud processing 
systems including GEE, which offers free worldwide access to the EO datasets (Gorelick 
et al. 2017), has showed great potential for monitoring the changes in erosion rates (Wang 
and Zhao, 2020; Brovelli et al. 2020). To that end, integrating the RUSLE model with GEE 
capabilities makes it powerful in quantifying how land cover changes affect erosion across 
many geographical and temporal scales (Stefanidis et al. 2022; Demir and Dursun 2024; 
Nourizadeh et al. 2024).

This study aims to evaluate the spatiotemporal changes in soil erosion rates and their 
driving factors by quantifying the combined impacts on post-fire erosion dynamics in the 
case of the most recent large-scale 2021 destructive wildfires in Greece. Open-access EO 
data were utilized with cloud computing to determine more detailed monitoring of the pro-
cesses of soil erosion using the RUSLE model. Specific objectives include: (i) the esti-
mation vegetation recovery effects on erosion rates and (ii) the quantification of erosion 
regulation service provided by the emergency post—fire restoration works. Employing the 
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RUSLE model with open-access EO data and cloud computing ensures meticulous moni-
toring of processes of soil erosion. By enforcing the need for strategic interventions, this 
study contributes to the deeper comprehension of post-fire erosion impact and its mitiga-
tion, informing sustainable land management and restoration strategies.

2 � Materials and methods

2.1 � Study area

The research was conducted in specific Greek regions that were severely affected by the 
megafires in 2021. More specifically, three characteristic sites were chosen for detailed 
study: Varympompi in Attica, Schinos in Corinthia, and Ancient Olympia and Gortynia in 
Ilia. Burned expenses in these regions total more than 5,000 hectares and are of primary 
interest because of their strategic proximity to important urban centres, tourist attractions, 
and archaeological sites. Under this rationale, the social importance of these areas and their 
high value in the wider framework are justified by the fact of the presence of effective post-
fire management and full erosion monitoring at the same time. At the same time, the selec-
tion of the present sites will provide a representative spatial distribution all over the Greek 
territory, in support of holistic examination of the post-fire landscape and erosion dynam-
ics and challenges related to the management.

In Varympompi, the dominant type of forest vegetation was transitional forested and 
shrubby areas (24.3%), while significantly increased were the coverage of mixed forest 
(21.9%), agricultural areas (21.2%), and coniferous forest (15.4%). In Schinos, the domi-
nant coverage type was coniferous forest (64.3%) and in Ancient Olympia—Gortynia, the 
dominant types of forest vegetation were transitional forested and shrubby areas (13.1%), 
mixed forest (12.3%), hard-leaved vegetation (8.5%), and, secondarily, coniferous forest 
(2.6%), as depicted from the Corine CLC 2018, land cover product. Poaceae, Asteraceae, 
Fabaceae, Cistaceae, and Rosaceae are the most important families of plant species in the 
three regions in the postfire environment based on in-situ floristic recordings implemented 
during the years 2022 and 2023 (Solomou et al. 2023).

Based on data from the nearest long operating meteorological stations of the Hellenic 
National Meteorological Service (Corinth: 37.93° N, 22.95° E, Alt. 14  m; Tatoi-Attica: 
38.10° N, 23.78° E, Alt. 236 m; Pyrgos-Ilia: 37.67° N, 21.43° E, Alt.: 13 m), the climate 
varies between the burnt areas. Specifically, Varympompi and Schinos are characterized 
by a semi-humid climate. Still, Ancient Olympia’s climate is humid, according to UNEP’s 
(1992) aridity classification system, which is based on Thornthwaite’s (1948) water bal-
ance approach (Tsiros et al. 2020; Proutsos et al. 2021, 2022). It should also be noted that 
the semi-arid areas present a change to more arid conditions, compared to the past, whereas 
the humid ones are becoming wetter (Tsiros et  al. 2020; Proutsos et  al. 2022). Figure 1 
illustrates the locations of the fire-affected sites.

The burned areas were estimated through the Copernicus Emergency Management Ser-
vice (EMS), available from the following link: https://​emerg​ency.​coper​nicus.​eu/​mappi​ng/​
list-​of-​activ​ations-​rapid. This service provides rapid, on-demand geospatial information 
to support emergency management. Such information is normally made available within 
hours to support the emergency management community in the immediate aftermath of a 
disaster. The service quickly accessed, processed, and analyses satellite products and other 

https://emergency.copernicus.eu/mapping/list-of-activations-rapid
https://emergency.copernicus.eu/mapping/list-of-activations-rapid
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geospatial datasets. In Table 1, the analytical information on the start date and the extent of 
burned areas in hectares is shown.

2.2 � Data acquisition and pre‑processing

To fulfill the objectives of the current study, various EO datasets were acquired and 
processed. They included satellite images, topographic and pedological data, climatic 

Fig. 1   Location of fire-affected sites (white points) and corresponding burned areas (red polygon) in Greece

Table 1   Attributes of wildfire incidents from copernicus EMS

Site Starting date EMS activation code Hectares 
of burned 
area

Ancient Olympia—Gortynia (Ilia) 4/8/2021 EMRS528 18,400
Schinos (West Attica—Corinthia) 19/5/2021 EMRS510 7,005
Varympompi (Attica) 3/8/2021 EMRS527 8,454
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information, and land management taken from accessible open databases. The GEE cloud 
platform is utilized to provide multiple available datasets under its dependable and high-
powered cloud infrastructure. (Elnashar et al. 2021). GEE is widely used since it provides 
effective solutions for handling and processing data on powerful servers. Introduced by 
Google in 2010, GEE offers access to EO datasets via its online Python APIs and a web-
based JavaScript Interactive Development Environment (IDE). The substantial volume 
of accessible data, coupled with the substantial processing capabilities, positions GEE as 
an efficient and powerful tool for environmental monitoring (Tamiminia et al. 2020). All 
datasets were organized into GIS thematic layers utilizing the free and open-source QGIS 
(v3.22) software.

Sentinel-2 optical data (S2), obtained at Level 2A (L2A) from the European Space 
Agency (ESA) via the GEE catalogue, were utilized in this study. The Sentinel-2 satellites 
are outfitted with the MSI multispectral optical sensor, which captures images in 13 dif-
ferent spectral bands with 10–60 m spatial resolution, revisited every five days. The L2A 
data provide a bottom-of-atmosphere (BOA) reflectance ortho-image product. The spatial 
and spectral characteristics of S2 imagery are crucial for identifying vegetation types and 
species and monitoring vegetation status (Immitzer et  al. 2016, Verde et  al. 2020). Fol-
lowing wildfires, many Sentinel-2 images, each with a cloud cover of less than 10%, were 
collected using the GEE platform to create a mosaic for the study areas within each hydro-
logical year (October to September). Subsequently, all bands were resampled to a 10  m 
resolution. The pre-fire condition was determined by creating a mosaic of S2-L2A images 
spanning the three hydrological years preceding the wildfire event, in alignment with rec-
ommendations from existing literature (Vieira et al. 2023). This method leverages the wide 
coverage and high temporal resolution from the S2-L2A data to study vegetation dynam-
ics and land surface attributes in detail and over a long period, in a very broad manner, to 
understand the state of a landscape before a wildfire.

Climatic data used in this research were derived from a monthly-accumulated precipita-
tion aggregation time series of the developed reanalysis product from the European Center 
for Medium Range Weather Forecasts (ECMWF), ERA5-Land, via GEE. For the peri-
ods prior to the fire, the analysis covered the hydrological years 2017–2018, 2018–2019, 
2019–2020. Subsequently, post-fire period data from the hydrological years 2021–2022 
and 2022–2023 were examined. The spatial resolution of ERA5-Land data is approxi-
mately 0.1° × 0.1° (~ 9  km). Previous studies (Alexandridis et  al. 2023; Gomis-Cebolla 
et al. 2023) have demonstrated ERA5-Land’s satisfactory performance in accurately repro-
ducing precipitation accumulations and patterns in Mediterranean climates.

Soil properties were retrieved from the SoilGrids assets at a 250  m resolution. Soil-
Grids is a digital system for soil mapping, where machine learning techniques are applied 
to an international compilation of soil profiles and environmental information (Hengl et al. 
2017). This valuable dataset, now accessible through GEE, includes information on the 
fractions of sand, clay and silt contents (%), organic matter content (%), and soil perme-
ability and structure. The Forest and Buildings Removed DEM (FABDEM) was utilized 
to analyze the studied regions’ topography. This global elevation model removes height 
distortions brought about by buildings and trees employing machine learning applied to 
data from the Copernicus GLO 30 Digital Elevation Model, amongst other improvements 
(Hawker et al. 2022). That makes FABDEM the obvious preferable choice, especially for 
regions with high vegetation, with obvious improvements over other DEM products. The 
academics, therefore, recommend that FABDEM be used in forested mountain catchments 
to underpin its use as a state-of-the-art data product for topographic analysis that is both 
precise and reliable (Marsh et al. 2023).
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Finally, the impact of pre-fire management practices, such as terracing, grass margins, 
contour farming, and stone walls on erosion was assessed by retrieving data from the Euro-
pean Soil Data Centre, providing comprehensive coverage for the entire Europe (Panagos 
et al. 2012). Brief descriptions of the dataset’s characteristics (all in raster format) are pre-
sented in Table 2.

2.3 � RUSLE model

The empirical model of RUSLE computes the average annual soil loss either by sheet or 
rill water erosion. The equation’s general form involves a systematic combination of five 
fundamental factors (Renard et al. 1991):

where A is the calculated rate of soil loss expressed in t ha−1 y−1, R stands for the rainfall 
erosivity factor expressed in MJ mm ha h−1 y−1, K is the soil erodibility factor in t ha h 
ha−1  MJ−1  mm−1, S is a dimensionless factor combining the effects of slope length (L) 
and steepness (S), and C and P are the cover management and support practice factors, 
both dimensionless. The spatial resolution of the model’s output is set at 30 m per pixel, a 
dimension deemed suitable for such applications, as highlighted by Wu et al. (2005). All 
layers were reprojected to the Lambert Azimuthal Equal Area (LAEA) projection (EPSG: 
3035).

Subsequently, the obtained soil loss values were classified into distinct categories utiliz-
ing the classification scheme proposed by Reneuve and Galevsky (1955). This classifica-
tion methodology has been proven effective in identifying areas susceptible to accelerated 
erosion, as Myronidis et  al. (2010) demonstrated. The erosion rates were grouped in six 
classes according to the intensity of soil loss: Very Low (< 5 t ha−1 y−1), Low (5–12 t ha−1 
y−1), Moderate (12–50 t ha−1 y−1), Severe (50–100 t ha−1 y−1), Very Severe (100–200 t 
ha−1 y−1), and Extreme (> 200 t ha−1 y−1).

2.3.1 � Rainfall erosivity factor (R)

RUSLE’s climate component R is an expression of the rainstorm kinetic energy and inten-
sity, which influences the erosion process. The R-factor is considered of particular impor-
tance as it influences not just the detachment of the soil particles and the disintegration of 
soil aggregates, but also the transport of the eroded particles by runoff. The original for-
mula introduced for the R-factor details the erosive impact of a single rainfall event by mul-
tiplying the kinetic energy of each rainstorm with its maximum intensity, during a 30 min 
timestep (Wischmeier 1959; Brown and Foster 1987). Following the aggregation of rainfall 
erosivity data from individual rainstorm events, the resulting value is then averaged over 
the examined period to calculate the R-factor.

Unfortunately, sub-hourly records of rainfall rates from meteorological ground sta-
tions are rarely available. As a result, simplified formulas have been created for estimating 
rainfall erosivity by using easily accessible monthly or daily rainfall data. The literature 
on methods for rainfall erosivity formulas is extensive (Nearing et al. 2017). Herein, the 
formula developed by Renard and Freimund (1994) was utilized, as it has been found to 
yield satisfactory results over forested areas in Greece (Efthimiou 2018). Subsequently, the 
R-factor values for both pre-and post-fire hydrological years were calculated using the fol-
lowing equations, where P represents the mean annual precipitations (mm):

(1)A = R × K × LS × C × P
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2.3.2 � Soil erodibility factor (K)

It expresses the soil’s exposure to erosion due to rain, is influenced by an interaction of 
its physicochemical, and mineralogical properties. Measuring the K-factor directly in the 
field is challenging and often impractical for large-scale studies. In this investigation, K 
was determined utilizing the equation outlined by Wischmeier and Smith (1978). All req-
uisite data were retrieved via GEE from the SoilGrids dataset and processed within a GIS 
environment.

The calculation of K is expressed as follows:

where Μ is the grain size, ΟΜ is the percentage of the organic matter, s is the soil struc-
ture, and p is the soil permeability. The value of Μ is calculated as shown in Eq. 5 and is 
based on the proportions of two fractions: Ps (%) which includes the silt and the very fine 
sand fraction and Pc (%,) which is the clay fraction:

2.3.3 � Topographic factor (LS)

This factor, is influenced by geomorphology, typically encompasses slope length (L) and 
steepness (S). Elevated LS–factor values suggest steep relief, increasing sediment yield 
and erosion due to amplified runoff. To estimate the LS factor, advanced algorithms of 
the QGIS (v3.22) were employed, utilizing the Digital Elevation Model (DEM) as the sole 
input parameter. This software integrates the multiple flow algorithm, facilitating compre-
hensive terrain analysis.

The S–factor was derived by the formula of McCool et al. (1989), which relies on the 
slope gradient (ϑ):

In addition, slope length (L) was determined according to the Desmet and Govers (1996) 
equation, yielding reliable results within complex terrain areas. This method employs the 
idea of unit-contributing area to regard variations in slope steepness throughout the region.

where, Ai,j,–in stands for the contributing area in m2 at the inlet of the grid cell labeled (i,j), 
D is the grid cell size in m, xi,j is a coefficient associated with aspect direction (ai,j) of the 

(2)R = 587.8 − 1.217 × P + 0.004105 × P2 for P > 850mm

(3)R = 0.04830 × P1.610 for P > 850mm

(4)K =

[(

2.1 × 10−4M
1.14(12 − OM) + 3.25(s − 2) + 2.5(p − 3)

100

)

× 0.1317

]

(5)M = PS(100 − PC)

(6)S =

{

10.8 × sin𝜗 + 0.03, for 𝜗< 0.09

16.8 × sin𝜗 − 0.5, for 𝜗> 0.09

(7)L =

(

Ai,j− + D2
)m+1

− Am+1
i,j−in

Dm+2 × xm
i,j
× 22.13

m
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grid cell, calculated xi,j = sin αi,j + cos αi,j. The m coefficient is linked to the ratio β of rill to 
inter-rill erosion, which is dimensionless and ranges from 0 to 1.

2.3.4 � Cover management factor (C)

This factor, which indicates the influence of vegetation cover, has a crucial role in shielding 
soil from accelerated erosion. Assessing the C-factor involves leveraging satellite-based 
vegetation indices.

In recent decades, the Normalized Difference Vegetation Index (NDVI) has seen wide-
spread application. It is based on the Red and near-infrared (NIR) spectrum bands of mul-
tispectral satellite images. It is computed using a straightforward mathematical expression 
(Tucker 1979):

To determine the C-factor, the average NDVI derived from S2-L2A images captured 
under both pre- and post-fire conditions was utilized (Sect. 2.2). This calculation follows a 
defined equation (van der Knijff et al. 2000):

In European conditions, α is set at 2 and β at 1, as illustrated in a comprehensive study 
spanning Europe (van der Knijff et al. 2000). Its values span from 0 to 1, while lower val-
ues donate well-conserved sites.

The process of estimating the C–factor was executed within the cloud platform. Initially, 
images with a cloud cover of less than 10% were meticulously selected, and a compre-
hensive mosaic was generated. When images overlap, the average NDVI was considered. 
Subsequently, utilizing the above-mentioned equation (Eq. 11), the C-factor was computed, 
creating an associated spatial distribution map.

2.3.5 � Support practice factor (P)

The P factor is estimated considering the extent of conservation measures implemented, 
including strip-cropping, terracing, and contouring. Such actions aim to mitigate soil ero-
sion caused by rainfall and runoff by redirecting runoff around the slopes, reducing erosion, 
or slowing down runoff to promote sediment deposition, particularly on concave slopes or 
through barriers like terraces or vegetation-covered strips. The P values span from 0 to 1, 
where lower values signify more effective erosion control measures. In this study, the values 
for the pre-fire condition were obtained from the previously referenced ESDAC database (see 
Sect. 2.2).

(8)m =
�

� + 1

(9)� =

sin�
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To model the contribution of the emergency hillslope erosion mitigation works on the erosion 
dynamics, the approach of Myronidis et al. (2010) was adopted. This approach aligns with the 
technical specifications and the guidelines set forth by the Hellenic Division of Reforestation and 
Mountainous Hydrology (HDRMH), aiming to safeguard soil against erosion and facilitate the 
restoration of the burned forest. The P-factor values were assigned to different treatment areas 
based on slope characteristics (Myronidis et al. 2010) (Table 3).

2.3.6 � Overall workflow

The RUSLE model was applied to assess pre- and post-fire erosion rates, leveraging the advan-
tages of cloud-computing platforms and geospatial technologies such as GIS software packages. 
Both dynamic factors of the RUSLE (R and C) were retrieved and processed using a significant 
amount of time-series data. This was facilitated by the development of appropriate code com-
piled in GEE. Additionally, using the platform interface, the soil erodibility (K) was calculated 
using the proposed equations. The support practice factor (P) in pre-fire conditions was directly 
derived from the ESDAC database. After implementing emergency post-fire mitigation treat-
ments, topographic factor (LS) and P-factor values were derived by processing DEM data in the 
burned areas. Briefly, the flowchart of the methodological approach is shown in Fig. 2.

Table 3   Post-fire P-factor values Slope (%) P values

0–30 0.85
30–50 0.75
 > 50 1

Fig. 2   Methodology flowchart
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This research approach integrates open-access data into erosion modeling, facilitating 
the spatiotemporal monitoring of erosion rates in fire-affected landscapes. Consequently, 
it is highly transferable across Europe, given the extensive data coverage available. Further-
more, the robustness and efficiency of computation in GEE render the implementation of this 
approach feasible for large-scale assessments, including pan-European evaluations.

3 � Results and discussion

The RUSLE-based modeling approach, harnessing the synergistic capabilities of the GEE 
platform and EO data was employed to facilitate the spatiotemporal monitoring of erosion 
rates in fire-affected areas. The model components were assessed for pre- and post-fire condi-
tions in this context. The changes in vegetation conditions due to the wildfire were evaluated 
and the established spatio-temporal patterns of vegetation regrowth dynamics in the entire 
burn scar were monitored using the NDVI response. The efficiency of this index in quanti-
fying recovery dynamics is also confirmed in the literature (Petropoulos et  al. 2014; Lem-
esios and Petropoulos 2024). Afterwards, the C-factor was computed directly from NDVI 
values. Distinct variations in the average C-factor values were evident, reflecting the extent 
of vegetation coverage and its associated erosion protection in the fire-affected sites before 
the incidents. Ancient Olympia-Gortynia exhibited the lowest average C-factor value at 0.14, 
indicating superior pre-fire protection from vegetation against erosion when compared with 
Varympompi (0.18) and Schinos (0.22). The effect of wildfires led to a notable rise in the 
C-factor values, with the values approximately doubling during the first hydrological year 
post-fire. Subsequently, these values exhibited minimal fluctuations in the second hydrologi-
cal year, remaining nearly constant. Detailed regional and temporal variations in the C-factor 
values are presented in Fig. 3.

The R-factor values vary among the examined burned sites. They are similar in Schi-
nos and Varympompi but approximately three times higher in Ancient Olympia–Gortynia, 
which promotes accelerated erosion. Moreover, a decrease in R-factor values is identified 
between pre- and post-wildfire conditions. Researchers have observed significant variations 
in erosion dynamics in the years following a fire, often attributed to notable shifts in pre-
cipitation amount and intensity (Stefanidis et al. 2002; Myronidis et al. 2010), along with 
changes in soil physico-chemical and hydraulic characteristics (Proutsos et al. 2023). The 
analytical results of the R–factor distribution at the study areas and periods are provided in 

Fig. 3   C-factor average values for the pre- (2017–2020) and post-fire hydrological years (2021–2022 and 
2022–2023)
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Fig. 4. The RUSLE spatiotemporal assessment includes dynamic factors (C and R), ena-
bling monitoring of erosion dynamics over time in pre- and post-fire conditions.

The ESDCA geospatial database revealed that certain land management practices were 
not implemented at the Varympompi and Ancient Olympia sites. This led to a P–factor 
value 1 in these regions before wildfire events. Following a fire, emergency hillslope post-
fire erosion mitigation treatments were implemented following the technical specifications 
and the guidelines outlined by the Hellenic Division of Reforestation and Mountainous 
Hydrology (directive 86,783/7–12-1992) (Myronidis and Arabatzis 2009). Precisely, the 
mean P–factor across all areas was estimated to be 0.84. It is noteworthy that the P-factor 
not only directly impacts erosion rates but also indirectly influences C-factor values. It pro-
tects valuable forest soil against accelerated erosion and contributes to natural regeneration 
(Sapountzis et al. 2007). In terms of the LS factor, the highest mean values were detected 
in Schinos (7.95), followed by Ancient Olympia—Gortynia (5.25) and Varympompi 
(4.03). These findings underscore the heterogeneous nature of landscape susceptibility to 
erosion, highlighting the need for targeted interventions tailored to specific geographical 
peculiarities (Efthimiou et al. 2020b). Subsequently, the K–factor in the three sites showed 
similar mean values (0.029, 0.031 and 0.028 t ha h ha−1  MJ−1  mm−1 for Ancient Olym-
pia—Gortynia, Schinos and Varympompi, respectively). In addition, comparative studies 
on mathematical and machine learning models have demonstrated that machine learning 
can offer improved predictions for particle size distribution in fragile soils, which is crucial 
for accurate soil erosion assessments (Bashir et al. 2024c).

Concerning the pre-fire conditions, the mean erosion rates, as estimated by RUSLE, are 
characterized as very low in Varympompi (4.8 t ha−1 y−1) and identified as low in Ancient 
Olympia—Gortynia (9.8 t ha−1 y−1) and Schinos (11.6 t ha−1 y−1), based on the classifica-
tion scheme of Reneuve and Galevsky (1955), already given in the previous sections. How-
ever, it is notable that such values exceed the pan-European average (Panagos et al. 2015), 
which stands at 2.46 t ha−1 y−1. The rationale for these disparities lies in the observation 
that EU Member States in the Mediterranean account for 67% of the overall EU soil loss, 
primarily due to elevated levels of rainfall erosivity (Panagos et al. 2015).

After wildfires, the absence of vegetation coverage leads to a significant increase in 
potential erosion rates in affected areas despite the implementation of emergency post-
fire erosion control treatments (Shakesby 2011). For instance, during the first hydrologi-
cal year, postfire mean erosion rates were increased to 118.3, 72.2 and 28.8 t ha−1 y−1, in 
Ancient Olympia—Gortynia, Schinos, and Varympompi respectively, being much lower 
during the pre-fire period. Figure  5 graphically depicts the temporal changes in erosion 

Fig. 4   R-factor average values for the pre- (2017–2020) and post-fire hydrological years (2021–2022 and 
2022–2023)
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rates at the burned sites during the pre-fire period (2017–2020) and the two post-fire hydro-
logical years (2021–2022 and 2022–2023).

These results align with similar studies in the Mediterranean basin, indicating that 
erosion rates can be up to ten times higher in the post-fire periods (Mallinis et al. 2009; 
Vieira et al. 2023). In the second hydrological year, erosion rates remained nearly stable 
as vegetation slightly recovered and recorded precipitation was marginally higher. This 
observation underscores the findings of the pan-European study of Vieira et  al. (2023), 
which supports the necessity for a five-year monitoring framework in fire-affected areas to 
comprehensively assess and manage the long-term erosion dynamics due to vegetation’s 
slow and incomplete recovery. The spatiotemporal changes in erosion rates in the examined 
burned sites are shown in Fig. 6.

RUSLE was applied to scenarios with and without restoration treatments to evaluate the 
impact of emergency post-fire hillslope restoration works on erosion dynamics. Specifi-
cally, the model quantifies the effects of these treatments on erosion potential by assigning 
values to the model’s support practice factor (P-factor), as described in Table 3. Overall, an 
estimated reduction in soil loss rate of about 18% was observed due to the implementation 
of the restoration works in the study areas (Fig. 7). Notably, the erosion regulation services 
provided by these treatments are exceptionally effective, leading to an average reduction 
of erosion rates by 23, 12 and 6 t ha−1 y−1 in Ancient Olympia—Gortynia, Schinos, Var-
ympompi, respectively, during the two years following the wildfires. These reductions are 
significant compared to Europe’s average soil formation rate (Verheijen et al. 2009), which 
is only 1.4 t ha−1 y−1.

Retaining soil through emergency post-fire treatments is crucial for protecting the 
valuable, fertile forest soils essential for vegetation regeneration and ecosystem recovery 
(Sapountzis et  al. 2007). They are also considered their positive impact on precipitation 
infiltration (Proutsos et al. 2023). These treatments are essential in Mediterranean regions, 
particularly Greece, where forest soils in the hilly and mountainous areas are mainly shal-
low  (Nakos 1991). Additionally, these measures safeguard the lowland areas and plain 
stream beds from sedimentation during high-flow events, which can lead to flooding (Ste-
fanidis et al. 2012).

The coupling of the RUSLE model with GEE cloud-computing services, applied in this 
study, can be an effective monitoring tool for the erosion processes in the post-fire envi-
ronment, as also demonstrated by recent studies (Stefanidis et  al. 2022; Demir and Dur-
sun 2024; Ouallali et al. 2024). It provides access to an extensive list of long-term Earth 
Observation products and delivers unparalleled computational power recent advance-
ments in machine learning algorithms have further enhanced the ability to spatially map 

Fig. 5   Average erosion rates for the pre- (2017–2020) and post-fire hydrological years (2021–2022 and 
2022–2023)
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Fig. 6   Spatiotemporal distribution of erosion rates in the burned areas

Fig. 7   Effects of postfire treatment on erosion rates during the postfire hydrological years
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multi-hazard land management in sparsely vegetated watersheds. The integration of these 
advanced techniques with traditional modeling approaches can significantly improve the 
accuracy of erosion rate predictions and hazard assessments (Bammou et al. 2024b). More-
over, the RUSLE model effectively estimates soil erosion rates in Mediterranean land-
scapes, particularly in identifying areas at high risk for erosion (Napoli et al. 2016; Efthi-
miou 2016; Rellini et al. 2019). Therefore, it can be a valuable tool for stakeholders and 
policymakers in spatial planning and scheduling restoration projects. It also aids in moni-
toring and evaluating the effectiveness of treatments in data-scarce regions and supports 
timely large-scale assessments. The findings align with those of Stefanidis et  al. (2024), 
who emphasized the importance of soil conservation ecosystem services from peri-urban 
watersheds in sustainable land management and urban planning at national scale.

It should be mentioned, however, that despite its practical utility, the RUSLE model 
exhibits several limitations (Kumar et al. 2022). This simplifies the extremely complicated 
and non-linear process of soil erosion into a trivial multiplication of the independent fac-
tors of precipitation, soil properties, landscape features, vegetation, and erosion manage-
ment techniques (Lopes et al. 2021). Critical processes such as sediment transport, deposi-
tion, as well as routing within hydrographic networks, are not considered. Furthermore, 
the model’s application is primarily confined to estimating sheet and rill erosion and does 
not extend to gully or stream bank erosion. Its performance across large spatial scales 
where environmental conditions vary widely can also be controversial. Additionally, while 
RUSLE may provide less accurate predictions for individual flood events due to random 
fluctuations, its accuracy improves over longer time scales, where variations are averaged 
(Efthimiou et al. 2014).

Considering these constraints, it is crucial to validate the RUSLE model for practical 
applications. The ongoing research plans to compare the soil retained from constructed 
erosion control works with actual field measurements taken during the examined period. 
This analysis will critically assess the model’s accuracy and effectiveness, and the results 
will be discussed in a forthcoming study.

4 � Conclusion

This research marks a major advancement in the ongoing observation of soil erosion fol-
lowing wildfires within Mediterranean ecosystems using Earth Observation (EO) data inte-
grated with cloud computing technologies. Through the implementation of the RUSLE in 
conjunction with the GEE, the impacts of wildfires on soil erosion dynamics can be pre-
cisely quantified across various landscapes in Greece.

Our findings revealed dramatic increases in erosion rates immediately following wild-
fire events, which were significantly mitigated by implementing emergency post-fire treat-
ments. Using high-resolution EO data allowed for a nuanced understanding of the spatial 
variations in erosion, linking them effectively to both biotic recovery and abiotic changes 
in the landscape. This approach provided a rapid assessment capability and enhanced the 
accuracy of predicting areas at risk, thereby facilitating more targeted land management 
strategies.

The implications of our research extend beyond the academic sphere, offering vital 
insights for policymakers and land management officials. By providing a method incor-
porating historical data and real-time analysis, this study supports the development of 
adaptive management strategies that can respond to the immediate effects of wildfires. 
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Moreover, our work underscores the importance of integrating technological advance-
ments with traditional conservation practices to enhance ecosystem resilience and recovery 
post-disturbance.

Future studies will aim to confirm the findings of the RUSLE model and apply this 
approach to other regions around the globe that are susceptible to wildfires, improving the 
model’s predictive capabilities with additional variables, and exploring the long-term eco-
logical impacts of soil erosion. By continuing to refine these approaches, we can better 
prepare and respond to the increasing challenges posed by climate change and its impact 
on wildfire frequency and intensity. This study advances our understanding of post-fire 
dynamics in Mediterranean landscapes and sets a precedent for integrating technological 
innovations into environmental management and policy formulation, aiming for a sustain-
able balance between human needs and ecosystem health.
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