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Abstract
The Vietnamese Mekong Delta (VMD) is highly vulnerable to drought, particularly in the 
context of climate change. Prolonged drought during the dry season has emerged as a sig-
nificant natural disaster, severely affecting agriculture and socioeconomic development 
in the region. To enhance water resource management and agricultural productivity, this 
study examines the characteristics of meteorological droughts using the Standardized Pre-
cipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) 
in the upper Mekong Delta of Vietnam. The Mann–Kendall (MK) test and Sen’s slope 
were employed to assess trends in drought and hydrological conditions. The results reveal 
no significant trends in rainfall, while average temperatures have increased significantly 
in most months, especially during the dry season. Although water levels and discharge at 
the Tan Chau and Chau Doc stations have decreased, significant reductions were primarily 
observed at Chau Doc station from 2000 to 2021. These findings provide critical insights 
for sustainable water resource management and planning in the VMD, considering future 
climate variability and changes in hydrological regimes.

Keywords  Drought · Vietnamese Mekong Delta · Rainfall · Temperature · SPI · SPEI · 
ENSO · Trend analyses

1  Introduction

There is irrefutable evidence that climate change is advancing at an unprecedented rate 
(Ogunbode et al. 2020; Amatya and Khan 2023). Globally, rising sea surface temperatures 
are driving significant increases in air temperatures, as well as the frequency and inten-
sity of extreme events such as droughts, floods, and heavy storms (Danandeh Mehr and 
Vaheddoost 2020; Minh et al. 2022a, b). The Multiple Climate Hazard Index ranks South-
east Asia as one of the most vulnerable regions to climate change (Yusuf and Francisco 
2009), indicating that tropical regions are more sensitive and vulnerable to climate change. 
This increased vulnerability is largely due to elevated temperatures, which lead to higher 
evaporation rate (Vicente-Serrano et al. 2010). A study by Zeppel et al. (2008) found that 
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annual evaporation and transpiration can consume up to 80% of rainfall when annual rain-
fall is less than 1000 mm.

While a number of studies have attributed droughts, particularly in tropical and sub-
tropical regions, primary to climate change (Lee and Dang 2019, Ropelewski and Halp-
ert 1986; Roeckner et  al. 1996; Vicente‐Serrano et  al. 2011), the influence of El Niño-
Southern Oscillation (ENSO) phenomenon as a key driver of drought patterns has also 
been extensively documented (Roeckner et  al. 1996; Food and Agriculture Organization 
(FAO) 2016; Lam et  al. 2019; Minh et  al. 2022a; Nguyen et  al. 2023). Regions such as 
Australia, Southeast Asia, South Africa, and northern South America particularly suscep-
tible to drought during El Niño events, and experience increased precipitation during La 
Niña events (Smith and Ropelewski 1997; Vicente‐Serrano et al. 2011; Shehu et al. 2016). 
Moreover, the impact of ENSO extends beyond these regions, influencing weather patterns 
across the Pacific Ocean, North America, Europe, and parts of Central Asia (Diaz et al. 
1992).

Several studies identified that ENSO was the main source of atmospheric circulation 
variability on a global scale that affects the water resources of the basin (Chandimala and 
Zubair 2007; Abtew et  al. 2009). Chiew and McMahon (2002) examined the global tel-
econnection between ENSO and streamflow patterns by analyzing data from 581 catch-
ments. A significant correlation between ENSO phases and streamflow variability was 
found across large geographical regions. The MRB has experienced significant inter-annual 
fluctuations in water availability, oscillating between severe droughts and major floods 
in recent decades. While climate change is generally recognized as a primary driver of 
these extremes, the influence of the ENSO phenomenon on regional hydrology is also evi-
dent (Nguyen et al. 2023). Moreover, other studies also confirmed a stronger relationship 
between ENSO and river discharge during the 1930s, 1940s, the1960s and 1970s at Vienti-
ane and Pakse stations in the MRB (Darby et al. 2013; Räsänen and Kummu 2013).

Drought is typically categorized into three primary types based on deficiencies within 
the hydrological cycle: meteorological drought, characterized by a deficit in precipita-
tion (below normal precipitation); agricultural drought below normal soil water levels), 
which is reflecting inadequate soil moisture; and hydrological drought, which is indicated 
by reduced river flows (below normal river flow) (Tallaksen and van Lanen 2004; Van 
Loon and Van Lanen 2013; Van Loon et al. 2016). Drought propagation varies by region, 
depending on climate, watershed, and human activity (Van Loon and Van Lanen 2013). 
Drought severity is a crucial indicator of drought impact (Hayes et al., 2010). To quantify 
severity, various standardized indices, such as the Standardized Precipitation Index (SPI) 
and the Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Stream-
flow Index (SSI) have been employed in numerous studies (Van Loon and Laaha 2015; Wu 
et al. 2018; Zalokar et al. 2021; Minh et al. 2024a). Several scholars have revealed that pre-
cipitation is the main variable determining the onset, severity, duration, intensity, and ter-
mination of droughts (Heim 2002). SPI has been widely used for drought monitoring and 
analysis because to their simplicity and low data needs (Mishra and Singh 2010; Gumus 
et  al. 2021). SPI responds differently to soil moisture, river discharge, reservoir storage, 
vegetation activity, agricultural yield, and land use changes (Szalai et al. 2000; Sims et al. 
2002; Ji and Peters 2003; Vicente-Serrano 2006; Khan et al. 2008). Moreover, to be useful 
for drought monitoring and water resource management applications, indices must be asso-
ciated with a specific time scale.

The main criticism of the SPI is that its calculation is based only on precipitation data. 
Whilst precipitation is a key predictor of the water supply, temperature, evapotranspira-
tion, wind speed, and soil water holding capacity are also crucial variables that affect 
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overall water supply since they regulate the rate of evapotranspiration (Vicente-Serrano 
et al. 2010). Signs of drought can be derived from trends in variables, such as rainfall and 
temperature (Tirivarombo et al. 2018). However, the SPI is deficient when considering the 
impact of temperature on drought conditions, which strongly impacts the overall water bal-
ance at a regional scale. Vicente-Serrano et al. (2010) developed the SPEI based on pre-
cipitation and temperature data as an improved drought index that is particularly suited 
for studies of the effects of global warming on drought severity. In this regard, SPEI is 
an extension of SPI that considers the effects of temperature variability when assessing 
drought, as it employs a climatic water balance, or the difference between precipitation and 
reference evapotranspiration (P—ET0), as the input (Beguería et  al. 2014). Tirivaromno 
et al. (2018) found that the SPI exhibits the capacity to detect extreme droughts, whereas 
the SPEI has the strength to detect moderate to severe drought.

The SSI quantifies hydrological severity by transforming streamflow data into a stand-
ardized normal distribution associated with SPI. This approach allows for the identification 
of high and low flow periods, corresponding to flood and drought conditions, respectively. 
Some studies have employed the SSI to identify and assess the severity, duration, and fre-
quency of droughts and floods (Wu et  al. 2018; Minh et  al. 2022a; Li et  al. 2024b) or 
examine the influence of climate change and human activities on streamflow regimes (Wu 
et al. 2018; Naderi et al. 2022). Kimmany et al. (2024) investigated hydro-meteorological 
droughts in the Chao Phraya River Basin using the SSI, the study contributes to a deeper 
understanding of drought characteristics, including their frequency, duration, and sever-
ity (Kimmany et al. 2024). For example, Kang and Sridhar (2024) has also quantified the 
severity, duration, and frequency of droughts in different regions of the Mekong Basin. 
The SSI can be applied to longer time series, ranging from 1 to 12 months, to comprehen-
sively capture cumulative water deficits and better understand the evolution of hydrological 
droughts (Nalbantis and Tsakiris 2009). It can be noted that this index has been widely 
adopted in hydrological studies to assess drought severity, duration, and frequency, aid-
ing in water resources management, flood control, and disaster preparedness (Singh et al. 
2022; Kang and Sridhar 2024).

For drought warnings to be effective, it is important to have a system for classifying 
drought severity, that is, missing water volumes from very low river flow or low rainfall. 
Polong et al. (2019) classified drought events using identical thresholds for the SPEI and 
SPI, regardless of the existing conflict. However, some authors have proposed different 
thresholds for the SPI and SPEI (Danandeh Mehr and Vaheddoost 2020). In addition, SPEI 
has been used in a wide variety of drought monitoring studies (Fuchs et al. 2012). Several 
of these studies reported that the SPEI correlated better with hydrological and ecological 
variables than other drought indices. Numerous studies have analyzed drought variability 
in Turkey (Partal and Kahya 2006; Danandeh Mehr and Vaheddoost 2020), as well as in 
other nations (Paulo et al. 2012; Potop et al. 2012; Sohn et al. 2013); the effect of drought 
atmospheric mechanisms (Boroneant et al. 2011), climate change (Krall et al. 2013); and 
agricultural practices (Potop et  al. 2012). Using parametric and nonparametric methods, 
(Xu et al. 2003) investigated the potential long-term precipitation patterns in Japan. The 
majority of severe drought events are related to El Niño episodes (Quang et al. 2021, pp. 
1985–2018), which is particularly true for Vietnam, including VMD (Tran et al. 2022).

Vujica M. Yevjevich developed the run theory in 1967 to objectively analyze sequences 
in time series data. The method focuses on identifying “runs,” which are consecutive 
periods where data points consistently fall above or below a certain threshold (Yevjevich 
1967). In studies on drought, this threshold usually signifies critical levels of precipitation 
or stream flow (Moyé et  al. 1988; Şen 1989; Panu and Sharma 2002). These levels are 



	 Natural Hazards

crucial for identifying and characterizing drought events (Ma et al. 2023). When studying 
droughts, run theory is useful for identifying when droughts begin and end, as well as for 
quantifying their severity and duration (Cancelliere and Salas 2004; Hao and Singh 2015; 
Gan et al. 2024). It also plays a crucial role in understanding how meteorological droughts, 
can lead to hydrological droughts (Li et al. 2024a). Effective drought risk assessment and 
management in the VMD relies on this understanding, enabling the development of strate-
gies to mitigate drought impacts on water resources, agriculture, and communities.

The risk of disasters is rising in Vietnam, one of the most hydrometeorological hazard-
prone countries in the Asia–Pacific region. Securing water resources and ensuring access 
to safe water for domestic use have become critical challenges across both urban and rural 
areas, especially in the face of increasing drought and saline intrusion (Dat 2020; Minh 
et al. 2024a).

The VMD in southwestern Vietnam accounts for 55.6% of the country’s rice production 
(General Statistics Office of Vietnam (GSO) 2020), and is of great importance to the soci-
ety, economy, and environment of the nation (Lavane et al. 2023; Minh et al. 2024c; Tri 
et al. 2004). However, drought and saline intrusion have both increased in magnitude and 
frequency in recent years owing to intensified upstream development (Binh et  al. 2017). 
Consequently, drought monitoring, management, and mitigation are considered to be of 
high priority for both national and local governments. Considering its importance, this 
study investigates the spatio-temporal trends in the intensity, duration, and frequency of 
meteorological droughts over the VMD using SPI, SPEI and SSI. An Giang was selected 
as a case study due to its significance as a major food-producing province, contributing 
approximately 9.01% of the nation’s total rice output and 16.1% of the VMDs rice produc-
tion (GSO 2020).

Within An Giang (a province that represents the upper Mekong River region in Viet-
nam), the annual rainfall totals are below the average value of the Vietnam Meteorological 
and Hydrological Drought Index. Furthermore, there has been a decrease in the flow of 
the Mekong River in recent years. Drought conditions during the dry season have become 
increasingly common, posing significant threats to both life and livelihoods. In light of this 
knowledge gap, the present study aimed to assess the characteristics of drought and the 
meteorological variability of hydrological regimes as well as understand the meteorologi-
cal and hydrological drought propagation characteristics in the study area in An Giang. To 
accomplish this goal, the SPI, SPEI and SSI were calculated for the multi-time series. The 
relationships between meteorological and hydrological propagations were conducted. The 
findings of this analysis were utilized to develop effective adaptation strategies that can be 
implemented in a timely manner to address drought conditions and promote sustainable 
water resource management and regional development.

2 � Materials and methods

2.1 � Study area and data collection

An Giang Province is situated in the western region of the VMD, bordered by the Mekong 
River (known locally as the Tien River) and the Bassac River (known as the Hau River). 
The province has a population of 2.4 million people. An Giang shares a 100-km-long 
northern border with Cambodia, and it is also bordered by Dong Thap Province to the east, 
Can Tho City to the south, and Kien Giang Province to the west (Fig. 1).
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An Giang has two seasons, where the wet season spans from May to Nov while the dry sea-
son spans from Dec to Apr). The average annual rainfall and temperature were 1316 mm and 
27.4 °C (1980–2021). For this period, the highest and lowest annual rainfall was 1920.9 mm 
(2008) and 691.5 mm (2002), respectively. The highest and lowest mean of annual tempera-
tures were 26.6 °C (1991) and 28.1 °C (2020), respectively.

The monthly SPI and SPEI were calculated using hourly rainfall and temperature data 
(1980–2021) from the Chau Doc station. Daily water levels and discharges (2000–2021) at the 
Tan Chau and Chau Doc stations were collected. SPI, SSI, and SPEI threshold values for the 
estimated drought severity levels are shown in Table 1.

Fig. 1   Map highlighting and the location of An Giang Province with the Vietnamese Mekong Delta, includ-
ing the hydro-meteorological stations of Tan Chau and Chau Doc
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2.2 � Methods

2.2.1 � SPI and SSI calculation

Precipitation-based drought indicators, such as the SPI, are founded on two premises: first, 
precipitation is significantly more variable than other factors, such as temperature and poten-
tial evapotranspiration (PET), and second, all the other variables remain stationary. SPI was 
used to define the periods of various time scales. Rainfall data should sum up the cumulative 
slip for both previous and current months with a slip equal to the duration of the drought. 
The conversion of these indicators resulted in the generation of drought indices that exhibited 
distinct attributes of drought. In this research, the time scales were assessed by utilizing the 
Standardized Precipitation Index (SPI) for the 3-, 6-, 9-, and 12-month periods.

SPI was developed by McKee et al. (1993) and is recommended by the World Meteorologi-
cal Organization for monitoring and assessing meteorological drought. The density probability 
function for the Gamma distribution as shown in Eq. (1).

where α > 0 is the shape parameter, β > 0 is the scale parameter, x > 0 is the precipitation 
and the gamma function Γ(α) can be represented in Eq. (2).

by using the Thom’s approximation as shown in Eq. (3).
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function g(x) with respect to x (Eq. 4).
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Table 1   Classification of drought 
conditions using SSI/SPI and 
SPEI indices

Classification SSI/SPI thresholds SPEI thresholds

Extremely wet SSI∕SPI > 2 SPEI > 1.82
Moderately wet 1.5 < SSI∕SPI ≤ 2 1.42 < SPEI ≤ 1.82

Mildly wet 1 < SSI∕SPI ≤ 1.5 1 < SPEI ≤ 1.42

Normal −1 < SSI∕SPI ≤ 1 −1 < SPEI ≤ 1

Mild drought −1.5 < SSI∕SPI ≤ −1 −1.42 < SPEI ≤ −1

Moderate drought −2 < SSI∕SPI ≤ −1.5 −1.82 < SPEI ≤ −1.42

Extreme drought SSI∕SPI ≤ −2 SPEI ≤ −1.82
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Considering the limitation of the gamma function that is not defined by x = 0 , and the pos-
sibility of zero precipitation, the cumulative probability becomes as shown in Eq. (5).

where, q is the probability of zero precipitation. The SPI index was then obtained by trans-
forming the cumulative probability into a normal standardized distribution with null aver-
age and unit variance (Eqs. 6 and 7).

where c0 = 2.515517, c1 = 0.802853, c2 = 0.010328; d0 = 1.432788, d1 = 0.189269, 
d2 = 0.001308.

The methodology for calculating the SSI is similar to that of the Standardized Precipitation 
Index (SPI), with river discharge data substituted for rainfall data (Shamshirband et al. 2020).

2.2.2 � SPEI calculation

The first step in calculating the SPEI was the estimation of the PET. Thereafter, the water 
balance equation was used to calculate deficit ( Di ). Furthermore, Pi and PETi are the precipi-
tation and evapotranspiration over time i, respectively, and the difference Di is between pre-
cipitation Pi and PETi (Eq. 8). The cumulative climate water balance series for different time 
scales was established using Eq. (9).

where k and n are the time scale and the number of calculations, respectively. The for-
mulas of the density function and cumulative probability function of the three-parameter 
log-logistic probability distribution are expressed in Eqs. (10 and 11) (Wang et al. 2015; 
Abbasi et al. 2019).
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where the parameters α, β, and γ are equal to the parameters of the scale, shape, and loca-
tion for the Di values in the range of ∞ < D < γ. These were defined using the L-moment 
method (Eqs. 12–15).

where Γ is the gamma function of β and wi (i = 0, 1, 2…), which is computed by probabil-
ity-weighted moments through the L-moment method (Hosking 1990).

where xiandn are the ordered random sample and sample size, respectively. The probability 
distribution function is given by Eq. (16).

The cumulative probability density was transformed into a standard normal distribution 
to obtain the corresponding SPEI time series of changes, as shown in Eq. (17).

where, W = (−2lnP)0.5 , P is the probability of exceeding the determined moisture gain/
loss, when P ≤ 0.5, P = 1 − F(x), when P ≥ 0.5.

2.2.3 � Run theory method

Run theory, introduced by Yevjevich (1967), is a valuable tool for analyzing time series 
data to identify and characterize drought events (Fig. 2). This method defines a drought as 
a continuous period during which an index (e.g., SPI, SSI) falls below a threshold, allow-
ing for the quantification of drought severity, duration, frequency, and intensity (Li et al. 
2017; Wu et al. 2019; Mesbahzadeh et al. 2020). In this study, drought events were defined 
as consecutive months with index values below − 1, with severity representing the cumula-
tive deficit below a predefined threshold.

Drought severity is calculated as the sum of index values below the threshold, while 
duration represents the event’s length; the frequency of drought is the number of events 
when the SPI and SSI values were below the threshold. The transition from meteorologi-
cal to hydrological drought, termed PT, is determined by the time lag between the onset 
of these drought types (Wu et al. 2021) while Sattar et al. (2019) and Sattar et al. (2019) 
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use response rate ( Rr ) to quantify the propagation of meteorological drought to hydrologic 
In this study, the drought event (SPI and SSI) were defined as a consecutive sequence of 
months (t) with drought indices values less than a of − 1 that was described by severity 
(S) which represents the cumulative deficit of a specific hydrological parameter below a 
predefined threshold. Drought initiation (Ts) marks the beginning of a drought event, while 
termination (Te) signifies its end when water scarcity subsides. Drought duration (D) is cal-
culated as the interval between these two points. Drought intensity (I) was determined by 
dividing the total drought deficit by the duration of the event.

If a drought event consists of two distinct periods (d0 and d2) separated by a short inter-
ruption (d1) of less than six months and SPI (SSI) values ranging from 0 to 1, the event 
was deemed continuous. Therefore, the combined duration of the two drought periods (d0, 
d1, and d2) was considered a single drought event (D2), with its corresponding magnitude 
(S2) determined by summing the magnitudes of the individual drought periods (s1 and s2) 
(Mitra and Srivastava 2017; Wu et al. 2018; Zhong et al. 2020).

To assessment the relationship between meteorological and hydrological droughts, we 
employed Rr to assess drought propagation rate and lag time. A higher of Rr indicated a 
stronger relationship between the two drought types, meaning hydrological drought was 
more sensitive to meteorological conditions. Conversely, a lower of Rr suggested a weaker 
connection. Lag time was calculated by determining the temporal offset between the onset 
of meteorological and hydrological droughts. The response rate and lag time were showed 
in Eqs. 18 and 19.

The Rr was represented as the percentage of hydrological drought events (n) that 
responded to meteorological drought events, out of the total number of meteorological 
drought events (m) during the study period. Lag time ( LT ) was determined by calculating 
the time difference between the onset of meteorological drought ( TM ) and the subsequent 
hydrological drought ( TH).

(18)Rr =
n

m
.100%

(19)LT = TM − TH

Fig. 2   Identifying drought patterns through run theory analysis
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2.2.4 � Mann Kendall test and sequential Mann–Kendall analysis

Parametric and non-parametric methods can be used to detect trends. Parametric 
approaches are powerful for normally distributed data (Bihrat and Bayazit 2003). However, 
as aforementioned, non–parametric approaches produce more reliable results in the case of 
hydrology and meteorology, and are more commonly conducted (Hirsch and Slack 1984; 
Hirsch et al. 1992). The MK test (Mann 1945) and Sen’s slope (Sen 1968) are widely used 
non–parametric analyses for detecting trends in direction and magnitude of meteo–hydro-
logical time series. In addition, Sequential Mann–Kendall (SMK) analysis was conducted 
to detect the starting point of trends (Esteban‐Parra et  al. 1995). This means that trend 
detection at the end of any time period using the MK does not provide a complete structure 
of the trend. There may be fluctuations in the trend over the investigation period, which 
can only be detected by sequentially applying the test for every individual period (Sneyers 
1991).

Rank values were used to compute the SMK test. The ranked value yi of the original 
values in the series(x1;x2;x3;… ;xn) , the magnitudes of yi(i = 1;2;3;… ;n) were compared 
withyj(j = 1;2;3;… ;i − 1) . For each comparison, the cases where yi > yj were counted and 
denoted byni . The statistic ti , the distribution of test statisticti , and variance are thus calcu-
lated (Eqs. 20–22).

The forward sequential values of the statistic u(ti) is then calculated using the following 
equation (Sneyers 1991) (Eq. 23)

The backward sequential statistic, u�(ti) is estimated in the same manner but starting 
from the end of the series. This method has been employed by many researchers to detect 
the onset of trends (Esteban‐Parra et  al. 1995). Nalley et  al., (2013) used the method to 
find time periodicities in temperature time series. In the present study, this method was 
applied to identify trend–turning points (Nalley et al. 2013), when the curves u(ti) and u�(ti) 
were plotted. The point of intersection of the curves u(ti) and u�(ti) identifies a recognized 
change of direction. A detectable change in the time series can be inferred if the intersec-
tion of u(ti) and u�(ti) occurs within 1.96 (5% level) of the standardized statistic.
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3 � Results

3.1 � Rainfall and temperature variability analysis

Figure 3 shows the monthly anomalies at Chau Doc station. The findings indicate that while 
some months during the wet season experienced above-average rainfall, certain months in 
the dry season also recorded increased rainfall. However, these variations were not sta-
tistically significant at the 5% level. Chau Doc’s average annual rainfall of 1321 mm was 

Fig. 3   The anomaly in monthly rainfall variability (1980–2021) at Chau Doc. J–D denotes January to 
December. X–axis denotes rainfall in mm and Y–axis denotes time in year
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significantly lower than the Mekong Delta’s regional average of 1695 mm (1980–2021), 
making it the area with the lowest annual rainfall in the VMD. The dry season (Dec to Apr) 
rainfall values were 48.376, 8.885, 3.983, 15.015, and 79.324  mm, respectively, which 
was characterized by minimal rainfall, with Jan and Feb recording the lowest averages. 
However, these typically drier months displayed higher rainfall variability compared to the 
remaining dry season months. Moreover, it is evident that monthly rainfall during the wet 
season has a lower coefficient of variation (CV) than that during the dry season, with CV 
values of 0.546 and 1.525, respectively. The average monthly rainfall during the wet season 
ranged from 120.96 mm to 269.67 mm, with Oct and Sept recording the highest amounts at 
269.67 mm and 171.36 mm, respectively.

An Giang is located in a subtropical region of Southeast Asia, characterized by con-
sistently high temperatures and humidity throughout the year. Given the significant influ-
ence of temperature on evapotranspiration rates, temperature was also employed to assess 
drought severity. Average temperatures in the study area were 27.8 °C during the dry sea-
son and 26.9 °C during the rainy season. Jan exhibited the lowest temperature at 25.8 °C, 
while Apr recorded the highest at 28.8  °C. Figure 4 shows the upward trend in average 
monthly temperatures at Chau Doc from 1980 to 2021.

The Mann–Kendall and Sen’s slope tests were used to supplement the examination of 
monthly temperature anomalies, indicated significant upward temperature trends (Fig. 5 
and Table 3). The Sen’s slope analysis revealed significant increasing trends (p < 0.05) 
in average monthly temperatures for all months except Sept and Oct. The average rate 
of temperature increase, as determined by the Sen’s slope analysis, was 0.26  °C per 
decade. May experienced the most rapid increase with a slope of 0.34 °C per decade, 
while Dec exhibited the slowest rate at 0.18 °C per decade. The SMK test was employed 
to quantify the magnitude and direction of trends in average monthly temperatures over 
the study period. The SMK testing was conducted to assess the statistical significance of 
these trends and estimate the timeframe for substantial temperature rises (Fig. 5).

The increasing trends in average monthly temperature typically occur earlier in the 
wet season than in the dry season. The dry season months of Dec, Jan, Feb, Mar, and 
Apr experienced increasing average temperatures starting in 1999, 2015, 2000, 2012 
and 2012, respectively. These trends attained statistical significance from 2017, 2018, 
2010, 2014 and 2015 onward for the corresponding months. The average temperatures 
for the wet season months of May, June, July, Aug, and Nov increased starting in the 
years 2014, 2007, 2019, 2005, and 2015, respectively. These increases became statisti-
cally significant starting in 2005, 2007, 2014, 2015, and 2019, respectively. The average 
monthly temperatures have increased statistically significantly  since 2012 during the 
wet season and since 2014 during the dry season. 

3.2 � Drought analyses

SPIs and SPEIs were calculated for 3-, 6-, 9-, and 12-month timescales to graphically rep-
resent the temporal evolution of drought conditions (Figs. 6 and 7).

Figure  6a–d highlights fluctuating SPI values, indicative of alternating wet and dry 
periods. The only significant declining trends were identified in SPI-3 from 1983 to 1995, 
SPI 6 and SPI 9 from 1985 to 1995, and SPI 12 from 1985 to 1994 at the 95% confidence 
level using SMK. Mild drought events were the most prevalent, occurring 48, 30, 39, and 
44 times for SPI 3-, 6-, 9-, and 12-month, respectively time scales, respectively. Moder-
ate droughts were followed by occurrences of 20, 23, 27, and 24 events, while extreme 
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droughts were least frequent at 13, 18, 13, and 12 occurrences. Notably, mild droughts 
were more common in both short (3-month) and long (12-month) timescales, whereas 
moderate and extreme droughts were more prevalent in medium-term (6- and 9-month) 
periods. Despite a brief period of negative SPIs during 2015–2016, the dataset exhibited 
pronounced drought events, particularly in 2002, characterized by exceptional SPI peak 
values across all time scales. The extreme SPI values of − 3.01, − 3.66, − 3.69, and − 3.83 
were recorded for the 3-, 6-, 9-, and 12-month, respectively. The longest consecutive 

Fig. 4   Monthly mean temperature variability anomaly (1980–2021) at Chau Doc station. J–D denotes Jan–
Dec. The X–axis represents Temperature (°C), and the Y–axis represents the yearly time
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drought period was eight months in 2002 for SPI 3, while SPI 6 and SPI 9 experienced two 
twelve-month drought events in 1992–1993 and 2002–2003. The most extended drought 
occurred for SPI 12 with a duration of 21 consecutive months in 2014–2016.

Similarly, the SPEI trend and SMK analysis  for Chau Doc were calculated and the 
results  are presented in Fig.  7. Mild drought events were the most prevalent, occurring 
60, 47, 53, and 50 times for the 3-, 6-, 9-, and 12-month SPEI, respectively. Moderate 
drought events followed with frequencies of 26, 25, 29, and 37 occurrences, while extreme 
droughts were least frequent at 8, 12, 7, and 5 events across the corresponding time scales. 
Notably, mild droughts were more common in both short (3-month) and medium-term 
(9-month) timescales, whereas moderate drought was more prevalent in long-term (12-
month) timescale, and extreme drought was more prevalent in medium-term (6-month) 
timescale. The SPEI was more sensitive to mild and moderate drought conditions than 
the SPI, however, the SPI was better at identifying extreme drought occurrences than the 
SPEI. The SMK test identified a non-significant, extended dry period based on SPEI values 
between 1985 and 1995. In contrast, the MK test found a statistically significant increase 
in SPEI levels between 1980 and 2021 while SPI did not show a clear temporal pattern the 

J F M

JMA

J A S

DNO

Fig. 5   Monthly average temperature trends using SMK plots at Chau Doc. J–D denotes Jan–Dec
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same duration. The most extreme drought conditions occurred in 1983, with a SPI-3 value 
of -2.33. For the longer time scales, peak drought severity was observed in 1993, with 
SPI 6, SPI 9, and SPI 12 values of − 2.12, − 2.074, and − 2.146, respectively. Analysis of 
drought duration revealed a maximum of eight consecutive dry months in 1992 for SPI 3, 
fifteen months for SPI 6 in 1992–1993, twenty-one months for SPI 9 in 1992–1994, and a 
prolonged twenty-four-month drought for SPI 12 in 1989–1991.

Fig. 6   Drought characteristics using SPI and SMK plots at time scales: SPI 3 (a), SPI 6 (b), SPI 9 (c), SPI 
12 (d) and SMK 3 (e), SMK 6 (f), SMK 9 (g), SMK 12 (h). The X–axis represents SPI, and the Y–axis rep-
resents the yearly time (a–d)
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3.3 � Hydrological regime changes

Accurate quantification of water availability, as a crucial element of the overall hydrologi-
cal water balance, is essential for effective water resource assessment and management. 
The analysis revealed statistically significant declining trends in annual water levels at Tan 
Chau and Chau Doc, along with a decrease in annual river discharge at Chau Doc from 
2000 to 2021 (Fig. 8). Specifically, the mean annual water level declined by − 4.841 cm/
year at Tan Chau and − 3.433 cm/year at Chau Doc. Concurrently, Chau Doc experienced 
a mean annual discharge reduction of − 43.212 m3/s/year. The average annual reduction in 
water levels was − 4.841 cm/year at Tan Chau and − 3.433 cm/year at Chau Doc, while the 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

1997 

2002

1997 

2002

Fig. 7   Drought characteristics SPEI and SMK plots at time scales: SPEI 3 (a), SPEI 6 (b), SPEI 9 (c), SPEI 
12 (d) and SMK 3 (e), SMK 6 (f), SMK 9 (g), SMK 12 (h). The X–axis represents SPEI, and the Y–axis 
represents the yearly time (a–d)
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average annual decline in discharge at Chau Doc was − 43.212 m3/s/year. During the dry 
season (July–Nov), water levels generally tended to decrease at both stations. At a 95% 
confidence level, significant drops in water levels were observed from Dec to Feb at Tan 
Chau, and during two specific months—Dec and Apr—at Chau Doc. The water levels rose 
between Mar and May; however, this increase was not statistically significant at the 5% 
level. Tan Chau and Chau Doc have distinct flow change trends. Except for Mar, May, and 
Jun, discharge at Chau Doc tended to drop at the 95% significance level, with only the dis-
charge in Apr showing a statistically significant increasing trend at Tan Chau.

In general, the earliest decline in monthly water levels was recorded in Sept and Aug; 
nevertheless, the water levels began to decrease from 2006 to 2009, and this decrease 
became statistically significant after 2006 and 2009, respectively (Fig. 9). Both Oct and 
Nov water levels have been steadily decreasing since 2011, but becoming a statistically 
significant reduction since 2013 and 2014, respectively. Water levels in Jun and July 
fluctuated significantly more than those in other months over the years (CV = 0.407 
and 0.434, respectively). Water levels in Jun-July have been steadily decreasing since 
2011 and 2014 and have dropped significantly between 2009 and 2019. The water lev-
els in the remaining months of the dry season were significantly lower between 2012 
and 2020. Overall, annual water levels have been decreasing since 2011 and have sig-
nificantly decreased since 2013. Fig. 12 demonstrates that the changes in water levels 
at Chau Doc were similar to those at Tan Chau. However, the time of water level drop 
starts at 1–2 months early (Table 2).

Fig. 8   Anomalies in annual water levels and discharges at Tan Chau and Chau Doc
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Fig. 9   SMK plots of monthly and annual water levels at Tan Chau (2000–2021). J-F denotes January–Feb-
ruary, J–D denotes June–December
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Figure 10 shows the changes in discharge at Chau Doc using the SMK. The discharge 
changes at Tan Chau and Chau Doc are different. If only Apr displays a rise in the water 
level at Tan Chau, the other months and even the annual discharge show no trends. The 
decreasing discharge pattern at Chau Doc station was found to be similar to the water 
level at Chau Doc station, with the exception of increasing discharge in Apr.

Although mild–to–severe droughts have occurred in the study area, they have had an 
impact on the decrease in water levels and discharges. Although the SPI does not dem-
onstrate an increase in dryness from 1980 to 2021, the SPEI shows that the study area is 
becoming wetter. However, in recent years, water levels and discharges have decreased 
despite the increase in rainfall, particularly during La Nina (2020–2021). The average 
temperature data revealed an increasing tendency, and the effects of hydroelectric dams 
will reduce the water budget because more than 60% of the water in the Mekong Delta 
originates from the upper sub-basins of the Mekong River Basin.

3.4 � Drought characterizes assessment using run theory

The analysis identified 18 drought events based on the SPI, including nine single-month 
events, with a maximum drought duration of nine months (Fig. 11a). For the SSI at Chau 
Doc, 13 drought events were recorded, including one single-month event, and a longest 
duration of 18 months (Fig. 11b). At Tan Chau, the SSI indicated 10 drought events, with 
one single-month event and a maximum duration of 24  months (Fig.  11c). The average 
drought intensities for SPI, SSI at Chau Doc (SSI_CD), and SSI at Tan Chau (SSI_TC) 
were calculated as − 0.882, − 1.365, and − 0.956, respectively. The most severe drought 
events recorded intensities of − 1.972 for SPI, − 1.940 for SSI_CD, and − 2.243 for SSI_
TC. Conversely, the least intense droughts exhibited values of − 0.404, − 1.065, and − 0.67 
for SPI, SSI_CD, and SSI_TC, respectively.

The research shows a high probability of concurrent meteorological and hydrological 
drought events at Chau Doc and Tan Chau stations, with 71% and 63% of hydrological 
droughts occurring in response to meteorological droughts, respectively. During the study 
period (2000–2021), a consistent time lag was observed between the occurrence of SPI 
and SSI at both Chau Doc and Tan Chau stations. The average time lag was four months 
at Chau Doc and two and a half months at Tan Chau. The earlier decade (2000–2010) had 
longer lag times (six months at Chau Doc and four months at Tan Chau), whereas the latter 
decade (2011–2021) had a significant reduction in lag, with an average lag of two months 
at Chau Doc and one month at Tan Chau.  It should be noted that hydrological drought 
occurrences at Chau Doc and Tan Chau arrived before meteorological drought events in 
certain years between 2011 and 2021. This coincides with the operational period of the 
Mega hydropower dams on the Mekong River system.

4 � Discussion

Located inland within the Mekong Delta, the study area experiences significantly lower aver-
age annual rainfall compared to the delta’s overall average, primarily due to its greater distance 
from the sea (Minh et al. 2024b). While our findings revealed no statistically significant trend in 
annual rainfall, the increased temperature poses a significant risk to the region’s water resource 
balance. The average temperature in the study area, which has risen steadily over the past 
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Fig. 10   SMK plots of monthly and annual discharge at Chau Doc (2000–2021). J–D denotes June–December
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Fig. 11   Drought events identified using monthly SPI and SSI data for the period 2000 to 2021

decades, is particularly concerning because higher temperatures accelerate evapotranspiration 
rates, which, in turn, exacerbate water scarcity. The effects of this temperature rise are amplified 
by the reduction in water flow from the Mekong River system, which contributes to an increas-
ingly fragile hydrological balance. These findings align with existing studies that have docu-
mented similar warming trends across Southeast Asia (Van Binh et al. 2020; Li et al. 2023).

In line with existing literature, such as Van Binh et al. (2020), our study confirms that 
human activities, particularly upstream hydroelectric operations, have had a more sub-
stantial impact on water flows in the lower Mekong River basin than climate change. This 
influence is especially noticeable in the dry season, where the increasing demand for water 
for irrigation has compounded the region’s water scarcity. Despite an observed decrease 
in flood flow, our results align with numerous studies (Li et al. 2023; Tang et al. 2023), 
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that indicate increased variability in dry season flows. Our analysis found that while some 
months during the wet season experienced above-average rainfall, the dry season saw 
increased rainfall variability, particularly in typically drier months like January and Feb-
ruary. This aligns with findings by Keovilignavong et al. (2023), who also emphasize the 
influence of human interventions on drought conditions in the Mekong region.

Furthermore, (Li et al. 2023) highlighted a probable reduction in flood risks but a strong 
increase in drought risks in Mekong River Basin countries, including Vietnam. This aligns 
with our findings, as we observed increased risks of drought in the study area, particularly 
due to the decreased upstream flow and the lowering of the major river water levels in 
the VMD. This reduction in upstream flow, combined with the operation of salinity gates 
designed to restrict saltwater intrusion into the canals, has created a more precarious water 
management situation. Saltwater intrusion into the main rivers of the VMD, exacerbated by 
these hydrological changes, poses a significant threat to agriculture and freshwater avail-
ability in the region (Van Binh et al. 2020; Park et al. 2022).

Our analysis of discharge fluctuations at Tan Chau and Chau Doc stations provides further 
evidence of the influence of both natural and human-induced factors on the region’s hydrology. 
El Niño events have historically resulted in lower discharges, a pattern that was observed in our 
study during the El Niño periods of 2002, 2004–2006, 2009–2010, 2014–2015, and 2018–2019. 
Despite the wetter conditions typically associated with La Niña events, the decline in discharge 
persisted during recent La Niña years (2020–2021). This suggests that upstream water manage-
ment, including dam operations, may be overriding the effects of natural climatic variability. 
Recent research supports this assertion, indicating that hydropower dams in the upper Mekong 
River basin have exacerbated hydrological drought conditions in the lower Mekong region (Lu 
and Chua 2021; Phung et al. 2021; Keovilignavong et al. 2023). This is consistent with broader 
research on ENSO’s impacts on river basins globally, as similar patterns have been observed in 
other regions, such as the Blue Nile River Basin (Abtew et al. 2009).

Furthermore, the Mann–Kendall and Sen’s slope tests revealed significant upward trends 
in temperature across the region, with an average increase of 0.26  °C per decade. May 
experienced the most rapid temperature rise, with a slope of 0.34  °C per decade, while 
December showed the slowest rate at 0.18 °C per decade. These increasing temperatures, 
particularly during the dry season, compound the challenges of water scarcity and place 
additional stress on the region’s agricultural systems.

Our drought analysis using SPI and SPEI further highlights the complexity of the 
region’s hydrology. Mild drought events were the most prevalent across all timescales, while 
extreme droughts were less frequent but more severe when they occurred. Interestingly, the 
SPEI appeared to be more sensitive to identifying mild and moderate drought conditions, 
whereas the SPI was more effective in detecting extreme drought occurrences. These find-
ings are consistent with other studies that have explored drought indices and their sensitiv-
ity, such as the work by Beguería et al. (2014) on the SPEI. The SPEI analysis indicated an 
extended dry period from 1985 to 1995, though the more recent period from 1980 to 2021 
showed statistically significant increases in SPEI levels, suggesting an overall trend toward 
wetter conditions. However, the SPI did not display a clear temporal pattern, indicating the 
presence of complex, multifaceted changes in the region’s hydrological cycle.

A notable finding from our study is the shifting temporal relationship between meteoro-
logical and hydrological droughts. During the 2000–2010 period, meteorological droughts 
typically preceded hydrological droughts by 4–6  months. However, in the 2011–2021 
period, this lag shortened to 1–2 months, and in some cases, hydrological droughts even 
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preceded meteorological droughts. This shift could be attributed to the cumulative impact 
of upstream water management and hydropower development, which have altered the tim-
ing and intensity of water flows in the lower Mekong. The shortening of this lag time high-
lights the need for more adaptive and flexible water management strategies to address the 
increasingly rapid and unpredictable changes in the region’s hydrology. This finding aligns 
with the work of Gan et al. (2024) and other researchers who have analyzed hydrological 
drought propagation and the impacts of human modifications on river systems.

These findings highlight the critical need for integrated water management strategies that 
consider both natural climatic variability and the substantial impacts of human activities. The 
combined effects of rising temperatures, increased drought risks, and hydropower develop-
ment in the upper Mekong basin have fundamentally altered the hydrological balance of the 
Mekong Delta (Van Binh et al. 2020; Keovilignavong et al. 2023). Policymakers and water 
managers must adopt more flexible and responsive strategies to mitigate these impacts and 
ensure the sustainability of water resources and the livelihoods that depend on them (Lu and 
Chua 2021). Future research needs to focus on the long-term impacts of upstream hydropower 
development and climate change on the Mekong Delta, with a particular emphasis on mitigat-
ing the increasing risks of drought and saltwater intrusion (Park et al. 2022; Minh et al. 2024a).

5 � Conclusions

While rainfall in the study area showed no statistically significant trend, temperature increases 
were significant, with the dry season experiencing earlier temperature rises than the wet sea-
son. The average monthly temperature during the dry season began increasing around the 
year 2000, while the average monthly temperature during the rainy season increased between 
2005 and 2019. Compared to the rest of the year, December, March, and May tended to have 
the highest increases. Both the SPI and SPEI indices identified the temporal variability of 
droughts and were able to identify different types of droughts, as indicated by the different 
timescales. It was found that SPIs can respond better to extreme drought events than SPEIs, 
while SPEIs can detect El Niño year events in this region. The annual water levels in three 
months (Sep-Nov) decreased from 2010 to 2013, with a significant drop beginning in 2013 
in Tan Chau. Similarly, for Chau Doc, the annual water levels in Sept-Nov began to decrease 
around 2013 and became statistically significant in 2019, 2019, and 2015. The annual dis-
charge at the Tan Chau station showed no significant trend, whereas the mean annual dis-
charge at Chau Doc showed a decreasing trend that began around 2001 and became signifi-
cant around 2003. Although there is no clear trend in rainfall, the average temperature has 
increased, resulting in drier conditions. At that time, the demand for water for crops and daily 
life will increase because of increased evaporation. Furthermore, in recent years, flow in the 
Mekong Delta has decreased significantly during the wet season.

Appendix A

See Fig. 12.
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Fig. 12   SMK plots of monthly and annually water levels at Chau Doc (2000–2021). From J-D 
denotes June–December
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Appendix B

See Table  3.

Fig. 12   (continued)

Table 3   Mann–Kendall test 
and Sen’s slope results for 
average monthly temperature at 
Chau Doc

Months Z S Vars Tau Sen’s slope P-value

Jan 2.17 224 8512 0.26 0.027 0.0156
Feb 2.53 234 8510 0,27 0.022 0.0122
Mar 4.56 425 8513 0.49 0.033 0.0000
Apr 3.35 310 8504 0.36 0.029 0.001
May 3.52 326 8513 0.38 0.034 0.000
Jun 4.36 403 8505 0.47 0.027 0.000
July 3.03 280 8500 0.33 0.018 0.002
Aug 3.86 357 8508 0.42 0.023 0.000
Sept 1.43 133 8504 0.16 0.006 0.152
Oct 1.10 102 8505 0.12 0.007 0.274
Nov 2.97 275 8510 0.32 0.021 0.003
Dec 3.12 289 8504 0.34 0.033 0.002
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