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Abstract
Three Gorges Dam is the largest hydraulic infrastructure in the world, playing a piv-
otal role in flood mitigation. The hydrological responses of the Three Gorges Reservoir 
Region (TGRR) to climate change and human activities are unclear, yet critical for the 
Three Gorges Dam’s flood control and security. We simulated streamflow and water depth 
by coupling the Variable Infiltration Capacity model and the CaMa-Flood model. Daily 
discharge at the outlet of TGRR was well modeled with a relative error within 2% and a 
Nash-Sutcliffe efficiency coefficient of approximately 0.81. However, the flood peak was 
overestimated by 2.5–40.0% with a peak timing bias ranging from 5 days earlier to 2 days 
later. Runoff and water depth in the TGRR increased from 2015 to 2018 but decreased 
during flood seasons. Land use and land cover changes in 2015 (LUCC2015) and 2020 
(LUCC2020) were analyzed to quantify their hydrological impacts. During the 2015–2018 
period, land use conversion increased in built-up areas (+ 0.6%) and water bodies (+ 0.1%), 
but decreased in woodland grassland (-0.7%) and cropland (-0.1%). This led to a slight 
increase in runoff and inflow of less than 4‰ across the TGRR, a 7.70% decrease in 
average water depth, and a 15.4‰ increase in maximum water depth. Water depths in the 
TGRR decreased during flood seasons, and increased during non-flood seasons. Increasing 
water depth was identified in northern TGRR. This study clarifies the historical TGRR’s 
hydrological features under LUCC and climate changes, aiding regional flood mitigation 
in the TGRR.

Keywords Hydrological responses · Water depth · Runoff · Climate changes · LUCC · 
Three gorges reservoir regions
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1 Introduction

Increasing precipitation extremes under climate change amplified (Zhang et al. 2013; Myhre 
et al. 2019; Moustakis et al. 2021; Gründemann et al. 2022) flooding events globally (Jong-
man et al. 2012; Hirabayashi et al. 2013; Winsemius et al. 2016; Rodell and Li 2023). In 
recent years, there have been increasingly frequent floods in the Yangtze River (Jiang et al. 
2008; Yu et al. 2009; Fang et al. 2018). To mitigate damage, various engineering measures 
have been implemented to reduce flood peaks. In the Yangtze River Basin (YRB), the Three 
Gorges Dam (TGD) and other mountainous reservoirs have been built for flood control. 
Among reservoirs located in the Yangtze River basin, Three Gorges Reservoir (TGR), with 
storage capacity of 39.3 billion m3, plays a critical role in flood mitigation (Zhang and Lou 
2011; Xia and Chen 2021) (Fig. 1a). Floodwater in the Three Gorges Reservoir Region 
(TGRR) contribute from three sources: runoff from the TGRR itself, the drainage area 
upstream of the Cuntan station in the Yangtze River Basin, and runoff from the Wu River 
Basin. Tributaries within the TGRR contribute up to one-third of the total floodwater inflow 
from upstream to the TGRR. Moreover, runoff of the tributaries in the TGRR directly drains 
into the reservoir, significantly influencing reservoir security. Thus, investigating changes 
in hydrological characteristics of the TGRR is crucial for flood mitigation and security of 
the Three Gorges Dam.

Climate change and land use and cover change (LUCC) are the prime factors that impact 
hydrological processes of the TGRR (Zhang et al. 2015; Cheng et al. 2019; Wang et al. 
2019a, 2020; Huang et al. 2020). Climate alters the temporal and spatial distribution of 
precipitation patterns, directly modifying flood regimes (Donat et al. 2016; Gründemann 
et al. 2022). Evapotranspiration (ET) is more likely to affect surface runoff (Zhou et al. 
2013; Wang et al. 2019a). Meanwhile, LUCC alters hydrological processes by modifying 
transpiration, interception, and conservation (Hurkmans et al. 2009; Wang et al. 2015; Li et 
al. 2020). This is especially the case during urbanization, where a permeable vegetated land 
surface has been replaced by an impervious cityscape. This alteration affects the proportions 
of streamflow and baseflow, leading to increased velocity and flood risk (Zhou et al. 2013; 
Lin et al. 2022). The impervious area of the YRB increased by 162.46% from 1977 to 2018 
(Luo and Zhang 2022). From 1990 to 2010, the forest and/or grass-based vegetation restora-
tion project, namely the “Grain for Green” project since the 2000s, led to a 14% increase in 
vegetation cover from 1999 to 2009 in the YRB (Liu et al. 2014). The increasing vegetation 
cover leads to a decline in soil moisture and runoff due to increased ET and rainfall (Li et al. 
2018), which causing reducing discharge in the YRB (Yang et al. 2015; Zeng et al. 2024). 
Therefore, the TGRR responses to compound impacts of urbanization and afforestation call 
for in-depth investigation.

Methods available for analyzing hydrological impacts can be grouped into three cat-
egories: catchment paired experiment, statistical analysis (Zhang et al. 2018a, b), and 
hydrological models (Zhang et al. 2015). The absence of observations renders the first two 
methods ineffective in the TGRR (Wang et al. 2011b). To better understand how hydrologi-
cal processes change and recognize the impact of LUCC and climate change, hydrological 
models have been generally used (Hurkmans et al. 2009; Zhang et al. 2015; Wang et al. 
2020; Gong et al. 2023). With the increased availability of remotely-sensed data, high-
resolution meteorological data (Brookfield et al. 2023), hydrological model parameters, and 
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high-quality input data are easier to access, enabling effective hydrological modeling (Sood 
and Smakhtin 2015).

In the TGRR, none of the rivers are hydrologically monitored over the entire tributary 
basins (Wang et al. 2011b). Evaluations of model parameters within the data-scare basin is 
an challenging task (Hrachowitz et al. 2013; Elmer et al. 2021). While there are streamflow 
observations at the outlet and the ungauged zone encompasses 70% of the area (Wang et 
al. 2011b). The scarcity of data challenges parameter estimation in hydrological modeling 
(Zhang et al. 2020). To implement hydrological modeling for simulation in ungauged areas, 
regionalization calibration method was used, and parameters were transferred from gauged 

Fig. 1 Map showing the location of the Yangtze River Basin in China (a), the location of TGRR in the 
Yangtze River Basin (b),Map of the TGRR hydrological stations, and weather stations (c)The LUCC map 
is from the CNLUCC2015 dataset
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to similar ungauged sub-catchments (Alizadeh and Yazdi 2023). For example, parameters 
calibrated against to upstream observation at Poyang Lake were applied to non-measured 
area (Zhang et al. 2017).

Many studies of the YRB have analyzed monthly or annual streamflow observations to 
analyze the streamflow trend under climate change (Fang et al. 2018; Huang et al. 2024), 
and/or have evaluated the impact of human activities on streamflow (Zhou et al. 2013; 
Cheng et al. 2019; Wang et al. 2020). Previous studies on hydrological features in the TGRR 
used a lumped model without consideration of subbasin-specific hydrological responses 
(Jing et al. 2004). With the development of distributed hydrological models, these models 
have bee widely used in flood flow modelling in the TGRR (e.g., GBHM, VIC, etc.) (Wang 
et al. 2011b, 2019b; Pang and Xu 2012). Very recent studies focused on integration of hydro-
logic and hydrodynamic models for flood flow modeling (Wang and Yang 2020; Xu et al. 
2022). Distributed hydrologic models perform better in simulating rainfall-runoff processes 
at a large basin scale, whereas hydrodynamic models have higher modelling performance 
for smaller river basins. Combining these models allows for leveraging their respective 
strengths (Wang and Yang 2020). Previous studies simulated the flow and water depth in 
the TGRR by coupled XAJ hydrological model and one-dimensional hydrodynamic model 
(Wang et al. 2003; Zhang et al. 2020). Compared with the simulation results of a single 
hydrological model, the model coupled with XAJ and H1DM has a higher accuracy in the 
TGRR (Zhang et al. 2020). However, existing studies using one-dimensional hydrodynamic 
models only captured alterations at the outlet of the region, overlooking the spatial distri-
bution of hydrological elements within the region. What’s more, previous researches gave 
limited consideration to human activities like land use changes which are important factors 
in the hydrological cycle.

Using hydrological and hydrodynamic models, we attempted to simulate hydrological 
characteristics in the TGRR and tried to reflect water depth distribution of flood events. The 
study adopted the distributed hydrological model VIC with a physical mechanism to simu-
late the rainfall-runoff process under the conditions of complex topography and water sys-
tem in the TGRR, and at the same time, the hydrodynamic model CaMa-Flood was applied 
with the VIC runoff results to reflect water depth distribution within the TGRR during the 
flood events. Based on the results, we analyzed the variations in hydrological elements 
within the historical period. Considering the impact of land-use changes on hydrological 
elements, we designed scenarios of land-use changes for different periods. We employed 
simulations to quantify the influence of land-use changes under various scenarios, explor-
ing the impacts of both climate change and land-use changes on the hydrological feature in 
the TGRR.

2 Materials and methods

2.1 Study area

TGRR is in the upper Yangtze River (Fig. 1b), and specifically the stretch of the Yangtze 
River from Cuntan in the mainstream to the location near Wulong in the tributary, extend-
ing to the Three Gorges Dam (Shen et al. 2014). The Three Gorges Interval is located at 
the junction of Chongqing and Hubei provinces with drainage area of about 55,000km2, 
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and over 658 km in length. The altitude of the TGRR is between 3 and 3100 m. The TGRR 
exhibits an east-high-west-low topography, with Fengjie as the dividing point. Topography 
upstream to Fengjie is characterized by low hills and undulating landscapes. Regions down-
stream to Fengjie lies in the Three Gorges along the Yangtze River, including Qutang Gorge, 
Wuxia Gorge, and Xiling Gorge. TGRR is climatically characterized by monsoon area with 
annual rainfall ranging from 1000 mm to 1600 mm with 1200 mm on average. Rainfall from 
June to September accounts for more than 70% of the total annual rainfall, with frequent 
heavy rainfall events (Wang et al. 2011b).

Runoff in TGRR, upstream inflows from the Yangtze River, and the Wujiang River 
jointly constitute the three main sources of floods in the TGRR (Wang et al. 2011a). The 
main tributaries in the TGRR include 47 rivers, such as the Daning River, Xiangxi River, 
Xiaojiang River, Shennong River, Tangxi River, Meixi River, Zhuyi River, Modao River, 
Jiwanxi River and Ruxi River (Fig. 1c). The main tributaries with drainage areas exceeding 
3,000 km2 include the Yulin River, Longxi River, Xiaojiang River, MoDaoxi River, Daning 
River, and Xiangxi River.

2.2 Data

In this study, three kinds of input data were used: (1) meteorological forcing data; (2) veg-
etation and soil data; and (3) topographical data. Data required by the VIC model include the 
forcing elements of daily rainfall, temperature, and wind from 2015 to 2018 collected at 47 
meteorological stations around the TGRR. The meteorological data was interpolated to each 
grid cell using the linear distance weighted interpolation method. Locations of the meteoro-
logical stations can be found in Fig. 1b. Daily discharges at six gauging stations from 2015 
to 2018 were obtained from the Hydrological Yearbook of China, including Cuntan sta-
tion (CT2, which measures the inflow from Yangtze River into the TGRR), Wulong station 
(measures the inflow from Wujiang River into the TGRR), Yichang station (the outlet of the 
TGRR), Lianghe station (LH, in the Quxi basin), Wuxi station (WX, in the Daning River 
basin), and Changtan station (CT1, in the Modao River basin). Daily water level data from 
2015 to 2018 at Cuntan, Wanxian, Qingxichang, Shibanping, and Wuxi stations were also 
obtained from the Hydrological Yearbook of China.

The vegetation classification is derived from the 1 km land cover classification for 1992–
1993 from the Advanced Very High-Resolution Radiometer (AVHRR) provided by the Uni-
versity of Maryland (Hansen et al. 2000). Table S1 lists the detailed land cover classes. The 
land use and cover data is based on China’s Multi-Period Land Use Land Cover Remote 
Sensing Monitoring Data Set (CNLUCC) (Xu et al. 2018). This dataset with a spatial reso-
lution of 1 km for the years of 1990,1995, 2000, 2005, 2010, 2015, and 2020. Detailed 
land cover classes are listed in Table S2. Considering the study period of 2015–2018, the 
land-use data for 2015 and 2020 were utilized. The land cover map derived from AVHRR 
has been updated by incorporating the construction land class from the CNLUCC dataset, 
resulting in an updated LUCC dataset. Soil texture is based on the Harmonized World Soil 
Database (HWSD v1.21)(FAO/IIASA/ISRIC/ISSCAS/JRC 2012) from the FAO, offering 
detailed soil attributes for two soil layers.

The digital elevation model (DEM) of the catchment originates from GDEM v3 (ASTER 
Global Digital Elevation Map). The spatial resolution of the DEM is 30 m. This digital 
elevation model data set is used to extract the channel network. The MERIT Hydro dataset 
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(Yamazaki et al. 2019) is taken for river-floodplain parameterization river length, and river 
width data in the hydrodynamic models.

2.3 Models and method

The general procedures used for simulation and data processing are summarized in Fig. 2.

2.3.1 Models

The Variable Infiltration Capacity (VIC) hydrologic model is used in this study. The VIC 
model is a macroscale, semi-distributed land surface hydrologic model, which shares sev-
eral basic features with other land surface models (LSMs) (Liang et al. 1994). The runoff 
generation scheme in VIC represents both saturation and infiltration excess runoff processes 
dynamically in a model grid cell through a statistical parameterization of sub-grid heteroge-

Fig. 2 Flowchart for methodology (four main components included: data used, simulation procedure, 
scenario design, and result analysis)
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neity in terms of soil and rainfall (e.g., local water holding capacity) (Liang and Xie 2001). 
This led to better performance in runoff simulation. Runoff is comprised of surface runoff, 
subsurface flow (baseflow), and interflow. The VIC model has been successfully applied 
in YRB (Gu et al. 2015; Lu et al. 2018) and TGRR (Wang 2021). VIC 4.1.2 is used in this 
study. A separate surface routing model is coupled with the VIC model for routing (Lohm-
ann et al. 1996). Utilizing the runoff output from the VIC model, this model generates daily 
streamflow output at the basin outlet.

CaMa-Flood is a hydrodynamic model and has been used for global- and basin-scale 
flood simulations (Hirabayashi et al. 2013; Willner et al. 2018; Wang et al. 2021). By param-
eterizing the subgrid-scale topography of a floodplain, it calculated simulated discharge, 
velocity, water level, and flood inundation depth by solving the local inertial equation. thus 
describing floodplain inundation dynamics (Yamazaki et al. 2011, 2013, 2014). The water 
level and flooded area are diagnosed from the water storage at each unit-catchment using the 
sub-grid topographic parameters of the river channel and floodplains (Yamazaki et al. 2011). 
The progression of water storage is determined by solving the water balance equation, tak-
ing into account the incoming water from upstream cells, the outflow to downstream cells, 
and the runoff input for each catchment unit (Yamazaki et al. 2011). Therefore, adopting the 
model could simulate changes in all stages of flooding, including discharge and water lev-
els. The 1-min water depth data (about 2 km at the Equator) was obtained by downscaling 
based on DEM (Shin et al. 2020).

2.3.2 Coupled hydrological and hydrodynamic model

Utilizing Digital Elevation Models (DEMs), geographical data, and topographical fea-
tures of the watershed, this study constructed the distributed hydrological model and the 
hydrodynamic model in the TGRR. Using these models, hydrological characteristics within 
the TGRR are simulated, including runoff, streamflow, and water depth. Initially, the VIC 
model was utilized to generate daily surface and subsurface runoff, including interflow and 
baseflow. Subsequently, the runoff produced by the VIC model served as the boundary con-
dition for the CaMa-Flood model to calculate water depth.

Meteorological forcing data for the VIC model, including precipitation, temperature, and 
wind speed data, are sourced from 47 stations around the TGRR, as detailed in Sect. 2.2. 
These data were interpolated into 0.1 degrees using the inverse distance weighting method. 
Soil, vegetation, and land cover data that are necessary for the VIC model were detailed and 
described in Sect. 2.2 (Soil texture is based on HWSD, land cover data is from CNLUCC, 
and vegetation data is from the land cover classification from AVHRR). For this study, we 
ran the VIC model version 4.1.2 in water balance mode at a daily time step and at grid reso-
lutions from 0.1 degrees. There are 637 grids in the TGRR. In this study, the routing model 
developed by Lohmann et al. (1996) is used to calculate the discharge at the basin outlet. 
The overflow employs the unit hydrograph method, while the channel routing employs the 
linear Saint Venant equations.

Taking the runoff simulation of VIC as forcing, CaMa-Flood runs daily with a spatial 
resolution of 0.1 degree. The water depth series is calculated from 2015 to 2018 with the 
first two years repeated as a spin-up period. The period 2015–2018 was chosen for this study 
because the meteorological station data and hydrological observation are accessible within 
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this period. The water depth is calculated based on water storage at each grid cell assuming 
hydro-geometry power-low equations (Yamazaki et al. 2014).

2.3.3 Model calibration and validation

Due to the scarcity of observation data, the real streamflow of the TGRR is not available, 
thus it is not possible to determine the parameter rate for the whole region based on the 
interval flow data. According to previous research (Xie et al. 2007), parameters in the TGRR 
are obtained following this procedure: model parameter is estimated from a limited number 
of calibrated basins and then regionalized to the whole region. It is noted that naturalized 
streamflow without reservoir regulation is simulated in this research, thus only hydrologi-
cal stations without the backwater effects are selected, namely Lianghe hydrological sta-
tion, Wuxi hydrological station, and Changtan hydrological station. Parameter estimation 
was performed at these hydrological stations during the periods 2015–2017 (the calibration 
period) and 2018 (the validation period). A trial and error calibration method is being used 
and the calibrated values(Park and Markus 2014; Ju et al. 2020) of Binf, Ds_Max, Ws, D2, 
D3 are shown in Table 1.

The parameters shown in Table 1 were estimated by calibration for the best fit of model 
outcomes to observed behavior. Five metrics were used to assess the model performance: 
Nash–Sutcliffe Efficiency (NSE), Relative error (Re), determination coefficient (R-square), 
Normalized Root Mean Square Error (RMSE), and Normalized RMSE (NRMSE). The for-
mula for each indicator is given below (Eqs. (1)-(5). The main evaluation metrics as the 
objective function are Re and NSE. Re reflects the total accuracy of the model simulation, 
and NSE reflects the fitness between the simulated flow and the observation. According to 
(Moriasi et al. 2007, 2015), model performance at the basin scale can be evaluated as satis-
factory if daily RE < 25% and NSE > 0.5.

 
NSE = 1 −

∑
(Qsim − Qobs)

2

∑ (
Qobs − Qobs

)2  (1)

 
Re =

Qsim − Qobs

Qobs

 (2)

Parameter Range Description Unit
Binf 0–2 Variable infiltration curve 

parameter
None

Ds_Max 0–50 Maximum velocity of baseflow mm/
day

Ws 0–1 Fraction of the maximum soil 
moisture where nonlinear base-
flow occurs

None

D2 0.1–1.5 Thickness of the second soil 
layer

m

D3 0.1–1.5 Thickness of the third soil layer m

Table 1 Calibrated parameters in 
the VIC model
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RMSE =

√∑ (
Qobs − Qsim

)2

N
 (3)

 
NRMSE =

RMSE
max (Qobs) − min (Qobs)

4  (4)

 
R2 = 1 −

∑
(Qsim − Qobs)

2

∑ (
Qobs − Qobs

)2 5 (5)

To test the efficiency of the parameter regionalization result, a verification was conducted by 
comparing the observed flow at Yichang station and simulation results from 2015 to 2018. 
Located in the outlet of the TGRR, Yichang hydrological station has streamflow series data. 
Combined with the incoming water from Cuntan and Wulong hydrological stations and 
simulated runoff in the TGRR, simulated streamflow at the outlet of the TGRR is available.

2.3.4 Flood events extraction and validation

The study evaluates model efficiency in simulating flood events in TGRR by conducting 
verification on flood peak discharge and peak time.

Utilizing the Peaks Over Threshold method, this study applied a threshold of 25,000 m3/s 
to identify significant flood events based on observed streamflow data recorded at Yichang 
station from 2015 to 2018. However, the average flow from July to the end of August 2018 
exceeded 25,000 m3/s, so a threshold of 40,000 m3/s was used. Therefore, we have not 
taken a uniform flood standard. A total of 10 flood events were extracted from 2015 to 2018 
(Table 2 shows the list of flood events). Maximum discharge during a flood event is defined 
as the flood peak, and the occurrence time of the maximum flow during a flood event is 
defined as peak time. The study calculates the relative error between simulated discharge 
and observed values for flood peak and between simulated and observed peak times.

2.3.5 Analysis of changing hydrological features

To examine annual flow variations, this study computed the monthly averages, maximums, 
and minimums of discharge in the TGRR from 2015 to 2018, the statistical characteristics 

Flood event No. Flood duration Observed peak flow(m3/s)
Start date End date

1 2015/6/27 2015/7/7 31,400
2 2016/6/26 2016/7/6 33,100
3 2016/7/17 2016/7/20 26,700
4 2016/7/26 2016/8/7 31,300
5 2017/6/27 2017/6/30 27,100
6 2017/7/9 2017/7/25 29,900
7 2017/8/28 2017/9/2 26,600
8 2017/9/28 2017/9/30 25,100
9 2017/10/6 2017/10/17 29,800
10 2018/7/6 2018/7/18 43,600

Table 2 Extracted flood events in 
2015–2018
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of discharge and water depth series are listed in Table S3 (Burgan et al. 2013). Subsequently, 
linear trend analysis was performed on these monthly discharge series. To explore seasonal 
variations, the data were partitioned into flood season (May to October) and non-flood sea-
son (November to April). The same analysis has been performed on the water depth series.

2.4 Impact of LUCC on hydrological features

The land cover dataset from AVHRR (Hansen et al. 1999) has detailed vegetation infor-
mation, while the CNLUCC has the latest built-up distribution data. To obtain input with 
detailed vegetation information and the latest land cover data in 2015 and 2020, we updated 
the built-up class in the AVHRR by land use type from CNLUCC. Then, we constructed the 
LUCC2015 and LUCC2020 scenarios and simulated the discharge and water depth under 
different LUCC scenarios. The analysis compared variations in discharge and water depth 
under different LUCC scenarios to assess the impact of diverse land uses on hydrological 
features in the TGRR.

At Yichang Station, flow patterns are impacted by both land use within the TGRR and the 
inflow from the upstream. To explicitly show the influence of land use changes on hydro-
logical features in the TGRR, the discharge used for comparison involves routing exclu-
sively based on local runoff without considering upstream inflow. Meanwhile, the water 
level simulated by the CaMa-Flood is still influenced by upstream inflow.

3 Results

3.1 Model calibration and validation

3.1.1 Parameter calibration

A list of parameters in the VIC model for each basin (Table S4) was identified. The metrics 
of simulated daily streamflow for those basins are shown in Table 3. The NSE between 
the observed and simulated streamflow at Wuxi station is above 0.6 during the calibration 
and validation periods, and the Re is below 20%. Moreover, this model performs better in 
the validation than in the calibration period. The NSE increased from 0.61 to 0.62, |𝑅𝑒| 
decreased from 0.18 to 0.07, indicating that this model could provide satisfactory perfor-
mances under out-of-sample situations. Based on the calibrated model from the Changtan 
hydrological station in the Modaoxi basin, the NSE value during the calibration period is 
below 0.5 and drops to 0.14 under the validation period with a |𝑅𝑒| value of 1.21. According 

Table 3 Performances of calibrated hydrologic models for both calibration and validation periods in three 
gauged basins
Hydrological stations Period NSE Re Rsquare RMSE NRMSE
Wuxi Stations
(Daning basin)

Calibration Period 0.61 0.18 0.79 60.22 1.02
Validation Period 0.62 0.07 0.80 67.34 1.03

Changtan Stations
(Modaoxi basin)

Calibration Period 0.38 0.15 0.62 48.57 1.26
Validation Period 0.14 1.21 0.52 30.16 1.53

Lianghe Stations
(Quxi basin)

Calibration Period 0.31 7.33 0.61 5.71 2.33
Validation Period 0.16 6.61 0.49 6.17 2.60
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to the calibrated model against the Lianghe hydrological station in the Quxi basin, the NSE 
value during the calibration period is 0.31 and drops to 0.16 under the validation period with 
a |𝑅𝑒| value over 6.61. This indicates that the calibrated model in the Modaoxi and Quxi 
basins can hardly reflect the actual conditions of the region. The simulated and measured 
streamflow series from 2015 to 2018 at the Wuxi, Changtan, and Lianghe Stations are dis-
played in Fig. S1.

Previous studies (Moriasi et al. 2007, 2015) show acceptable model performance at the 
watershed scale if daily Re < 25% and NSE > 0.50. NSE values at the Changtan and Lianghe 
hydrological stations fall from 0.30 to 0.40. Additionally, the value of |Re| at the Changtan 
station is approximately 1.00, whereas at the Lianghe station, it surpasses 6.00. Calibrated 
models underestimated the streamflow in the Quxi and Modaoxi basins (Fig. S1). The 
region is prone to recurrent short-duration intense rainfall events caused by strong convec-
tive weather. This poses challenges in accurately measuring precipitation of rain gauges, 
resulting in the underestimation of peak flow. Additionally, the lack of updated vegetation 
cover data adds to the biases in the model (Zhou et al. 2004; Wang 2021). Considering that 
only the calibrated model in the Daning River could reflect the actual conditions, parameters 
calibrated against the Wuxi hydrological station are regionalized to the TGRR.

3.1.2 Validation

Daily discharge at the outlet of the TGRR is well simulated with an NSE of 0.81, an R-square 
of 0.93, and Re of -2% (Fig. 3). 98 parameter sets with NSE values > 0.60 were adopted to 
evaluate the uncertainty of the parameters(Wang 2021) (Table S5). Results show that NSE 
ranges from 0.78 to 0.79, Re values range from − 1% to -2%, and R-square is 0.92. Stream-
flow series under different parameter sets only results in marginal differences.

Qualitative comparison is performed between simulated water depth and observed water 
level data to access inaccessible reference datum data from hydrological stations. Under 
the effect of the TGD’s backwater, the seasonal trend between observed and simulation was 
found at hydrological stations located at the mainstream. For the Shibanping station and 
Wuxi station, located outside the scope of the reservoir backwater effects, observed water 
level data aligns well with the trend of simulated water depth data, especially in the Wuxi 
station. Overall, the above qualitative comparison can reflect the credibility of the water 

Fig. 3 Simulated versus measured streamflow in 2015–2018 at Yichang Station
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depth simulation results to a certain extent. Detailed information on water depth validation 
is in Supplementary Text 1 and Fig. S2.

According to Table 4, the relative error between simulated and observed peak flows 
ranges from − 2.5 to 40.0%. Simulations mostly overestimated the peak flows, which may 
be influenced by the storage of hydraulic projects and water withdrawals (The TGRR has 
numerous water withdrawal sites, dams, and small hydropower stations). Bias in flood peak 
time ranges from 2 to -5 days. Notably, the bias is more pronounced for flood events in 
August, exceeding three days in deviation. This discrepancy may be attributed to the fact 
that August falls within the primary flood season in the TGRR (Yu et al. 2009), being char-
acterized by intermittent rainfall. The overall high flow during this period could result in 
misjudgments of flood peaks.

3.2 Changing flood characteristics

3.2.1 Streamflow in 2015 to 2018

The monthly average, maximum, and minimum flow at the Yichang station increased from 
2015 to 2018 (Fig. 4). Among them, the monthly maximum flow increased most signifi-
cantly with a rising rate of 1808.28 m3/s/a, followed by the monthly average flow of 1218.12 
m3/s/a. The least significant was the monthly minimum flow (751.44 m3/s/a). This is in line 
with the changes in the observed flow (Pang et al. 2022). According to observation, the 
monthly maximum flow rose at 1498.32 m3/s/a, followed by the monthly average flow of 
1065.48 m3/s/a. Monthly minimum flow with a least increase rate of 667.44 m3/s/a.

In 2015–2018, long-term monthly maximum streamflow is 36858.15 m3/s, deviating 
by 3.95% from observation; multi-year monthly minimum streamflow is 5483.88 m3/s, 
deviating by -12.61% from observation; and multi-year average streamflow is 13694.56 
m3/s, deviating by -0.06% from observation. In January, the average flow is the smallest at 
6,275.36 m³/s, deviating − 11.61% from the observed value. Conversely, in July, the aver-
age flow is the largest at 27,240.81 m³/s, with a deviation of 3.77% from the measured 
value. The monthly average flow exhibits a seasonal trend, initially rising and declining 
throughout the year, aligning with observations at Yichang station in the Yangtze River 
Basin. Rainfall, predominantly occurring in summer and autumn, is the prime driver for 
streamflow (Yu et al. 2009).

Streamflow during flood seasons increased from 2015 to 2018, and the increase rates of 
monthly average, maximum, and minimum flow were 1613.82 m3/s/a, 2002.80 m3/s/a, and 
1175.46 m3/s/a, respectively. The observed discharge displayed an increasing trend with 
rates ranging from 775.92 m³/s/a to 1542.78 m³/s/a, and the most notable surge occurred in 
the monthly maximum flow of 1542.78 m³/s/a, aligning with the simulation results. Stream-
flow in non-flood seasons also increased, however, the monthly minimum flow decreased. 
In the 2015–2018 (November-April) monthly average, maximum discharge showed an 
increasing trend during the non-flood season, with an increasing rate of 207.00 m3/s/a and 
480.12 m3/s/a. Minimum flow series showed a decreasing trend, with a rate of -13.80 m3/s/a. 
According to observation, measured data showed that the monthly discharge during non-
flood season showed an increasing trend with an increasing rate varying between 192.78 
m3/s/a to 392.22 m3/s/a.
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Discharge without the upstream inflow was also analyzed, and monthly mean maxi-
mum and minimum flow increased from 2015 to 2018 (Fig. 4). Increasing rates of monthly 
average, maximum, and minimum flow were 124.56 m3/s/a, 34.92 m3/s/a, and 8.40 m3/s/a, 
respectively. Monthly mean maximum and minimum flow during non-flood season showed 
a decreasing trend, with decreasing magnitude of -146.47 m3/s/a, -127.20 m3/s/a, and − 87.60 
m3/s/a, respectively. In contrast, monthly mean maximum and minimum flow during flood 
season showed an increasing trend, with rates ranging from 40.44 m3/s/a to 191.76 m3/s/a. 

Fig. 5 (a) Mean water depth series from 2015 to 2018 in the TGRR, (b) The maximum water depth series 
from 2015 to 2018 in the TGRR

 

Fig. 4 Streamflow series at the outlet of the TGRR from 2015 to 2018 (inflow from upstream is excluded)
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Therefore, incoming flow to the TGR increased continuously from 2015 to 2018, while 
minimum flow during the non-flood season decreased. The inflow is seasonally varied, with 
the average flow increasing from January to July and then decreasing, which is consistent 
with observation. Runoff within the region increased in 2015–2018 and decreased during 
flood season.

3.2.2 Water depth in 2015 to 2018

From 2015 to 2018, the average water depth in the TGRR increased, with maximum, mini-
mum, and average values of 0.44 m, 0.05 m, and 0.12 m, respectively. (Fig. 5(a). The chang-
ing rates of water depths during this period were 0.16 cm/a, 0.47 cm/a, and 0.11 cm/a for the 
maximum, minimum, and average water depth, indicating a consistent upward trend (Pang 
et al. 2022). However, the monthly average water depth in the TGRR interval during the 
flood season (May-October) decreased. The decreasing rate in the monthly maximum water 
depth is the highest (-0.61 cm/a), followed by monthly average water depth (-0.48 cm/a) and 
monthly minimum water depth (-0.21 cm/a). Water depths exhibit two peaks, occurring in 
July and October, respectively. In 2017, the average water depths within the region in the 
autumn flood events exceeded those in the summer flood events. The monthly average water 
depth during the non-flood event showed an increasing trend, with the most significant rise 
in the monthly maximum water depth at 0.60 cm/a. Following this, the monthly average 
water depth increased by 0.33 cm/a, and the monthly minimum water depth increased by 
0.17 cm/a.

The maximum, minimum, and average values of the maximum water depth in the TGRR 
from 2015 to 2018 were 18.92 m, 6.39 m, and 2.33 m (Fig. 5(b)). The rising rate ranges from 
0.34 m/a to 0.08 m/a. As the average water depth in the region, the maximum water depths 
within the region during the autumn flood events exceeded those in the summer flood events 
in 2017. The maximum water depth in TGRR was the highest in 2016. Monthly maximum 
water depths decreased during flood seasons, with changing rates of -0.11 m/year, -0.10 m/
year, and − 0.15 m/year for the monthly maximum, minimum, and average water depth. The 
total water depth in the TGRR during non-flood season shows an opposite trend, with the 
highest decreasing magnitude of monthly minimum water depth.

3.3 LUCC’s effect on hydrological features

3.3.1 Land use/cover change

The land use types in the TGRR were mainly woodland grassland, grassland, grassland, 
and cropland types (Fig. 5). In 2015, there were 29 sub-basins where the primary land 
cover type was cropland (mainly found in the north and northeast regions), 10 sub-basins 
with woodland grassland, and the rest 9 sub-basins with woodland (mainly found in the 
south and southwest region). From 2015 to 2020, the main land cover types changed in the 
Zhuyihe, Changtanghe, and Baolonghe basins. The primary land use type of the Baolonghe 
basin changed from arable land to woodland grassland, the opposite change occurred in the 
Zhuyihe basin, and the main land use type of the Changtanghe basin changed from arable 
land to urban and buildings. Land cover proportions in the TGRR in different periods are 
shown in Table S6.
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Land-use changes from 2015 to 2020 in the TGRR are shown in Fig. 6. The percentage 
of evergreen needles, deciduous broadleaf, mixed forests, and woodland remains the same 
from 2015 to 2020, at 4.2%, 2.9%, 2.2%, and 9.6%, respectively. Urban and built-up areas 
expanded evidently, increasing from 1.0% in 2015 to 1.6% in 2020. This growth includes a 
notable conversion of 42.9% from cropland and around 6.0% from grassland, mainly in the 
southwest region, encompassing basins like Wubuhe, Lixiangxi, Changranhe, and Chaoy-
anghe. The percentage of water bodies increased from 0.3% in 2015 to 0.4% in 2020, with 
growth occurring around the mainstream of the Yangtze River and Longxihe basin, mainly 
from cropland (94.7%) and grassland (5.3%). The percentage of grassland has seen a mar-
ginal increase from 6.9% in 2015 to 7.0% in 2020. This is mainly attributed to the conver-
sion from cropland, predominantly occurring in the mainstream and northern watersheds 
(such as Qianjiang, Yuling, Xijiang, and Tangxi Basin).

Remote sensing data suggested that woodland grassland, cropland, and forest had been 
decreasing. The proportion of woodland-grassland within the TGRR declined from 18.6 to 
17.9%, marking the most significant relative decrease. The loss of woodland grassland was 
mainly converted into Cropland, which occurred in the Qixianjiang, Jiuwangxi, and Dan-

Fig. 6 LUCC transfer map of region for 2015–2020
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ing basins. Cropland decreased from 54.2% in 2015 to 54.1% in 2020. The main types of 
diversion from cropland are woodland prairie and grassland, concentrated in the Xiaojiang, 
Tangxi, Meixi, Daning, and Modaoxi basins. At the same time, forest, woodland grassland, 
and grassland were mainly converted into cropland.

3.3.2 LUCC impact on discharge

The multi-year annual average flow at Yichang station is 13596.6 m3/s under the 2020LUCC 
scenario, which is slightly higher than that under the 2015LUCC scenario (13593.3m3/s). 
The multi-year annual maximum flow is 51171.5m3/s under the 2020LUCC scenario, which 
is higher than that under the 2015LUCC scenario (51165.5m3/s). Therefore, the streamflow 
variation at Yichang station across different land use scenarios is not discernable. The dis-
parity in average annual flow remains within 5.00 m³/s, while the difference in maximum 
annual flow is limited to 8.00 m³/s.

Comparison of the discharge excluding upstream inflow under different scenarios shows 
that land use changes have a greater impact on discharge during the flood season. In flood 
season, variations in mean flow between different LUCC scenarios ranged from 3.70 to 
7.80%, while the maximum flow differences ranged from 5.70 to 8.50%. In non-flood sea-
son, variations in mean flow between different LUCC scenarios ranged from 0.50 to 2.20%, 
while the maximum flow differences ranged from 0.70 to 2.88%.

Differences in monthly average and maximum flows under LUCC scenarios during the 
flood seasons (from May to October) in 2015–2018 are shown in Table S7. Notably, the 
most significant difference occurred in July, surpassing 8%. Nevertheless, regional runoff 
disparities and discharge at the outlet of the TGRR between land use scenarios remain rela-
tively modest, all falling below 12.00 m³/s, with relative differences amounting to less than 
4‰. The results indicate that land use changes contribute to increased runoff in the TGRR, 
leading to a rise in the inflow of the TGR. However, the impact is relatively limited com-
pared to factors like rainfall.

3.3.3 LUCC impact on water depth

Under LUCC2015 scenario, daily mean water depth in the TGRR ranged from 0.05 m to a 
maximum of 0.44 m from 2015 to 2018, with a multi-year average of 0.13 m, and notably 
higher values in 2016. Under the LUCC2020 scenario, the daily mean water depth in the 
TGRR remains within the same range as that in the LUCC2015 scenario, with a multi-year 
average of 0.12 m and notably higher values in 2016. This may be explained by the extreme 
precipitation in 2016 within the TGRR, leading to severe flooding in the middle and lower 
reaches of the Yangtze River. Between LUCC2015 and LUCC2020, the maximum mean 
water depth in the TGRR area remained stable, while the multi-year average decreased by 
7.70%.

Under LUCC2015 scenario, daily maximum water depth in the TGRR ranged from 
2.35 m to a maximum of 19.09 m from 2015 to 2018, with a multi-year average of 6.49 m 
and notably higher values in 2016. For LUCC2020 scenarios, daily maximum water depth 
ranged between 2.33 m and 18.92 m from 2015 to 2018, averaging 6.39 m over the multi-
year span. The same as LUCC2015 scenario, the daily maximum water depth was higher 
in 2016 than in other years under the LUCC2020 scenario. In the LUCC2015 scenario, the 
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maximum water depth in the TGRR was 8.91‰ lower than that in the LUCC2020, while the 
average value displayed a 15.4‰ increase.

Table 5 shows seasonal variation in average and maximum water depth difference 
between LUCC scenarios. During flood seasons, water depth difference ranges from 
− 0.35%∽-3.53% in average value and − 0.33%∽-2.58% in maximum value. During non-
flood seasons, water depth difference ranges from − 1.38%∽-2.86% in average value and 
− 1.04%∽-2.47% in maximum value. Reduction in water depth due to LUCC was more 
pronounced in March-June when the relative change rate in mean value exceeded 2% in 
absolute terms.

In the LUCC2015 scenario, the average water depth in the region was 0.02–0.58 cm 
lower than that in the LUCC2020. For the maximum water depth, the difference is 0.40–
11.38 cm. The difference in water depth between the LUCC2015 and LUCC2020 scenarios 
shows evident spatial variations. Compared with LUCC2015 scenarios, the overall water 
depth in the region increased during flood events 1, 2, 5, and 10 in the LUCC2020 sce-
narios, while it demonstrates contrasting change during flood events 4, 7, and 8. Notably, 
for flood events 3, 6, and 9, water depth in the Daning basin exhibited an apparent increase, 
although the overall water depths still decreased. Land cover changes led to over 0.4 cm 
increase in mean water depth during flood events 1, 2, and 10. In LUCC2015 scenarios, 
maximum water depth surpassed by over 1 cm in flood events 3, 4, 6, 7, 8, and 9 compared 
with LUCC2020, with the most significant difference observed in flood6, exceeding 11 cm. 
Based on this classification, this section analyzes water depth differences due to different 
land use scenarios for Flood Events 1, 7, 8, and 9 (Fig. 7), with water depth differences for 
the remaining flood events plotted in Fig. S3.

In LUCC2015 scenarios, the average water depth was reduced by 0.58 cm (-1.73%) in 
flood event 1 (peaked on 07/01/2015) compared with LUCC2020, and the maximum water 
depth was 0.37% higher. In the north and northeast regions, there is an apparent reduction in 
water depth. The reduction in water depth takes over a 10 cm reduction in the river section 
from Cuntan Station to Qingxi Station in the mainstream of the Yangtze River and the Xiao-
jiang basin. In the midsection of the region, the difference in water depth is less pronounced 
between different scenarios.

Table 5 Comparison of monthly average and maximum water depth across multiple years under the 
2015LUCC and 2020LUCC scenarios
Month Average water depth(m) Relative change

(%)
Maximum water depth (m) Relative change

(%)2015LUCC 2020LUCC 2015LUCC 2020LUCC
1 0.074 0.073 -1.86% 3.927 3.870 -1.45%
2 0.071 0.070 -2.38% 4.152 4.077 -1.83%
3 0.083 0.081 -3.26% 4.601 4.487 -2.47%
4 0.122 0.118 -2.86% 6.393 6.263 -2.03%
5 0.157 0.152 -3.53% 7.836 7.634 -2.58%
6 0.185 0.179 -3.20% 9.059 8.837 -2.44%
7 0.175 0.172 -1.85% 9.185 9.046 -1.51%
8 0.127 0.127 -0.47% 6.566 6.544 -0.33%
9 0.160 0.160 -0.35% 7.931 7.918 -0.17%
10 0.148 0.147 -0.74% 7.452 7.420 -0.43%
11 0.111 0.109 -1.38% 6.001 5.938 -1.04%
12 0.082 0.081 -1.41% 4.654 4.599 -1.17%
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In LUCC2015 scenarios, the average water depth was reduced by 0.03% in flood event 
7 (peaked on 08/31/2017) compared with LUCC2020, and the maximum water depth was 
22.40% higher. For flood event 8 (peaked on 09/28/2017), the average water depth was 
reduced by 0.07% compared with LUCC2020, and the maximum water depth was 32.30% 
higher. Increased water depth was found in the river section from Changshou to Shuangji-
ang Station in the mainstream of the Yangtze River and the Yulinhe, Longxihe, and Quxi 
basin. In contrast, the Qijiang, Wubuhe, Lixiangxi basin, and the northwest region of the 
TGRR were found to have decreased water depth.

For Flood Event 9 (peaked on 10/07/2017), the distribution of water depth difference 
is similar to Flood Events 7 and 8. In LUCC2015 scenarios, the average water depth was 
reduced by -0.64% compared with LUCC2020, and the maximum water depth was over 
1000% higher. The maximum water depth difference is 4.71 cm.

Fig. 7 Difference in water depth between LUCC2015 and LUCC2020 scenarios in flood events 1,7,8,9 
(Note: water depth map is at 1-min, and water depth has not changed is not represented in the figure)
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4 Discussions

4.1 Comparison with previous studies

Previous studies revealed the flow trend in UYR (Upper Yangtze River, including the TGR 
and the upstream region), and explained the reasons for this decline due to climate change, 
human water consumption, and reservoir impoundment (Wei et al. 2014; Shi et al. 2022). 
According to our results, both the runoff and water depth in the TGRR and the UYR exhib-
ited an increasing trend in 2015–2018 which could be attributed to precipitation anom-
aly. According to our result, streamflow during summer and autumn was characterized by 
decreasing trends and increasing trends in spring and winter, which is consistent with previ-
ous studies (Jiang et al. 2008; Huang et al. 2024). Furthermore, this study reveals that water 
depth shows the same seasonal pattern.

Previous studies have attempted to reflect hydrological conditions by analyzing only 
streamflow change in the TGRR. while this study provides a comprehensive evaluation of 
streamflow and water depth to reflect flood security conditions. Compared to past research 
(Wang et al. 2019b; Cheng et al. 2024), this study enables the reflection of flooding dynam-
ics of the TGRR explicitly by the flood depth map. Some studies also turned their views on 
flood dynamics by applying hydrological-hydrodynamic models, while, currently the use 
one-dimensional hydrodynamic model limited the knowledge (Wang et al. 2003; Zhang 
et al. 2020). In this study, by introducing the 2D hydrodynamic model, this study could 
take flood depth mapping that explicitly reflects flood heterogeneity. This method has been 
widely adopted in previous studies in the LMRB and other basins to reflect flood dynamics 
(Kim et al. 2021; Sun et al. 2024).

The impoundment and land cover changes impact hydrologic processes (Wang et al. 
2019a). This study assessed the impact of LUCC on hydrological features in TGRR by 
designing scenarios. During the period spanning from 2015 to 2020, notable land cover 
changes within the TGRR, attributed to urbanization and the Cropland to Forest Conversion 
policy, include an increase in urban and built-up areas (+ 0.6%) and water bodies (+ 0.1%), 
a decrease in woodland-grassland (-0.7%) and cropland (-0.1%). This led to slight increas-
ing runoff and inflow of the TGR, and reduced daily mean and maximum water depth in 
this whole region (particularly in the flood seasons). In addition, the water depth differ-
ence between LUCC2015 and LUCC2020 scenarios shows evident spatial variations and 
it varies with flood events. Reductions in water depth are observed in the northeast region 
(s.t. Qijiang, Wubuhe, Lixiangxi basins), particularly in the river section from Cuntan Sta-
tion to Qingxi Field Station in the mainstream of the Yangtze River. Conversely, increased 
water depth during LUCC is noted in the northern region (Yulin, Xiaojiang, and Huangjin 
subbasins).

4.2 Impacts of LUCC on hydrological processes in the TGRR

The “Grain for Green Project” is a country-wide ecological program to convert marginal 
cropland to forest, which has been implemented in China since 2002. As an important eco-
logical zone, the TGRR has adopted this policy to reserve forest resources and ecological 
carrying capacity. Previous research discussed the impact of policy implementation which 
leads to increasing vegetation on hydrological processes (Han et al. 2022; Lan et al. 2024). 
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In the Guansihe basin in Mianyang, Sichuan province, cropland conversion to forests sig-
nificantly decreased runoff (Yu et al. 2015). Increased significantly vegetation cover area 
due to the implementation of the GGP leads to reducing blue water and surface runoff while 
increasing green water (Han et al. 2022). Large-scale vegetation greening leads to national 
hydrological drought (Lan et al. 2024). Contrastingly, the arid Loess Plateau experienced 
a decreasing runoff after this measure’s implementation, while the flow in the upper and 
middle sub-basins increased by about 15% and 20% (Qiu et al. 2011).

In this study, based on 2015 and 2020 land use data, this study designed scenarios with 
different land uses and analyzed the effect of land use change on streamflow and water 
depth. Results showed that land use change in the area led to increasing runoff, as opposed 
to previous studies. Expanding construction land may explain this trend: from 2015 to 2020, 
the region witnessed the most rapid urban development, and the most noticeable change in 
land use was a conversion of cropland and grassland to urban. Also, the dominant cover type 
changed from cropland to urban and built-up in the Changtang River basin. There are three 
subbasins where the main land cover type changes from cropland to grassland, urban area. 
grassland to cropland. As a result, despite the growing forest leading to a redistribution of 
surface and subsurface runoff and a subsequent decrease in runoff volume, the expansion of 
impervious surfaces within the interval overwhelmed these effects, resulting in increasing 
runoff (Zhou et al. 2013).

4.3 Limitations and applicability

This study tested responses of hydrologic variables to land use change and changing cli-
mate, yet there remains room for improvement. To enhance the precision of simulating 
hydrological characteristics within the TGRR, future studies could incorporate precise 
rainfall data with higher resolution, both temporally and spatially. While calibrated models 
yielded satisfactory results and parameter uncertainty was estimated, it should be empha-
sized that the calibration methods used in this study were relatively simple. Adapting state-
of-the-art calibration techniques could lead to better performance. Furthermore, collecting 
data from more hydrological stations and long periods could significantly improve regional 
parameter estimation. In this study, the assessment of simulated water depth is qualitative, 
and the focus remains on investigating relative water depth both in time and space. Obtain-
ing the topographic data of the measured area to calibrate the hydrodynamic model (includ-
ing hydraulic parameters) can obtain a finer and more accurate distribution of bathymetry 
within the region and enable the quantitative analysis of water depth during flood events. 
Despite the limitations, this study could reflect changes in streamflow and water depth dur-
ing 2014–2018 and assess flood security conditions in the context of climate change, LUCC, 
and rapid urbanization.

Coupling hydrological-hydrodynamic models to simulate hydrological characteristics 
and reflect flood dynamics can be adopted in other regions. It’s noted that considering that 
runoff is an important input that determines simulation performance. In this study, VIC is 
selected considering that it is suitable in humid basins, and has been examined its validity in 
this region. the hydrological model selection and parameter estimation are essential.
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5 Conclusions

Runoff in the TGRR has a significant impact on the flood control and safety of the Yangtze 
River basin. However, due to the lack of measured data in the region, the understanding of 
the hydrological characteristics of this region is limited. In this study, the hydrological char-
acteristics of the TGRR are simulated using the VIC and CaMa-Flood models. Calibrated 
parameters performed reasonably well in representing the natural and observed discharge in 
the region. The NSE for daily discharge is 0.81, 𝑅𝑒 is -2%, and the R-square is 0.93. Simula-
tions mostly overestimated the peak flows (relative error ranges from − 2.5 to 40.0%), and 
the bias in flood peak occurrence time is 2 to -5 days.

Increasing rates of monthly average, maximum, and minimum flow were 124.56-8.40m3/
s/a from 2015 to 2018. The monthly average flow exhibits a seasonal trend, initially increas-
ing and later decreasing throughout the year, aligning with observations at Yichang station. 
Results show an increase in runoff in the TGRR during 2015–2018, accompanied by a 
decrease in runoff during the flood season (-146.47 m3/s/a~-87.60 m3/s/a). Between 2015 
and 2018, the TGRR observed an increase in water depth, with change rates for the aver-
age depth spanning from 0.11 cm/a to 0.47 cm/a and for the maximum depth, fluctuating 
between 0.08 m/a and 0.34 m/a. While flood season saw a decrease in average water depth, 
change rates varied from − 0.21 cm/a to -0.61 cm/a.

Based on 2015 and 2020 land use data, this study designed scenarios with different land 
use maps. From 2015 to 2020, the region witnessed the most noticeable change in land use 
was a conversion of cropland and grassland to urban. The dominant cover type changed 
from cropland to urban and built-up in the Changtang River basin. There are three subbasins 
where the main land cover type changes from cropland to grassland, urban area. grassland 
to cropland. Results showed that land use change caused a slight increase in runoff and a 
7.70% decrease in the multi-year average water depth, while an increase in water depth was 
observed in the northern TGRR.
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