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Abstract
In climate science, ensemble modeling has emerged as a powerful tool for addressing the 
uncertainties inherent in individual climate models. This approach generates more robust 
and reliable predictions by harnessing the collective insights of multiple models. None-
theless, the method of combining these models to derive an ensemble model remains an 
open question. To this end, the objectives of this research are twofold: (i) to introduce and 
evaluate the weighted average-correlation ensemble model for projecting minimum and 
maximum temperatures in Iran, and (ii) to assess near-term (2021–2040) trends across 95 
synoptic stations using socio-economic scenarios derived from five models: GFDL-ESM4, 
MPI-ESM1-2-HR, IPSL-CM6A-LR, MRI-ESM2, and UKESM1-0-LL. The ensemble 
technique effectively reduces the Root Mean Square Error (RMSE) (1/3 − 1/10) associ-
ated with the individual models. The predicted values for the minimum temperature are 
more similar to the actual data than the maximum temperature. The results also indicate a 
significant increase in the minimum temperature compared to the maximum temperature 
during the base period. The distribution of the maximum temperature across the country is 
influenced mainly by its latitude. In contrast, the distribution of the minimum temperature 
is influenced by both the country’s major altitudes and latitudes. Surveys also indicate 
that, compared to the base period, there is an increasing trend in temperature for winter, 
spring, and autumn, while a decrease is observed during the summer. Notably, the increase 
in temperature is more pronounced during winter.

Highlights
	● A new ensemble model was introduced and evaluated for projecting minimum and max-

imum temperatures in Iran.
	● Trends in minimum and maximum temperatures in the near term (2021–2040) were 

obtained using socio-economic scenarios of five models at 95 synoptic stations.
	● The ensemble technique reduced the error of the models used in projection to an optimal 

extent.

Keywords  Climate change · Correlation · Ensemble · Taylor diagram · Temperature 
anomaly · Trend analysis
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1  Introduction

Globally, climate change is an environmental issue of great concern that impacts the 
weather and climate extremes, such as low and high-temperature levels, precipitation, and 
runoff. For instance, global warming dramatically increases the intensity and duration of 
extreme weather and climate events (Perkins-Kirkpatrick and Gibson 2017; Hertel and Sch-
link 2019; IPCC 2023; Ashrafi et al. 2024). Previous research reported that climate change 
highly affects temperature extremes, highlighting its importance in climate change forecasts 
(e.g., Darand 2020; Das et al. 2023; Murali et al. 2023). The importance of climate forecasts 
at different national and international levels has recently increased as a scientific source for 
understanding climate change and evaluating its consequences in political and economic 
decisions (Hertel and Schlink 2019; IPCC 2023). Explicit forecasts with low uncertainty 
regarding the changes in precipitation and temperature from several months to decades pro-
vide significant consideration to model designers, experts, decision-makers, and policymak-
ers (Hawkins and Sutton 2009; Stan and Xu 2014; Araghi et al. 2022; Yang and Tang 2023).

General Circulation Models (GCMs) are used to project climate parameters and study 
the effects of climate change. GCMs are three-dimensional models developed based on dif-
ferent climate scenarios to simulate the impact of greenhouse gases on Earth’s climate and 
predict future changes. Using such models has limitations such as their incapability to ren-
der past climate efficiently, the high role of local factors (e.g., land cover and topography) 
in determining the climate of an area, structural error and uncertainty, and the adaptation of 
data with high spatial resolution to local climate data (Karl et al. 1990; Lupo et al. 2013). In 
addition, the direct climate model outputs (DMO) have uncertainty, and their bias must be 
removed before direct application to a specific area (Maraun 2016). Uncertainty of climate 
projection caused by (i) scenario: this type of uncertainty in different emission scenarios can 
be used as an external forcing for climate models; (ii) model response: this state is related 
to the response of different models to environmental conditions; (iii) natural variability: 
variability is the inherent behavior of the climate system and the resulting uncertainty can 
be seen in all models (Hawkins and Sutton 2009). The Coupled Model Intercomparison 
Project (CMIP) is a crucial action in inquiry on climate projections. It has been an influ-
ential resource to progress model advancement and methodical appreciation of the earth’s 
structure by systematically comparing climate model outputs in different modeling hubs. 
Compared to the preceding versions, CMIP6 models, in addition to improving procedures 
and physical processes, have also considered novel criteria in the oceanic biogeochemistry 
and marine ice sectors (Hawkins and Sutton 2009; Zhu et al. 2020; Zarrin and Dadashi-
Roudbari 2021; Das et al. 2023).

Various methods have been developed to remove the bias of climate models. However, 
there are many disagreements about using corrected outputs for studies related to the effects 
of climate change (Teutschbein and Seibert 2012; Maraun 2016; Ghafarian et al. 2022). 
Most bias removal methods are criticized for damaging the inherent advantages of mod-
els by changing the structure of temporal-spatial changes of variables and relationships 
between variables. In addition, all bias removal approaches, from simple scaling to more 
complex methods, are based on the assumption that the output bias of climate models is 
constant over time (Maraun 2016). It should be noted that even if bias removal can reduce 
the error from the output of climate models, no method can completely remove bias dur-
ing a statistical cycle; this will be especially evident for long-term statistical periods (Chen 
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et al. 2013). Instead, the complexity of bias correction increases with the increase in the 
number of models, the number of variables, and the locations that must be corrected (Kim 
et al. 2023).

Using ten climate models, Chen et al. (2013) studied the limitations of removing bias 
in climate models. Their results showed the instability of the precipitation bias in the 
United States and Canada; in contrast, the temperature bias showed a constant value for 
both countries. Mendez et al. (2020) investigated the validity of six bias correction meth-
ods (BC), including the Delta Method (DT), Linear Scaling (LS), Rain Power Transform 
(PTR), Empirical Quantitative Mapping (EQM), Gamma Quantitative Mapping (GQM), 
and Gamma Pareto Quantitative Mapping (GPQM), and five climate models to remove the 
bias of monthly temperature predictions in Costa Rica. The results showed a significant 
reduction in error after applying the bias correction, and EQM and DT methods work much 
better than other methods. They stated that bias elimination directly affected the model 
performance, and the precipitation in Costa Rica showed a decreasing trend for the next 
period in the dry season. Kim et al. (2023) noted that most bias correction methods correct 
each variable independently, which leads to physical inconsistencies among variables. They 
have investigated the bias methods from simple to more complex techniques for correcting 
the biases of the Regional Climate Model (RCM) input boundary conditions. Their results 
showed that an RCM with multivariate bias correction, which corrects temporal continuity 
and relationships between variables, obtained extreme events better than univariate bias 
correction techniques, which do not consider the physical relationship between variables.

The importance of temperature and the effects of its change on the environment has 
caused many studies to be carried out. For example, Miao et al. (2014) examined tempera-
ture changes in northern Eurasia based on the Representative Concentration Pathway (RCP) 
scenarios of the Coupled Model Intercomparison Project (CMIP5) model. The results veri-
fied that in the 21st century, the temperature will escalate under all RCP scenarios. In addi-
tion, this escalation in temperature will accelerate with the increase in geographical latitude. 
Investigations showed that spring temperature will increase under RCP 2.6 and RCP 4.5 sce-
narios, and winter temperature will increase under the RCP 8.5 scenario. Zhu et al. (2017) 
investigated the changes in the extreme temperature in China based on RCP scenarios. They 
indicated a 6-degree increase in China’s annual temperature until the end of the 21st century.

Zhu et al. (2020) investigated the changes in extreme temperatures under global warm-
ing. According to the results, a temperature increase is expected throughout the Indochina 
Peninsula and the Maritime Continent. Besides, there will be an increase in heat waves in 
the Philippines. Mao et al. (2021) examined the summer temperature anomaly in Antarctica 
under RCP scenarios. This investigation showed that temperature anomalies will increase 
during the period 2051–2099. Sun et al. (2021) also scaled the Loess Plateau precipita-
tion for 30-year periods ending in 2050 and 2080 based on Vine Copula-Based Ensemble 
Downscaling (VCED). The results of this investigation indicated the optimality of the data 
obtained from the precipitation humidification. The surveys also showed a decrease in the 
annual precipitation in the south of the plateau and an increase in other parts. Yang and Tang 
(2023) microscaled the occurrence of prolonged hot and dry days in China. Their inves-
tigations showed that long-term hot and dry days will increase in most regions of China 
based on RCP 4.5 and RCP 8.5 scenarios. Furthermore, the spatial continuity of regions that 
experience long-term hot and dry days will increase significantly by the middle of the 21st 
century.
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In Iran, Rezaei et al. (2015) measured the temperature in Kerman and Bam stations based 
on HadCM3 model output and A2 and B2 scenarios. They found that until 2099, the tem-
perature will increase in all months of the year. Asakereh and Hesami (2019) also expected 
an increase in temperature in Isfahan Station until 2099. The results indicated a significant 
increase in the future climate’s minimum and maximum daily temperature averages. Zarrin 
and Dadashi-Roudbari (2021) predicted Iran’s near-term temperature using an ensemble 
CMIP6 multi-model approach. The results showed that the model ensemble with the inde-
pendent weighted mean (IWM) method improves the projection of annual temperature, 
especially in arid and semi-arid regions.

In conclusion, Iran, with its extensive territory, is confronted with significant challenges 
arising from climate change, particularly evident in the alterations of temperature and pre-
cipitation patterns. These shifts in climate, as emphasized by Murali et al. (2023), have far-
reaching consequences on both biological communities and the overall life-support systems 
of the planet. Therefore, it is essential to comprehend the intricate spatiotemporal distribu-
tion of these parameters, which forms the basis for the effective management of resources 
in the future. Despite significant progress in climate modeling, there are still inherent com-
plexities in the Earth’s climate system that give rise to uncertainties in temperature predic-
tions. This study addresses this gap by introducing and evaluating the performance of a 
novel ensemble modeling approach for projecting the minimum and maximum tempera-
tures in Iran under different socio-economic scenarios. By harnessing the collective power 
of diverse climate models, this research effectively reduces projection errors, providing a 
more robust foundation for informing decision-making in Iran in the near term.

2  Study area

Iran, located in southwest Asia, spans between latitudes 25° to 40° North, and longitudes 
44° to 64° East, covering an area of 1,873,959 km2 (Fig. 1). The country’s territory includes 
numerous mountains above 4000 m in various regions with a mean elevation of over 1200 m 
above sea level. Due to the vastness of Iran’s land, various geographical factors (e.g., lati-
tude, tropical high pressure, and proximity to the seas), and its location at the junction 
of different atmospheric circulation systems, Iran experiences diverse climates (Najafi and 
Alizadeh 2023).

In terms of temperature, Iran can be alienated into cold mountainous and warm low-alti-
tude regions. The mean temperature across the country is approximately 18 °C. The domi-
nance of concurrent atmospheric systems, such as the Gange’s low pressure and the Azore’s 
high pressure, along with the atmosphere moisture content, create different temperature 
regions in Iran (Khoshakhlagh et al. 2008; Yadav 2016). The geographical distribution of 
temperature in summer is more homogeneous than in winter. The average annual precipita-
tion is about 250 mm, which makes Iran one of the driest countries in the world (Kaboli et 
al. 2021). During the cold period (July to December), Iran experiences more precipitation 
due to the influence of western winds and contiguity to the moistness resource of the Medi-
terranean Sea (Ashrafi et al. 2024). However, in the warm times of the year, the impact of 
the Azores high pressure reduces precipitation. Precipitation in Iran is neither temporally 
nor spatially uniform. The southern shores of the Caspian Sea receive the highest precipita-
tion, while the central deserts of Lut and the Salt Desert receive the lowest amount.
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3  Research methodology

3.1  Data used and processing

Ground data (i.e., monthly minimum and maximum temperature) from 95 synoptic stations 
spanning from 1980 to 2014 have been utilized and analyzed as the reference period. In the 
station selection process, careful consideration was given to the diverse climatic regions of 
the country, with a focus on stations exhibiting minimal statistical gaps. “Gaps” refers to 
missing data points within the selected ground data sets for the synoptic stations that cover 
the reference period. These gaps can arise for different reasons, including equipment mal-
function, human error during data collection, or natural events that disrupt observation capa-
bilities. To ensure data quality, quantitative tests were conducted to investigate the outlier 
data, data homogeneity, and normality (Grubbs 1969; Alexandersson and Moberg 1997). A 
further analysis was also performed by aggregating the monthly data into seasonal values 
(winter, spring, summer, and autumn) spanning the entire reference period. This approach 
allows for exploring potential seasonal variations in temperature alongside the monthly 
analysis. The scattering of the studied ground stations is depicted in Fig. 1.

Fig. 1  Location of the study area and distribution of 95 synoptic stations
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3.2  Coupled model intercomparison project phase six (CMIP6)

This study used five GCMs (MRI-ESM2, IPSL-CM6A-LR, UKESM1-0-LL, MPI-ESM1-2, 
and GFDL-ESM4) (Table  1). The MRI-ESM2 is a global climate model developed by 
Japan’s Meteorological Research Institute (MRI) with moderate resolution. It employs a 
Geophysical Fluid Dynamics (GFD) system. Notable progress has been made compared 
to its predecessor, MRI-CGCM3, particularly in addressing issues like double-intertropi-
cal convergence and enhancing cloud representation (Kawai et al. 2019). In addition, The 
IPSL-CM6A-LR is a global climate model crafted by the Pierre-Simon Laplace Institute 
(IPSL) for investigating natural climate variability and climate responses to both natural 
and human-induced factors within the sixth phase of the CMIP6. This model is designed to 
simulate various aspects of the Earth’s climate system, encompassing atmospheric, oceanic, 
and terrestrial processes, and has found extensive applications in studies such as the analysis 
of climate shifts over decades to multidecadal (Bonnet et al. 2021).

UKESM1-0-LL is a climate model utilized in phase 6 of the CMIP6 to simulate the 
Earth’s climate system. It has been assessed for its capacity to depict the attributes and vari-
ety of the Antarctic Intermediate Water (AAIW) and its evolution under appropriate radia-
tive forcing (Meuriot et al. 2023). MPI-ESM1-2 is also employed to replicate the Earth’s 
climate system. This model encompasses parameters for the atmosphere, land surface, and 
sea ice and is applied in the study of an extensive array of topics related to climate, including 
atmospheric circulation patterns, hydrological behavior, water resources, and the repercus-
sions of climate change and land use alterations (Ghassabi et al. 2023). Finally, the GFDL-
ESM4 is a climate model that concentrates on the Earth system’s inclusive interactions and 
is formulated by the Geophysical Fluid Dynamics Laboratory (GFDL). This model was 
produced based on advancements in component and coupled models during 2013–2018 
for simulating carbon-chemistry-climate. It also achieved pivotal progress in dynamics and 
physics, taking into account airborne particles and their emissions, vegetation cover, ter-
restrial ecosystems, aerosols and fires, ecological and biogeochemical interactions in the 
ocean, and the interactive ocean-atmosphere cycle (Dunn et al. 2020).

The Earth System Models (ESMs) were used in this research. They are coupled climate 
models that explicitly model the movement of carbon in the Earth system. ESMs seek to 
simulate all relevant aspects of the Earth system, including physical, chemical, and bio-

Model Institution, country Spatial 
resolution 
(degree)

Vari-
ant

MRI-ESM2 Meteorological 
Research Institute 
(MRI), Japan

1.25 × 1.25 r1i1p1

IPSL-CM6A-LR institut pierre-
simon laplace, 
France

2.50 × 1.26 r1i1p1

UKESM1-0-LL Met Office Hadley 
Center, England

2.25 × 2.25 r1i1p1

MPI-ESM1-2-HR Max Planck Insti-
tute, Germany

0.94 × 0.94 r1i1p1

GFDL-ESM4 Geophysical Fluid 
Dynamics Labora-
tory, America

1.25 × 1.00 r1i1p1

Table 1  The models used to 
ensemble and project extreme 
temperatures
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logical processes, thus far beyond their predecessors. The GCM shows the physics of the 
atmosphere and ocean.

In the selection of models, in addition to their availability and use in past research (e.g., 
GFDL-ESM4 by Sentman et al. (2018), IPSL-CM6A-LR by Boucher et al. (2020), MPI-
ESM1-2-HR by Müller et al. (2018), and UKESM1-0-LL by Sellar et al. (2020), climate 
sensitivity is also considered. Climate sensitivity is usually defined as the increase in global 
temperature after a doubling of CO2 concentration in the atmosphere compared to pre-indus-
trial levels. Pre-industrial CO2 was about 260 ppm, so its doubling will be about 520 ppm. 
There are different methods for defining climate sensitivity, depending on the time scales 
under consideration. Two of them are i- Transient Climate Response (TCR) - temperature 
increase at the moment when atmospheric carbon dioxide has doubled, which is defined as: 
“the change in the average temperature of the global surface, averaged over 20 years, focus-
ing on the doubling time of atmospheric carbon dioxide, in the climate model simulation, 
with the assumption that atmospheric CO2 concentration increases annually. This estimate 
is created using short-term simulations (typically 50–100 years) that allow for a focused 
analysis on the initial response of the climate system to a rapid CO2 increase. While short-
term simulations are valuable for understanding TCR, it is essential to acknowledge that 
they may not fully capture the long-term response of the climate system to sustained CO2 
increases (Bastiaansen et al. 2021).

3.3  Shared socio-economic pathways (SSPs)

A new set of climate scenarios, according to the sixth report of the IPCC, which has been 
improved in various ways, has led to the creation of climate change scenarios known as 
“Shared Socio-economic Pathways (SSPs)”. SSPs are scenarios of projected changes in 
global socio-economic until the year 2100. They are utilized to extract greenhouse gas 
emission scenarios through diverse climate strategies. In this research, three scenarios of 
SSP1-2.6 (low emission and adaptation), SSP3-7.0 (middle scenario), and SSP5-8.5 (high 
emission and low adaptation) were used in the near term (2021–2040) (Haghighi et al. 
2024). In this vein, first, the data of the models used in the closest points to the synoptic sta-
tions were extracted. Then, to unify the dimensions of the maps obtained from the models 
and the ground data, the ground data and the data extracted from the models were gridded. 
The Kriging method was used to grid the data. Nineteen kilometers was determined to be 
suitable for the dimensions of the pixels (19*19 km).

3.4  Validating the model output

Standard statistical criteria, including Root Mean Square Error (RMSE) and Percent Bias 
(PBIAS), were used to validate the direct model output (DMO). RMSE showed the stan-
dard deviation of the model in simulating the observed data, and the PBIAS indicated the 
percentage of the skewed value (Eqs. 1 and 2) (Ghafarian et al. 2022; Yeboah et al. 2022).

	
RMSE =

[
1

N

∑
N
i=1(Xsim.i −Xobs.i)

2

]1/
2� (1)
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PBIAS =

[∑
n
i=1 (Xobs, i −Xsim,i)× 100∑

n
i=1 (Xobs,i)

]
� (2)

Where, Xsim.i  and Xobs.i  are the estimated and observed data. The closer RMSE and PBIAS 
is to zero, the higher the model’s accuracy in estimating the desired variable. If the value of 
this measure tends to the positive side, it indicates that the desired variable is much lower 
than the actual estimated value. If it tends to the negative side, it indicates an overestimation 
of the variable by the model. No specific threshold has been considered for this parameter 
(Pervez and Henebry 2014).

3.5  Skew correction of projection models with the delta change factor (DCF)

To correct the skewness of the Decadal Climate Prediction Project (DCPP), the delta change 
factor (DCF) was used. The calculation description of the DCF method is given in Eq. (3):

	
TBC

fic (t) = Teobs (t) ,
[

µ mPfic (t)
µ mPcontr (t)

]
� (3)

Where, T is the desired variable; BC is the skew-corrected future projected time series; fic is 
the predicted future time series whose skewness should be corrected; Te specifically refers 
to the simulated minimum and maximum temperatures; obs is the observation period; t and 
µm are respectively time step and monthly long-term average; and contr is the number of 
simulated series of CMIP6-DCCP during the control period (Mendez et al. 2020).

3.6  The newly introduced ensemble method

A new model based on the weighted average correlation was used in projection to reduce the 
uncertainty of the models used in this research. The Eq. (4) was used to ensemble the data 
estimated by the models.

	
wTxj =

K∑

k=1

wkx
i
k � (4)

Where, wk is the weight of the data of each model, and xk is the data estimated from the 
model. In this research, Pearson’s correlation was used to determine the weight of the data. 
Pearson’s correlation coefficient can be calculated from Eq. 5 (Pearson 1895).

	

rxy =

N∑
i=1

(Xi−X)(Yi − Y )

√
N∑
i=1

(Xi −X)
2 N∑
i=1

(Yi − Y )
2
� (5)

Finally, each model that estimated data with a higher correlation with the actual data was 
assigned a higher weight. The following relationship was used to determine the weight.
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wk =
rk

K∑
k=1

rk
� (6)

Where, rk is the Pearson’s correlation coefficient for each model.

3.7  Validation of ensemble model

Taylor’s diagram was used to verify the DMO and validate climate models’ output (Wehner 
2013). It is based on the geometric relationship between correlation coefficient, standard 
deviation, and RMSE. Taylor’s diagram is presented in two forms: a half circle showing 
negative and positive correlation and a quarter circle showing only positive correlation. 
In both cases, the values of the correlation coefficient are in the form of the radius of the 
circle on its arc, the values of the standard deviation are in the form of concentric circles 
concerning the reference point, and Root-mean-square deviations (RMSDs) are drawn as 
concentric circles concerning the center of the circle. The hollow circle on the horizontal 
axis of the reference point shows the ground station’s location based on the time series’s 
standard deviation. The location of any model closer to the reference point is more accurate 
(Wehner 2013).

The RMSD is used specifically to highlight the deviations squared and averaged from 
the center of the circle in Taylor’s diagram, which can be different from RMSE which is 
typically used to express the prediction error of model outputs relative to actual values. 
Although both terms measure the average of the squared deviations, in Taylor’s diagram, 
RMSD is specifically employed to show deviations relative to the center of the diagram (Hu 
et al. 2019).

3.8  Trend analysis

Non-parametric trend tests are methods without the necessity of having normal distribu-
tions, and they also have a high ability to monitor outlier data. The Mann-Kendall (M-K) 
test (Mann 1945; Kendall 1975) is among the most well-known non-parametric trend analy-
ses. Mann-Kendall trend analysis has been increasingly used to detect trends in time series 
data (e.g., Sadeghi and Hazbavi 2015; Baghini et al. 2022; Li et al. 2022). The null hypoth-
esis of this test is the randomness and the absence of a trend in the data series. Accepting the 
first hypothesis (null hypothesis) confirms the trend’s existence in the data.

First, the difference between each observation and the others is calculated, and then the 
parameter S is calculated according to Eq. 7.

	
S =

∑n−1

k=1

∑n

j=k+1
sgn(xj − xk)� (7)

Where n is the number of observations, Xj and Xk show the jth and kth values of the series, 
respectively. The sgn function is calculated as follows:
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sgn(xj − xk) =






+1 if (xj − xk) > 0

0 if (xj − xk) = 0

−1 if (xj − xk) < 0
� (8)

The values of S and V(S) are used to compute the test statistic Z as follows:

	

Z =






x =
S − 1√
var(s)

x =
S + 1√
var(s)






if S > 0

if S = 0

if S < 0

� (9)

If |Z| is larger than Zcrit, the null hypothesis is invalid, indicating that the trend is significant.
The magnitude of the trend can be estimated using the Sen’s Slope/Theil–Sen estima-

tor, a non-parametric method (Sen 1986). In this method, the median of the time series is 
used. The data is sorted in ascending order, and then the Sen’s Slope value is obtained using 
Eq. 10:

	 f (1) = Qt + C (10)

Where C is a constant, and Q is the magnitude of the slope, which can be calculated from 
Eq. 11.

	
Qij =

Xj −Xk

j − k
� (11)

Where Qij is the Sen’s Slope estimator from the median of the number of observations (N), 
and Xj  and Xk  are the data values in the time series.

The number of odd observations is obtained from Eq. 12, and the number of even obser-
vations is obtained from Eq. 13.

	
Qmed = Q

(
(N + 1)

2

)
� (12)

	
Qmed =

1

2

(
Q[N2 ]

+Q[N+2
2 ]

)
� (13)

Sen’s Slope, a non-parametric statistic, relies on calculating the median of slopes between 
all possible pairs of data points. Its calculation for a dataset with an even number of obser-
vations requires a slightly different approach than an odd number of observations. This is 
because, with an even number of data points, the proper median slope might fall between 
two actual slopes in the data. Sen’s Slope addresses this by averaging the slopes of the 
middle two data points (Sharma et al. 2019; Yagbasan et al. 2020).

A confidence interval is also calculated from the probability of determining whether the 
median slope is statistically different from zero using Eq. 14.
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Ca = Z

1−a
2

√
V ar(s)� (14)

Where, Z1−a
2  is usually obtained from the standard normal distribution table.

4  Results and discussion

4.1  Validation of direct model output (DMO) of CMIP6

Validation of the temperature estimated by five models of GFDL-ESM4, MPI-ESM1-2-HR, 
IPSL-CM6A-LR, MRI-ESM2, and UKESM1-0-LL from the CMIP6 model series using 
stational data for the retrospective period (1991–2020) showed the RMSE between 1.4 
and 10.8 in all investigated stations. The minimum and maximum estimated errors were 
observed in the UKESM1-0-LL and GFDL-ESM4. The maximum error in all five investi-
gated models is observed in the northern half and the northeastern and western regions of 
the country (Fig. 2).

The error’s low or high value can result from several factors, including the horizontal 
separation of models, sea-land interaction, and the lack of correct model estimation for the 
temperature variable. The ensemble model has provided higher efficiency than the other 
five models. However, it should be kept in mind that the RMSE is affected by the variable’s 
value; therefore, it alone cannot be a suitable criterion for results validation. Another crite-
rion called PBIAS was used along with RMSE to check the performance of the models. The 
PBIAS shows the percentage of temperature bias concerning the total temperature. PBIAS, 
unlike RMSE, is not affected by the variable’s value (i.e., temperature).

Although the GFDL-ESM4 model has the highest RMSE values, this model has shown 
the lowest percentage of temperature bias (PBIAS) in the country. In general, the studied 
models estimate the temperature in Iran to be at least 28.7% lower than the actual value and, 
at most, 78.7% higher than the actual value. The low- and over-estimation in the projected 

Fig. 2  Calculated error for maximum temperature based on RMSE
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data is 1 and 1.9%, respectively, which shows the ability of the method used to project the 
models.

Figures 2, 3, 4 and 5 show the maps resulting from applying the error criteria utilized to 
assess the simulated data accurately. It can be seen that each of the models in some parts of 
the country can estimate data with less error. For instance, some models have less error in 
areas with high altitudes, some in low-altitude areas, and others in coastal areas. This issue 
makes it necessary to compare the data obtained from different models. It can be seen that 
the error of the simulated data with the ensemble model is much less than in other models 
(Figs. 2, 3, 4 and 5).

Fig. 4  Calculated error for maximum temperature based on PBIAS

 

Fig. 3  Calculated error for minimum temperature based on RMSE
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4.2  Validation of CMIP6-DCPP bias-corrected models

A general examination of the Taylor diagram shows that the ensemble model produced from 
the five mentioned models correlates more with the observational data. The ensemble model 
has shown a high correlation of 0.8 with the observational data, significantly increasing its 
efficiency compared to individual models. In addition, the ensemble model has presented a 
lower standard deviation than individual models.

Examining the validation results of individual models with Taylor’s diagram showed that 
in the winter season, the MPI-ESM1-2-HR and MRI-ESM2-0 models; in the autumn and 
spring seasons, the MRI-ESM2-0 model and in the summer season, the MPI-ESM1-2-HR 
have better efficiency. The results showed that the efficiency of the ensemble model in esti-
mating seasonal precipitation has increased compared to individual models corrected for 
skewness in the central areas of Iran (Figs. 6 and 7).

4.3  Distribution of maximum temperature during the period 2021–2040

The maximum temperature distribution in the base and near-term seasons based on the used 
scenarios has been shown in Fig. 8. In the base period, the temperature has been increas-
ing in the winter season from the northwest to the southeast of the country. The same trend 
will be maintained in the near term. Nevertheless, the temperature has increased in all three 
scenarios compared to the base period. In the spring and summer seasons, the spatial trend 
of the maximum temperature in the base and near term in all three scenarios is similar to 
winter. The only difference is the location of the maximum temperature, which has been 
moved to the southwest of the country. The northwestern highlands also experience low 
temperatures, like in the winter season. Of course, the extent of the minimum temperature 
areas has decreased compared to the spring season. In this season, the southwest of the 
country experiences the highest temperatures. Of course, the size of this area will be smaller 

Fig. 5  Calculated error for minimum temperature based on PBIAS
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Fig. 7  Taylor diagram for ten selected stations for maximum temperature

 

Fig. 6  Taylor diagram for ten selected stations for minimum temperature
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in the near term compared to the base period. One of the remarkable things in this season is 
the relative uniformity in the warm central areas.

In the autumn season, the areas of maximum temperature have moved from the south-
west of the country to the south in the east of the Strait of Hormuz. The extent of the 
maximum area in the base period and the SSP1-2.6 scenario is more significant. All the 
northwest and then the heights of Zagros and Alborz experience lower temperatures. Based 
on the scenarios used in this research, the temperature will increase in the winter and spring 
seasons compared to the base period in the near term. This increase is more severe in the 
winter season, and in some areas of the country, such as the east and western parts, it will 
reach up to 7 °C. In the southern regions, the increase in temperature in winter and spring 
will be lower than in other parts of the country. In the summer season, the temperature in the 
near term is predicted to be lower than the base period. In other words, we will face cooler 

Fig. 8  Maximum temperature anomaly in the seasons in the near term (2021–2040) based on SSP sce-
narios compared to the base period
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summers in the next two decades. A slight increase in temperature is expected only on the 
coast of the Oman Sea. In the northwestern highlands of the country, the temperature will 
decrease more than in other places. In autumn, the situation is slightly different. So, in the 
SSP1-2.6 scenario, the temperature will decrease in some parts of the country and increase 
in a large part. In the SSP 370 and SSP5-8.5 scenarios, the temperature will increase.

By examining the temperature anomaly maps in the near term, it was found that the win-
ter season is the most different from the temperature in the base period. The most negligible 
difference can be seen in the autumn season. The study of Zarrin and Dadashi-Roudbari 
(2021) also indicated an increased temperature in the near term (2021–2040).

4.4  Distribution of minimum temperature during the period 2021–2040

Figure 9 shows the distribution of the minimum temperature in the seasons in the base and 
the near term based on the planned scenarios. The seasonal distribution of the minimum 
temperature in winter is similar to the maximum temperature. In this way, the temperature 
increases from the northwest to the southeast of the country. The northwest of the country 
and part of the Zagros highlands experience lower temperatures than other parts. The high-
est temperatures are also seen on the coasts of Oman. An interesting point is the temperature 
equality of part of the Caspian coast with the central regions. These areas have a higher 
temperature than their surroundings. The higher night temperature on the Caspian coast is 
due to the presence of more humidity in the atmosphere of this region because the humid-
ity in the atmosphere affects temperature regulation and moderates the coldness of the air.

In spring, the spatial behavior of night temperature is similar to winter, with the difference 
that the area of the small areas in the northwest of the country has been reduced. Besides, 
the extent of the hot central areas has increased. In this season, the highest temperatures 
can be seen on the coasts of Oman. Relatively high temperatures also occur in other parts 
of the southern coasts. The night temperature has increased in summer compared to spring. 
The northwest, parts of the Zagros highlands, parts of the northeast, and scattered spots in 
the country’s center experience minimum night temperatures. All the southern coasts of the 
country continuously have the highest night temperatures. In this season, the Caspian coast 
has higher temperatures than its surroundings. The temperature of this area is equal to that 
of the central part of the country.

In the autumn season, the extent of the minimum temperature areas in the northwest has 
increased compared to the summer and has extended to the southern parts of Zagros. The 
maximum temperatures are also limited to the coasts of the Oman Sea. For minimum tem-
peratures, like the maximum temperature, an increased trend is expected in the near term 
in the winter and spring seasons compared to the base period. The increase in minimum 
temperature will be more severe in winter. In the northern half of the country, the increase in 
temperature in winter and spring is higher than in other parts of the country. In the summer 
season, the minimum temperature in the near term is predicted to be lower than the base 
period. In other words, cooler nights are expected in the near term in the summer season. In 
autumn, the situation is slightly different. So, in the SSP1-2.6 scenario, the temperature will 
decrease on the shores of the Caspian Sea and increase in other parts of the country. In the 
other two scenarios, the temperature will increase. By examining the minimum temperature 
anomaly maps in the near term, it was found that the winter season has the most significant 
difference with the temperature in the base period (Fig. 9). Our study confirmed that the 
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limitations of observed weather data could be overcome using gridded temperature datasets. 
Araghi et al. (2022) also demonstrate the effectiveness of gridded temperature datasets in 
crop simulation modeling for agricultural applications and consequently address the data 
scarcity challenges. However, further research is needed to examine the performance of 
gridded datasets in diverse agro-climatic zones.

4.5  Seasonal trends of maximum temperature during the period 2021–2040

The seasonal trend of maximum temperature during the near term for different scenarios is 
shown in Fig. 10 (only the stations with a significant trend are considered). In the winter, an 
increasing trend can be seen in all scenarios. This increasing trend will be more intense at 
higher altitudes. In spring, according to the SSP1-2.6 scenario, there is a decrease in Zagros, 

Fig. 9  Minimum temperature anomaly in the seasons in the near term (2021–2040) based on SSP sce-
narios compared to the base period
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west and northwest of the country, and an increase in other places. The country’s eastern, 
southeastern, and southern coasts do not have significant trends. In the SSP 370 scenario, 
the whole country will have an increasing trend. The increasing trend will be stronger in 
the west and northwest and Alborz. In the SSP5-8.5 scenario, there is a decreasing trend 
in the northeast, east, parts of Zagros, and the southwestern coasts of the Caspian, and an 
increasing trend prevails in other parts of the country. In the summer season, there was no 
significant trend in the SSP1-2.6 scenario of the whole country.

In the SSP 370 scenario, a decreasing temperature trend is seen only in the highlands of 
Talesh, and other parts of the country experience an increasing trend. The increasing trend 
is more intense in the east of the country. The northwestern and western parts of the country 
have not had a significant trend either. In the scenario of SSP5-8.5, there is a decreasing 
trend in the southwestern coasts of the Caspian, the southern coasts of the country, and parts 

Fig. 10  Seasonal trend of maximum temperature in the near term (2021–2040)
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of the center, and an increasing trend in other parts. In the autumn season, an increasing 
trend can be seen in the SSP1-2.6 scenario in the southeast, southern coasts, and the center 
of the country. Temperature trends are decreasing in the northwest, northeast, and eastern 
Alborz. In the SSP 370 scenario, the whole country has an increasing trend. The northwest 
of the country experiences a more substantial increase. In the SSP5-8.5 scenario, a decreas-
ing trend can be seen in the northeast, southwest, center, and southern coast, and an increas-
ing trend in other parts of the country. In the northwest of the country, the increasing trend 
is more intense. The winter season will generally experience the most severe temperature 
increase (Fig. 10).

4.6  Seasonal trend of minimum temperature during the period 2021–2040

The seasonal trend of minimum temperature during the near term for different scenarios has 
been shown in Fig. 11 (only the stations with a significant trend are considered). In the win-
ter season, according to the SSP1-2.6 scenario, there is an increasing trend in some areas, 
such as the eastern, central, and northwestern parts of the country, and a decreasing trend in 
the west, southwest, and coasts of Oman. In the SSP 370 and SSP5-8.5 scenarios, all stations 
in the country will have an increasing trend. In the spring season, according to the scenarios 
of SSP1-2.6 and SSP 370, there will be a decreasing trend in most of the eastern, central, 
and some areas of the Caspian coast, and an increasing trend will prevail in the highlands of 
the northwest, some parts of Zagros, the west and the southwest.

In the scenario of SSP5-8.5, most of the country’s regions have an increasing trend, and 
a decreasing trend can be seen scattered in some parts. In the summer season, according 
to the SSP1-2.6 scenario, the east, southwest, parts of the center, and parts of the Caspian 
coast have an increasing trend, and the northwest, Zagros, and northeast of the country have 
a decreasing trend. According to the SSP 370 scenario, the east, northeast, southwest, west, 
northwest, and parts of the center will have an increasing trend, and the Caspian coasts and 
parts of the center will have a decreasing trend.

In the SSP5-8.5 scenario, the east, center, parts of Zagros, and northeast will increase, 
and the Caspian coast, southern Zagros, west, and parts of the northwest will have a decreas-
ing trend. In the autumn season, according to the SSP1-2.6 scenario, large parts of the north-
west, Zagros, and southwest of the country have a decreasing trend. An increasing trend 
can be seen in the east, southeast, and parts of the country’s center. The northern coasts of 
the country have not had a significant trend. In the SSP 370 scenario, there is a decrease in 
large parts of the country, and only in parts of the northwest and central highlands, there is 
an increasing trend. In the SSP5-8.5 scenario, an increasing trend will occur in most parts 
of the country. The decreasing trend can be seen weakly in small and scattered parts, such 
as the center and northwest. The most robust increasing trend will be in winter and autumn 
based on the SSP5-8.5 scenario (Fig. 11).

5  Conclusion

The minimum and maximum temperature of 95 synoptic stations were modeled and gener-
ated for the baseline period (1985–2014) and near term (2021–2040) using socio-economic 
scenarios of five models (GFDL-ESM4, MPI-ESM1-2-HR, IPSL-CM6A-LR, MRI-ESM2, 
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and UKESM1-0-LL). In addition, the new ensemble model was introduced and evalu-
ated based on the correlation of model output with stational data. The introduced method 
was used with the weighted average method for the ensemble, and the Pearson correlation 
method was used to determine the models’ weight. The error calculation showed that the 
accuracy of the used models reduces the error of the models to an acceptable level. Accord-
ingly, the weighted average-correlation ensemble model effectively reduced the error in 
temperature projections, demonstrating its potential for accurate climate change projections. 
Investigations of temperature anomalies showed that during 2021–2040, the minimum and 
maximum temperatures will increase in most parts of the country. According to the projec-
tions, the main centers of temperature increase will be concentrated in the southwest and 
south of Iran. Moreover, examining the temperature trend in the near term shows the trend 
(increasing and decreasing) in the minimum and maximum temperature in most regions of 

Fig. 11  Seasonal trend of minimum temperature in the near term (2021–2040)
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the country. The increasing trend in the main highlands of the country has been more intense 
than in other areas. The winter will have the most robust increasing trend in temperature 
compared to the base period.

Since climate change impacts various sectors of society, including agriculture, water 
resources, and human health, examining the extracted trends in this research could be a 
sound basis and assist decision-makers in different sectors in developing adaptation strate-
gies for human-environment systems protection. As developed in our research, the weighted-
average correlation model is just one of several possible combination models. Therefore, we 
should compare our results with the performance of other homogeneous methods, such 
as Bayesian Model Averaging (BMA) and Simple Model Averaging (SMA), to determine 
which model performs best for projecting the minimum and maximum temperatures and 
trends.
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