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Abstract
The risk of floods from tropical storms is increasing due to climate change and human 
development. Maps of past flood extents can aid in planning and mitigation efforts to 
decrease flood risk. In 2021, Hurricane Ida slowed over the Mid-Atlantic and Northeast 
United States and released unprecedented rainfall. Satellite imagery and the Random For-
est algorithm are a reliable combination to map flood extents. However, this combination is 
not usually applied to urban areas. We used Sentinel-2 imagery (10 m), along with derived 
indices, elevation, and land cover data, as inputs to a Random Forest model to make a 
new flood extent for southeastern Pennsylvania. The model was trained and validated 
with a dataset created with input from PlanetScope imagery (3 m) and social media posts 
related to the flood event. The overall accuracy of the model is 99%, and the flood class 
had a user’s and producer’s accuracy each over 97%. We then compared the flood extent 
to the Federal Emergency Management Agency flood zones at the county and tract level 
and found that more flooding occurred in the Minimal Hazard zone than in the 500-year 
flood zone. Our Random Forest model relies on publicly available data and software to effi-
ciently and accurately make a flood extent map that can be deployed to other urban areas. 
Flood extent maps like the one developed here can help decision-makers focus efforts on 
recovery and resilience.
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1  Introduction

1.1 � Harms of floods and hurricanes

Flooding has become a devastating and destructive hazard due to human development in 
high-risk areas (CRED 2015) and climate change. The World Bank estimated in 2022 that 
1.81 billion people, or 23% of the world’s population, are at risk of intense floods (Rent-
schler et al. 2022). Floods cause many types of harm (de Bruijn et al. 2019; Rosser et al. 
2017), including economic losses (Pinos and Quesada-Román, 2022), damages to private 
homes/assets, damages to public infrastructure (Goffi et  al. 2020), involuntary displace-
ment, impacts on mental health (Markhvida et al. 2020), and disruptions to daily life and 
traffic flow (Hosseiny et al. 2020). In the most dangerous circumstances, floods can lead 
to loss of life (Goffi et al. 2020), taking 146 lives in 2021 in the U.S. (US Department of 
Commerce, 2021). The economic losses of floods in the U.S. has an average yearly cost of 
$4.5B (Smith 2023). Tropical storms, including hurricanes, cause economic losses through 
flood and wind damages, with an average yearly cost of $22.2B (Smith 2023). The eco-
nomic and social costs of floods are high, and the amount of precipitation, and by exten-
sion risk of floods, from hurricanes is expected to increase due in part to trends in climate 
change (Kossin 2018; Trenberth et al. 2018) and human development.

Climate change is heating the atmosphere, allowing it to hold more moisture and 
increasing precipitation frequency and intensity (Van Oldenborgh et al. 2017), leading to 
higher flood risk (Ireland et  al. 2015; Van Oldenborgh et  al. 2017). In addition to more 
extreme precipitation, the U.S. faces higher-intensity hurricanes forming in the Atlantic 
(Kossin et al. 2007). On the global scale, the speed of tropical cyclones is decreasing, and 
their precipitation rates are increasing (Kossin 2018). In the U.S., this same trend applies 
to North Atlantic tropical cyclones, which are stalling more often along the coast and 
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have increasing precipitation rates (Hall and Kossin 2019). Some research has linked the 
increasing hurricane intensity (Holland and Bruyère 2014) precipitation, and stalling (Kos-
sin 2018) to climate change, while other research has not found the same link (Bender et al. 
2010; Zhang et al. 2020). As more research is conducted, the global and local hurricane 
trends and their links to climate change may shift.

Hurricane Ida was a category 4 hurricane that landed in the U.S. on August 29, 2021, 
bringing catastrophic damage (Beven II et al. 2022). In the first days of September, Hur-
ricane Ida stalled, becoming an extratropical cyclone and bringing heavy rains with rates 
around 3 inches per hour to states in the Mid-Atlantic and Northeast (Beven II et al., 2022). 
The storm caused dozens of fatalities and damaged homes, businesses, vehicles and infra-
structure (Smith 2023). The National Oceanic and Atmospheric Association (NOAA) 
National Centers for Environmental Information (NCEI) estimates that the cost of Hur-
ricane Ida was $80.2 Billion (Consumer Price Index-Adjusted) (Smith 2023), the costliest 
hazard of 2021.

In Pennsylvania, Hurricane Ida brought precipitation and floods that caused damage 
(Beven II et  al., 2022). In the aftermath of Hurricane Ida, individuals and households 
in Pennsylvania received $124  M in funding from the Federal Emergency Management 
Agency (FEMA) to cover damages (Cooper et al. 2022). Even with this influx in funding, 
many counties in the state are still recovering from the damages of Hurricane Ida, includ-
ing Philadelphia, Montgomery, Delaware and Bucks counties (Cooper et al. 2022). Given 
the trends in intensifying hurricanes, it is imperative to plan for future events using insights 
from past flood events (Brandt et al. 2021).

1.2 � Unequal distribution of risk

People in poverty are disproportionately at risk of floods around the globe (Garbutt et al. 
2015; Kawasaki et al. 2020; Mtapuri et al. 2018; Winsemius et al. 2018). This trend signi-
fies that flood risk is not equally distributed (Wing et  al. 2022). This imbalance occurs 
globally because people in poverty are more likely to live in a floodplain due to the con-
centration of jobs and transportation (Mtapuri et al. 2018). In the U.S., the same trend of 
inequitable flood risk applies, where flood risk disproportionately impacts poorer commu-
nities (Wing et al. 2022). At the city level, one case study of Los Angeles found that poorer 
communities have disproportionately higher flood risk, but this trend varied by flood type 
(Sanders et al. 2022). These findings at the national and local scale show that it is impor-
tant to investigate the distribution of flood impacts to help inform emergency response and 
recovery.

1.3 � Flood extent from satellite imagery

Satellite imagery is a reliable data source (Hermas et al. 2021) that is regularly used to map 
surface water and flood dynamics across various scales (Ayanu et  al. 2012; Jones 2019; 
Pekel et al. 2016; Tulbure et al. 2016). Machine learning is an effective method for classi-
fying floods in satellite imagery (Tulbure et al. 2022). It has higher classification accuracy 
than parametric strategies (Maxwell et al. 2018), such as using a single water index (Goffi 
et al. 2020).

Supervised machine learning classification of satellite imagery relies on accurate train-
ing and validation data (Olofsson et al. 2014). A known flood extent from a reliable dataset 
(Hondula et al. 2021) or created from aerial photography (Rosser et al. 2017; Schnebele 
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et  al. 2014) is ideal training data. However, it is not available for every flood event. In 
the case of Hurricane Ida, aerial imagery was not collected in the study area of south-
eastern Pennsylvania (US Department of Commerce 2022). Since an accurate flood extent 
was unavailable as training and validation data, we created one from satellite imagery and 
social media (Ireland et al. 2015; Perin et al. 2022).

Urban environments have complex waterways, shallow and ephemeral flooding, and 
ponding, meaning the flood extent is discontinuous (Tanim et  al. 2022; Woznicki et  al. 
2019). Flood maps can be generated by flood models in urban areas (Knighton et al. 2021; 
Liu et  al. 2015), however, flood maps generated from satellite imagery are considered 
closer to ground conditions. Synthetic aperture radar (SAR) data can collect data through 
clouds, but is limited in urban areas due to its side-looking nature (Mason et  al. 2014) 
and can have gaps due to tall buildings causing radar shadowing or layover (Clement 
et al. 2018). Optical imagery cannot permeate through clouds, but does not face the same 
challenges with tall buildings. For our study area after Hurricane Ida, there was optical 
imagery, Sentinel-2, collected, but no freely available SAR data collected. In this study we 
used optical data and combined it with several datasets in our machine learning model to 
address the complexity of urban environments.

1.4 � Gaps and objectives

There is currently no Hurricane Ida flood extent in Pennsylvania, including the city of 
Philadelphia and surrounding counties. The floods resulting from Hurricane Ida dissi-
pated slowly and coincidentally overlapped with Sentinel-2 imagery collection, providing a 
unique opportunity for testing flood detection methods in an urban environment. Previous 
research has predominantly used satellite imagery and machine learning to detect floods 
using a vetted flood extent (from satellite imagery or a flood model) and rarely applies 
these methods to an urban area. Therefore we focused on the urban area of Philadelphia 
and surrounding counties after Hurricane Ida, an event without a vetted flood extent avail-
able, to fill these gaps.

The objectives of this research were to: (1) combine Sentinel-2 imagery and other data 
in a Random Forest (RF) machine learning algorithm to create a novel flood extent in 
southeastern Pennsylvania after Hurricane Ida; (2) compare the flood extent to FEMA’s 
flood zones; (3) use the flood extent to calculate flood exposure and determine the equality 
of its distribution. Since hurricanes and floods are expected to increase, methods for accu-
rate and timely flood extent maps in urban areas are fundamental for improving recovery 
and mitigation efforts.

2 � Methodology

2.1 � Study site

Philadelphia, located in southeastern Pennsylvania, is the sixth largest city by population in 
the U.S., with over 1.5 million people (U.S. Census Bureau 2021). Over the past hundreds 
of years, the city has grown and developed, building over the existing streams. Floods 
occur in Philadelphia 12 days per year, and this frequency is expected to increase (Sweet 
et al. 2019). While the city is regularly flooded, it has made considerable efforts to reduce 
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floods through multiple avenues, including its stormwater management program and strict 
design requirements (Hosseiny et al. 2020).

On September 1, 2021, Philadelphia was directly in the path of Hurricane Ida (Fig. 1) 
and received 2.37 inches of precipitation, significantly more than its annual monthly mean 
precipitation of 0.12 inches (NOAA 2021). The impacts of Hurricane Ida in Philadelphia 
and the resulting floods were wide-ranging from disrupting daily life to damaging personal 
assets (Pulcinella et  al. 2021). In addition to Philadelphia, surrounding less urban coun-
ties, including Delaware, Bucks, and Montgomery counties, were impacted by Hurricane 
Ida flooding and incorporated into our study area (Cooper et al. 2022). According to the 
U.S. 2020 Census, Philadelphia (both the name of the city and county) is the most urban at 
100%, then Delaware and Montgomery counties at 88% and 76%, respectively, and lastly, 
Bucks County at 44% (U.S. Census Bureau 2020).

2.2 � Inputs for random forest model

2.2.1 � Satellite imagery

We selected Sentinel-2 imagery because it was collected on the same day as peak Hurri-
cane Ida flooding (Stuckey et al. 2023) in our study area and was the highest spatial reso-
lution of publicly available imagery. Sentinel-2 is a mission run by the European Space 
Agency and produces publicly available satellite imagery of the globe at a 10–60 m spa-
tial resolution and a temporal resolution of ~ 5 days. We used Sentinel-2 imagery that was 
collected less than a day after Hurricane Ida passed through the study area (September 
2, 2021) with little (< 1%) cloud cover, making it an optimal data source. The Sentinel-2 
imagery was collected in the afternoon, while the peak flooding occurred in the morning 
(Stuckey et  al. 2023). Therefore, the imagery may underestimate the full flood extent of 
Hurricane Ida flooding. In Google Earth Engine (GEE), we obtained the imagery, filtered 
it temporally and spatially, and removed dense and cirrus cloud pixels using the quality 
assessment band (QA60) (Tiwari et al. 2024).

Fig. 1   From left to right: the Hurricane Ida track in 2021 in the U.S. from NOAA’s National Hurricane 
Center and Central Pacific Hurricane Center, the study area of four counties (Delaware, Montgomery, 
Bucks, Philadelphia) in southeastern Pennsylvania all impacted by flooding with permanent water from the 
USGS National Hydrography Dataset, and Sentinel-2 false color imagery (SWIR2, NIR, Red as RGB) on 
August 13, 2021 (pre-flood) and September 2, 2021 (post-flood)
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Other imagery that was considered included synthetic aperture radar (SAR) data, 
PlanetScope imagery and aerial imagery. The Sentinel-1 imagery dates did not align 
with the peak flooding in the study area. We considered PlanetScope imagery as the 
basis for the flood extent but instead used it to create the training and validation data for 
the RF model since it is best practice to use a higher resolution image for training and 
validation data than the model input (Olofsson et al. 2014). We did not consider aerial 
imagery because it was not collected by the National Geodetic Survey after Hurricane 
Ida in the study area (US Department of Commerce 2022).

The RF inputs included all Sentinel-2 surface reflectance bands, two vegetation indi-
ces and six water indices, all previously shown to be important when mapping floods 
with satellite data (Goffi et al. 2020; Tulbure et al. 2016, 2022) (Table 1). We produced 
all the indices in GEE. The vegetation indices are used to help classify NotWater pixels 
by identifying areas of vegetation. We used several water indices, each with different 
strengths, to help categorize Water (permanent) and Flood pixels in the model.

The normalized difference water index (NDWI) is the standard for classifying water 
using green and near-infrared (NIR) bands (McFeeters 1996). The Modified Normalized 
Difference Water Index (MNDWI) is a variation of NDWI that uses shortwave infrared 
(SWIR) instead of NIR and is more suitable in built-up areas than NDWI (Xu 2006). 
The Automated Water Extraction Index (AWEI) uses five spectral bands to improve 
water classification by decreasing the environmental noise of shadows and dark sur-
faces (Feyisa et al. 2014). Two variations of the AWEI formulas (AWEInsh and AWEIsh) 
have different effectiveness in urban areas. The AWEInsh formula is more equipped for 
urban areas because it effectively eliminates built surfaces. The AWEIsh formula is more 
equipped for filtering out shadows, but is less equipped for urban areas because it tends 
to misclassify reflective roofs as water.

We also used linear spectral unmixing (LSU) to produce three inputs, each with the 
percent of three different “endmembers” (water, urban and vegetation) or classes for 
each pixel. Pixels have mixed spectral signatures because the underlying land cover is 
mixed and highly variable (C. Yang et al. 2007). LSU addresses this heterogeneity by 
using all bands to estimate each pixel’s “endmember” percent (C. Yang et  al. 2007). 
LSU is helpful in the context of floods because it can be used to determine the fraction 
of water in each pixel and produce flood maps (Bangira et  al. 2017; Gómez-Palacios 
et al. 2017).

2.2.2 � Additional inputs

In addition to Sentinel-2 surface reflectance bands and derived indices, several other data-
sets readily available in GEE were incorporated into the RF model (Table  2). A digital 
elevation model (DEM) can be used to derive data (e.g., slope) that influences where floods 
occur (Tulbure et al. 2016). In our model, we used the United States Geological Survey 
(USGS) 3DEP 10  m National Map (U.S. Geological Survey 2023) in GEE to calculate 
slope, aspect, and hillshade. We also used the USGS National Land  Cover Database at 
30 m resolution in the model resampled to 10 m, because land cover and impervious sur-
face contribute to flood extent (Apel et al. 2016; Blum et al. 2020).

In GEE we also incorporated datasets of 30 m resolution from the European Commis-
sion’s Joint Research Centre (JRC), including surface water occurrence and surface water 
classification (water, seasonal, permanent) (Pekel et  al. 2016). We downscaled the JRC 
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datasets and the USGS national land cover database in GEE using the resample function 
and bilinear method to match the other RF inputs at 10 m resolution. In GEE, we combined 
the non-Sentinel-2 inputs and reprojected them to match the Sentinel-2 inputs. Next, all the 
inputs were combined, and a 3 × 3 window was created for each band.

2.2.3 � Training and validation data

In QGIS, we created the training and validation dataset by hand using several datasets 
(Fig. 2) (Perin et al. 2022). We used PlanetScope (3 m) imagery, which is higher resolu-
tion than our model inputs (Maxwell et al. 2018; Olofsson et al. 2014), and the National 
Hydrography Dataset (NHD), as reference to create Flood and Water polygons at the 
resolution of Sentinel-2 (10 m) imagery (Ireland et al. 2015). We also used social media 
posts from Global Flood Monitor, a publicly available database of flood-related tweets 
(de Bruijn et  al. 2019). We used ~ 3,000 tweets, including text and photos, and ~ 140 
unique points to guide the creation of Flood polygons (Akhtar et  al. 2021; Schnebele 
et al. 2014).

The Google basemaps in QGIS provided high-resolution imagery for drawing Not-
Water polygons (Perin et al. 2022). Random points in each county were used to guide 
the location of NotWater polygons. Before drawing the NotWater polygons, we ensured 
that the polygon was outside the NHD and that the basemap imagery was clear of pools 
and other surface water. For all three classes (NotWater, Water, Flood), every layer of 

Fig. 2   The training and validation polygons were drawn by hand in QGIS for the RF model using several 
layers to corroborate the class (NotWater, Water, Flood). These layers included Google roads and satel-
lite basemaps, PlanetScope (3 m) false color imagery (Blue, NIR, Red as RGB) from September 2, 2021, 
Sentinel-2 (10 m) false color imagery (SWIR2, NIR, Red as RGB) from September 2, 2021, and the USGS 
National Hydrography Dataset (NHD) and flood-related tweets curated by Global Flood Monitor
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data was checked to verify the accuracy of the polygon class. The training and valida-
tion dataset was 420 polygons consisting of 160 NotWater, 130 Water and 130 Flood 
polygons.

Next, we uploaded the training and validation dataset into GEE and we split the 
polygons into two separate stratified random samples, with 70% for training and 30% 
for validation (Table 3). Then, we converted the polygons into 10 m pixels. The rarer 
classes of Water and Flood are both randomly oversampled (Maxwell et al. 2018; Olofs-
son et al. 2014).

2.3 � Random forest model

The RF machine learning algorithm is an effective strategy for classifying imagery (Phan 
et  al. 2020; Tiwari et  al. 2024; Tulbure and Broich 2013) and floods in particular (Tul-
bure et  al. 2016, 2022). The RF algorithm has several advantages and is more accurate 
than parametric classifiers (Maxwell et al. 2018; Phan et al. 2020). RF performs well with 
multi-source datasets and noisy data (Phan et al. 2020), and it is resilient to mislabeled data 
(Maxwell et al. 2018). The drawbacks are it is a ‘black box’, meaning you cannot visual-
ize all trees, and it requires a large training sample that can be labor-intensive to build 
(Maxwell et al. 2018). There are more ML methods than RF, such as deep learning meth-
ods, including neural networks (Portalés-Julià et  al. 2023), but these are more complex 
and require more computational power (Thomas et  al. 2023). In a study comparing ML 
algorithms’ accuracies in mapping floods with satellite imagery, the RF algorithm outper-
formed an artificial neural network (Feng et al. 2015).

The RF machine learning algorithm is an ensemble classifier that uses a large number 
of decision trees that each use different random samples and a subset of features to assign 
a class, then the majority vote of all the trees classifies the data (Breiman 2001; Maxwell 
et al. 2018). The GEE platform runs the RF algorithm in under 10 minutes, and using the 
platform allows the method to be shared easily with the public and applied to other areas. 
While there are many ML algorithms to choose from, the accuracy (Maxwell et al. 2018), 
low computational cost, simplicity, and shareability of the RF algorithm executed in GEE 
makes it a practical method for classifying floods (Phan et al. 2020).

We executed the RF algorithm in GEE with the steps outlined in Fig. 3. We used the 
ee.Classifier.smileRandomForest function in GEE to train the model on the training data, 
then classify the entire study area and determine feature importance. The number of pixels 
used to train and validate are outlined in Table 3. We used the validation data to create a 
confusion matrix. After the first run of the algorithm, we ran the model with the Sentinel-2 

Table 3   Training and validation dataset (pixels 10  m) consists of three classes, oversampling the rarer 
Water and Flood classes, split into two stratified random samples with ~ 75,000 pixels to train and ~ 29,800 
pixels to validate the RF model

Type Percent (%) Polygons Total pixels Pixels

Notwater Water Flood

Training 70 289 75,042 25,246 45,509 4,287
Validation 30 131 29,795 15,117 13,139 1,539
Total 100 420 104,837 40,363 58,648 5,826
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features and indices and different combinations of additional features and parameters in 
order to select the features and parameters (number of trees, number of features at each 
split) that produce the highest overall accuracy. The final parameters chosen for the algo-
rithm were the default numbers, 100 trees and eight features per split. These parameters 
align with those chosen in other research using RF classification in GEE (Phan et al. 2020). 
After these parameters were selected, the algorithm was run again with the optimal param-
eters and all the features.

2.4 � Datasets for assessment of floods

The National Flood Hazard Layer (NFHL) is a database of flood zones and flood insurance 
requirements maintained by FEMA in support of the National Flood Insurance Program 
(NFIP) (FEMA 2023). The NFHL is available for the entire study area, therefore, every 
flooded pixel will occur in a FEMA flood zone. The flood zones we focus on in this study 
are the 100-year, 500-year, and Minimal Hazard zones because they are the primary risk 
classifications. The 100-year and 500-year flood zones have a 1% and 0.2% likelihood of 
flooding yearly (FEMA 2020). We combined all other FEMA flood zones (floodway, 1% 
annual chance flood hazard contained in channel, area with reduced flood risk due to levee, 
and 1% depth less than 1 foot) into an “Other” category that encapsulates areas that are less 
common. The Minimal Hazard zone is outside the 500-year flood zone and at higher eleva-
tions. Once we created the Hurricane Ida flood extent, we used the FEMA flood zones to 
determine the area and percent area of the Hurricane Ida flood that occurred in the different 
zones at the county and tract level.

The Centers for Disease Control and Prevention (CDC) and Agency for Toxic Sub-
stances and Disease Registry (ATSDR) Social Vulnerability Index (SVI, hereafter) is 
a vulnerability index at the tract and county level in the United States. Vulnerability is 
a community’s ability to prevent suffering and financial loss due to a disaster (Fielding 
2018). The CDC’s SVI dataset estimates an overall vulnerability score using four themes 

Fig. 3   Flow chart of methodology
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(socioeconomic status, household characteristics, racial & ethnic minority status, and 
housing type & transportation) (Centers for Disease Control and Prevention 2020). From 
the CDC’s SVI 2020 dataset, we used the sum of the four themes as the SVI index and the 
number of people below the 150% federal poverty level. The poverty data in the CDC’s 
SVI dataset came from the 2016–2020 American community survey (ACS). These two 
attributes were used to determine if Hurricane Ida floods disproportionately impacted peo-
ple in poverty and vulnerable populations.

After we created a flood extent with our RF model, we exported it from GEE and con-
verted it from a raster to a vector file to compare to the vector file of FEMA flood zones. 
Then, the flood polygons were clipped to different FEMA flood zones. In this study, we 
calculated the area and percent flood in four different FEMA flood zones: 100-year, 500-
year, Minimal Hazards, and Other. The Other category consists of areas, including flood-
ways, that are likely to be flooded; therefore, we expected most flooding to occur in the 
100-year and Other zone. After the flood extent was clipped to the different zones, the area 
(km2) and the percent of the flood that occurred in each FEMA flood zone were calcu-
lated at the county and census tract level. Since the flood extent used in these calculations 
reflects flooding from the peak day but not the peak time, the extent may underestimate the 
flood extent. 

We assessed the flood exposure equality by plotting Lorenz Curves and calculating the 
Gini coefficient. The Gini coefficient is typically used to study income inequality (Lorenz 
1905), but can also be applied to studying flood exposure inequalities (Sanders et al. 2022). 
The Gini coefficient ranges from − 1 to 1, 0 representing perfect equality. To determine 
the equality of flooding, we first merged the CDC’s SVI data and flood data by tract, then 
calculated flood exposure per tract. In this instance, the flood exposure is the tract popula-
tion multiplied by the percent of the tract flooded. To measure equality in the different 
FEMA flood zones, flood exposure is the tract population multiplied by the percent of a 
given FEMA zone in the tract, then multiplied by the percent of the zone flooded. Then, 
we sorted the table by desired variables (population below the poverty line, SVI score) and 
plotted the Lorenz Curve with the cumulative percent of flood exposure on the y axis and 
the cumulative percent of population on the x axis. Then, we calculated the Gini coefficient 
to determine if there was a disproportionate impact on people in poverty and vulnerable 
populations, and if this impact varied by flood zone.

3 � Results

We quantified the flood extent after Hurricane Ida in southeastern Pennsylvania using Sen-
tinel-2 satellite imagery, derived indices, linear unmixing, land cover and surface water 
data in a RF model trained with polygons of three classes: NotWater, Water and Flood. The 
training data used PlanetScope imagery and incorporated crowdsourced social media and 
permanent water data. When creating a flood extent, this approach proved highly accurate 
(> 99% overall accuracy). The resulting flood extent compared to the FEMA flood zones 
also reveals that, in this event, there was more than double the area of floods in the Mini-
mal Hazard zones than in the 500-year flood zone.
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3.1 � Flood extent generated with random forest model

Our methods produced a new flood extent map after Hurricane Ida of three classes: Not-
water, Water and Flood for the study area of four counties in southeastern Pennsylvania, 
including the urban area of Philadelphia County, where no prior flood extent existed. The 
result is a map of flood extent for September 2, 2021, a day after Hurricane Ida passed 
through the study area and the day the Sentinel-2 mission captured data (Fig.  4). When 
zooming into different land uses in the study area, the RF model Flood classification is 
visually well matched with the dark blue areas (Water/Flood) of the Sentinel-2 false color 
imagery (Fig. 5).

We created a confusion matrix for our RF Model using the validation dataset. The over-
all accuracy was 99.68%, and for the Flood class, the producer’s and the user’s accuracy 
were over 97% (Table 4).

We found the relative feature importance using the explain function in GEE (Table 5). 
The most important feature for classification came from the Sentinel-2 Band 1, aerosols 
and aerosols 3 × 3 window; the next important feature was water vapor, then slope. The 
most important water index was MNDWI 3 × 3 window. Consistently, the least important 
features were JRC Water and JRC Water 3 × 3 window.

Fig. 4   Flood extent map after Hurricane Ida on September 2, 2021, created using our RF model



	 Natural Hazards

Fig. 5   Examples of flood extent in different land uses (Farm, Neighborhood, Highway/urban) created using 
our RF model after Hurricane Ida on September 2, 2021. From left to right, Sentinel-2 false color imagery 
(SWIR2, NIR, Red as RGB) on August 13, 2023 (pre-flood), on September 2, 2021 (post-flood), and RF 
classification of flood extent overlaid on September 2, 2021 imagery

Table 4   Confusion matrix (pixel count) of Random Forest (RF) model and accuracy measures presented 
with a 95% confidence interval

The RF model’s overall accuracy is 99.68% ± 0.06%

Reference data

Notwater Water Flood Total User’s accuracy 
(%)

Classified data Notwater 15,079 0 0 15,079  > 99% ± 0%
Water 28 13,126 45 13,199  > 99% ± 0.13%
Flood 10 13 1,494 1,517 97.1% ± 0.62%
Total 15,117 13,139 1,539 29,795
Producer’s 

accuracy 
(%)

 > 99% ± 0.08%  > 99% ± 0.05% 98.5% ± 0.83%
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3.2 � Comparison to FEMA flood zones

After we created a flood extent for Hurricane Ida using our RF model, we calculated the 
area and percent of floods that occurred in the different FEMA flood zones (Table 6). The 
FEMA flood zones we investigated were the 100-year, 500-year, Minimal Hazard zones 
and Other (a combination of rarer zones). All counties experienced less than half a percent 

Table 5   Relative feature importance for the RF model

The (3 × 3) signifies it is the mean value of the variable created with a 3 by 3 window

Top variables Middle variables Lower variables

Aerosols 2.863 NDWI (3 × 3) 1.681 NDVI 1.525
Aerosols (3 × 3) 2.836 Aspect 1.677 JRC water occurrence 1.486
Water vapor 2.284 SWIR 2 1.675 NDWI 1.46
Slope 2.232 SWIR 1 (3 × 3) 1.674 EVI (3 × 3) 1.417
Blue (3 × 3) 2.081 Red edge 2 1.658 EVI 1.371
Urban fraction (3 × 3) 2.056 Urban fraction 1.656 MNDWI 1.336
Water vapor (3 × 3) 1.996 SWIR 2 (3 × 3) 1.653 AWEIsh (3 × 3) 1.321
Red edge 2 (3 × 3) 1.931 AWEInsh (3 × 3) 1.652 Red edge 3 1.293
Red (3 × 3) 1.891 Impervious (3 × 3) 1.65 Red edge 4 1.29
Blue 1.889 Vegetation fraction 1.641 AWEIsh 1.285
Landcover (3 × 3) 1.889 Landcover 1.637 WRI (3 × 3) 1.275
Red 1.859 NIR (3 × 3) 1.63 Red edge 4 (3 × 3) 1.269
Red edge 1 (3 × 3) 1.852 WRI 1.623 NDMI 1.268
Red edge 1 1.846 NDFI (3 × 3) 1.619 NDMI (3 × 3) 1.195
Aspect (3 × 3) 1.796 Green 1.613 JRC water occurrence (3 × 3) 1.132
Vegetation fraction (3 × 3) 1.791 NDFI 1.613 Hillshade 1.111
Impervious 1.734 Water fraction 1.601 Hillshade (3 × 3) 1.083
Green (3 × 3) 1.723 Red edge 3 (3 × 3) 1.597 Slope (3 × 3) 0.994
MNDWI (3 × 3) 1.716 SWIR 1 1.543 JRC water (3 × 3) 0.535
Water fraction (3 × 3) 1.703 AWEInsh 1.531 JRC water 0.532
NIR 1.7 NDVI (3 × 3) 1.531

Table 6   The total classified flood, both area (km2) and percent (area flooded in FEMA zone divided by total 
area flooded in county)

Every area calculation comes with a margin of error of at least ± 3%, given the uncertainty in the RF model

County Total floods 
area and % 
county flooded

Flood in FEMA flood zones

Other 100-year 500-year Minimal Haz-
ard

% km2 % km2 % km2 % km2 % km2

Bucks 0.42 6.74 47.48 3.20 33.65 2.27 2.78 0.19 15.88 1.07
Delaware 0.20 1.00 31.22 0.31 56.97 0.57 0.88 0.01 8.25 0.08
Montgomery 0.41 5.14 50.12 2.58 40.24 2.07 1.60 0.08 7.84 0.40
Philadelphia 0.50 1.86 45.92 0.86 50.25 0.94 0.45 0.01 3.37 0.06
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of the total county area being flooded. Bucks County had the most flooding by area, while 
Philadelphia and Bucks counties had the highest percentage of the area flooded, with 
0.50% and 0.42%, respectively.

Most flooding occurred in the 100-year and Other FEMA flood zones. All coun-
ties received some amount of flooding in Minimal Hazard zones and more flood-
ing by area and percent in the Minimal Hazard zone than the 500-year zone. In Bucks 
County, ~ 15.9% ± 1.6% of total floods occurred in the Minimal Hazard zone. The percent-
age of FEMA zones flooded told a slightly different story with the Other zone receiving the 
highest proportion of flooding, then the 100-year, then 500-year, then the Minimal Hazard 
zone (Table 7).

Tract-level flood information can reveal more local patterns in flooding. Figure 6 shows 
the percentage of floods that occurred in a subset of FEMA flood zones (100-year, 500-
year, Minimal Hazard). The tract-level shows a similar pattern to the county information, 
showing that the highest percent of floods occurs in the 100-year and Minimal Hazard 
zones and the smallest percent of floods occurs in the 500-year zone.

Table 7   Percentage of FEMA 
flood zones flooded per county 
(area flooded in FEMA zone 
divided by area of FEMA zone 
in county)

County Flood (%) in FEMA flood zones

Other 100-year 500-year Minimal Hazard

Bucks 5.93 1.90 0.60 0.09
Delaware 3.16 1.09 0.12 0.02
Montgomery 6.27 3.45 0.16 0.03
Philadelphia 8.82 2.05 0.06 0.02

Fig. 6   Flood percent and area (km2) per tract that occurred in a subset of FEMA flood zones
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3.3 � Vulnerability and poverty distribution

In addition to investigating the distribution of Hurricane Ida floods across FEMA flood 
zones, we also investigated the distribution of floods across tract poverty and SVI scores. 
We found that flood exposure did not disproportionately impact people below the pov-
erty line or vulnerable populations (higher SVI scores) (Fig.  7). People below the pov-
erty line were underexposed to floods in the Minimal Hazard zone (G =  − 0.331) and 
slightly underexposed to floods overall, and in FEMA’s Other, 100-year and 500-year 
zones (− 0.2 < G < − 0.1). Vulnerable populations (i.e. higher SVI scores) were underex-
posed to floods overall (G = − 0.265), as well as in FEMA’s Other (G = − 0.257), 100-year 
(G = − 0.259) and Minimal Hazard zones (G = − 0.371). For both variables studied, there 
was a weak underexposure to floods for people below the poverty line and vulnerable pop-
ulations in FEMA’s 500-year zones (− 0.2 < G < − 0.1).

4 � Discussion

We developed reproducible methods for creating a flood extent after a major flood event 
in an urban area using the RF algorithm and mostly freely available data and software. 
While the RF algorithm and satellite imagery has been previously used to detect floods 
(Schaffer-Smith et al. 2020; Tulbure et al. 2018, 2022), these methods are rarely applied in 
an urban environment. We successfully applied these methods to the dense urban county 
of Philadelphia and three surrounding, less urban counties. We then used this novel flood 
extent of Hurricane Ida to investigate its distribution in FEMA flood zones and across the 
population.

4.1 � Flood extent

The flood extent for the study area had an overall accuracy of 99% and the Flood class 
had a user’s and producer’s accuracy both over 97%. These metrics demonstrate that our 
methods are accurate when producing a flood extent in urban and suburban areas. A visual 

Fig. 7   Lorenz Curves of flood exposure for people in poverty (top row) and vulnerable populations (bot-
tom row), with Gini coefficients (G) for total flood exposure and flood exposure within FEMA flood zones 
(Other, 100-year, 500-year, Minimal Hazard)
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inspection also showed that in Philadelphia our RF model accurately classified floods in 
the frequently flooded neighborhood of Manayunk, the highway Interstate-676, and along a 
popular path, the Schuylkill Banks.

Our RF model accuracy is relatively high, compared to the accuracies of other studies 
that used remotely sensed imagery to classify water. Feng et al. (2015) and Rosser et al. 
(2017) focused on urban flooding in China (87.3% accuracy) and the United Kingdom 
(95% accuracy), respectively. Studies in non-urban areas also had relatively high accura-
cies. A study mapping hurricane flooding in North Carolina, USA had an accuracy of 91% 
(Schaffer-Smith et al. 2020) and a study mapping surface water in a semi-arid river basin in 
Australia had an overall accuracy of 99% with 80% as the user’s accuracy of the water class 
(Tulbure et al. 2022). Some of these variations in accuracy likely come from the classifica-
tion method and type of remote sensing imagery used. Most of the studies used RF meth-
ods, similar to our study (Feng et al. 2015; Schaffer-Smith et al. 2020; Tulbure et al. 2022), 
but others used the Otsu method (Rosser et al. 2017). Additionally, each of these studies 
used a different type of remote sensing imagery, including Unmanned Aerial Vehicle (Feng 
et al. 2015), Landsat-8 (Rosser et al. 2017), SAR (Schaffer-Smith et al. 2020), and Harmo-
nized Landsat Sentinel-2 (Tulbure et al. 2022). One possibility of the higher accuracy of 
this RF model is the relatively small study area and use of several datasets in addition to 
the satellite imagery.

While the overall accuracies of the flood extent and the Flood class were high, there 
were undetected Water and Flood areas. Since optical imagery cannot permeate obstruc-
tions (e.g., bridges, trees), the RF model did not detect water or floods under these areas. 
Optical imagery also cannot permeate clouds, therefore to create a flood map for an event 
with heavy cloud cover, these methods can be applied with SAR imagery. The RF model 
can be adapted for a cloudy flood event and use SAR imagery, which can permeate clouds, 
as the main input along with supporting DEM and land cover data, to create a flood extent 
map.

The RF model had difficulty detecting narrow rivers or creeks. When this occurred, the 
creek was usually categorized as NotWater or if the river’s banks flooded, then it was cat-
egorized as Flood. This was the case for most creeks, for example, Pennypack Creek and 
Wissahickon Creek, both ~ 20 miles long crossing multiple counties. This study used Sen-
tinel-2 imagery in part because it is publicly accessible, but applying this RF model with 
higher-resolution imagery from the private sector (e.g. PlanetScope data) may improve 
classification, especially for smaller water bodies (Cooley et al. 2017).

Our RF model’s feature importance varied from other models detecting surface water. 
For instance, in our RF model the highest-ranked feature was aerosols (Band 1 of Senti-
nel-2, central wavelength 443  nm, 60  m resolution), and we have not found other mod-
els with a similar pattern. Slope was also a highly ranked feature, likely because it is a 
good predictor of floods since it influences water pooling. The AWEI indices (AWEIsh and 
AWEInsh) are useful for mapping surface water, along with MNDWI and NDWI (Feyisa 
et al. 2014; Pickens et al. 2020; Tulbure et al. 2016). In our RF model, the highest-ranked 
water index was MNDWI. While AWEIsh is usually helpful for mapping surface water, it 
may have been less important in this model because it tends to misclassify highly reflective 
surfaces (such as skyscrapers) as floods (Feyisa et al. 2014).

The JRC Water input, which is a dataset created using Landsat imagery and classifying 
pixels into permanent, seasonal or not water, (Pekel et al. 2016) was consistently the least 
important feature. It is likely the least important because the JRC Yearly Water Classifica-
tion History dataset does not include bodies of water smaller than 30 m by 30 m (Pekel 
et al. 2016) and the spatial resolution of our study is 10 m. Despite this drawback, when 
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experimenting with different feature combinations, this dataset still slightly increased accu-
racy and was included in the final RF model.

Overall, it is difficult to compare our RF model and other RF models detecting floods 
and surface water because each uses different satellite imagery and input features. Our 
study area also tends to be smaller and more urban than other studies, which is poten-
tially the reason our feature importance differs from other research. While the indices 
and datasets for this RF model were carefully selected, there is room for model simpli-
fication and decreasing the number of features. In addition to decreasing the number of 
features, experimentation can be done to determine which features are more effective in 
urban areas versus suburban areas to tailor the RF model to each county.

These methods created an accurate flood extent for an urban area with GEE and free 
imagery as inputs. While the training data took time to compile, the methods are acces-
sible. They can be quickly deployed to find the flood extent in another urban area when 
satellite imagery is available. One limitation in making the training and validation data-
set is that the curated flood-related tweets obtained from Global Flood Monitor are una-
vailable after February 2023 due to a change in Twitter’s web scraping policies (Calma 
2023).

These accurate flood extents can be used to improve and validate flood models and 
calculate flood depth (Bangira et al. 2017; Woznicki et al. 2019). Outside of modeling, 
accurate flood maps created with satellite imagery can help governments at the local 
and state level with preparedness and mitigation efforts (Akhtar et al. 2021). It can also 
help governments address the impacts of floods through adaptation projects and fixing 
zoning regulations (Wing et al. 2022).

4.2 � FEMA flood zones

In our study area, Hurricane Ida’s flood extent, by area and percent, predominantly 
occurred in the 100-year and Other FEMA flood zones. These flood zones also had 
the highest proportion of floods compared to the other zones. This result aligns with 
FEMA’s flood zone descriptions because 100-year flood zones have a 1% chance of 
flooding every year and the Other category includes zones that are designed to flood. 
Since our study compared a singular event to the FEMA flood zones, which represent 
the probability of yearly flooding, no conclusions can be drawn about the effectiveness 
of the FEMA zones.

In every county twice the amount of floods, by area and percent, occurred in the 
Minimal Hazard zone than the 500-year zone. Since we did not quantify the flood depth 
or damages, this is not necessarily cause for concern, more a reflection of where water 
pooled. One county that stood out with a high proportion of flooding in the Minimal 
Hazard zone was Bucks County. There may be more floods in the Minimal Hazard zone 
because the 100-year and 500-year zones are substantially smaller. When investigat-
ing the percentage of the FEMA zones flooded, a higher percentage of the 500-year 
flood zone was flooded (0.05–0.58%) than the Minimal Hazard zone (0.02–0.07%) in 
all counties. There are two patterns occurring: by county, more floods occurred in the 
Minimal Hazard zone than the 500-year zone, whereas by zones, the 500-year flood 
zone had more flooding than the Minimal Hazard zone.

Our research shows that flooding can and does occur in the Minimal Hazard zone, 
which is important given the misconception that living outside the FEMA flood zone 
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means there is no flood risk (Billings et al. 2022; Wing et al. 2022). FEMA flood zones 
underestimate flood exposure (Wing et al. 2018) and do not account for pluvial floods 
(U.S. Government Accountability Office 2021). Floods and resulting damages regu-
larly occur outside the FEMA 100-year flood zone (Collins et al. 2022). Our Hurricane 
Ida flood map can reveal areas with a high proportion of floods in minimal-risk areas 
that may benefit from recovery assistance and future mitigation. Future research could 
expand the time scale and determine the rate of floods and the overall effectiveness of 
different FEMA flood zones in this study area.

4.3 � Flood distribution

We used the flood extent of Hurricane Ida to investigate if flood exposure was equally 
distributed in the study area. We found that total flood exposure did not disproportion-
ately impact people in poverty and vulnerable populations. While this finding does not 
align with previous research showing that vulnerable populations are more exposed to 
floods (Tate et al. 2021), there are a few caveats. Firstly, we looked at a subset of counties 
impacted by Hurricane Ida. Secondly, we used flood exposure at the Census tract level, 
when block group level or land parcel level can capture more detailed spatial heterogeneity 
(Brelsford et al. 2017). Thirdly, for the flood exposure calculation, we used flood area and 
not flood depth or damages. Still, this result demonstrates an efficient method to get a snap-
shot of flood distribution and can be deployed again in conjunction with flood depth for a 
more accurate flood exposure calculation. Too often, flooding disproportionately affects 
vulnerable populations with the fewest resources to recover (Schaffer-Smith et  al. 2020; 
Tate et al. 2021). Therefore, it is important to research this trend and highlight vulnerable 
areas that received high amounts of flooding and could benefit from additional support and 
resources to recover after flooding.

5 � Conclusion

Accurate methods for quantifying flood extent can provide insights into the affected area 
and damages (Rosser et  al. 2017), and inform response (Akhtar et  al. 2021). Satellite 
imagery and the RF algorithm are a reliable combination to create a flood extent but are 
not often applied in urban areas. Our methods combine GEE, satellite imagery and other 
freely available data to create a RF model. This model created a new flood extent of Hur-
ricane Ida in southeastern Pennsylvania with 99% accuracy and can be applied to other 
urban areas. This flood extent can be used to validate flood models and view patterns of 
flooding at the tract level. We investigated the distribution of this event in FEMA flood 
zones and found that most flooding occurred in the 100-year and Other zones. In our study 
area, more floods occurred in the Minimal Hazard zone than the 500-year zone, affirm-
ing previous research that consistently found flooding outside FEMA’s flood zones. This 
research refined methods for creating an accurate flood extent in urban areas and created 
a new one for our study area. Flood extent maps can serve stakeholders such as land use 
managers (Sofia et  al. 2017), emergency planners (Goffi et  al. 2020), city planners and 
residents (Hosseiny et al. 2020). The maps can help inform recovery efforts, prioritize miti-
gation efforts (Hosseiny et al. 2020) and plan for future development (Sofia et al. 2017), 
making our cities more resilient to the increasing risk of floods.
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