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Abstract
Microseismic (MS) information is often utilised in deep underground engineering projects 
for the early warning of short-term rockburst hazards. Due to the complex nature of rock-
burst occurrence, predicting short-term rockburst is always challenging. Recently, machine 
learning (ML) methods are often employing in different geotechnical engineering applica-
tions. Parametric and non-parametric ML methods are two different kinds of approaches, 
each with distinct characteristics. However, the current applications in short-term rock-
burst prediction are focused on non-parametric methods. Therefore, this paper proposes 
and studies the feasibility of a parametric model over the non-parametric model, adopting 
two fundamental parametric and non-parametric ML models, including logistic regression 
and support vector machine, to predict short-term rockburst using MS information based 
on two types of normally and non-normally distributed datasets. After modelling, preci-
sion, recall, F1 score, and  receiving operating curve are considered to evaluate the model’s 
strength in predicting tasks. The results indicate that the parametric model, which obtained 
an average F1 score and AUC score of 0.72 and 0.91 on a normally distributed dataset 
achieved more remarkable output in evaluating short-term rockburst risk. Limited data 
availability is always a challenge in short-term rockburst prediction. In such cases, para-
metric models can accurately classify the rockburst risk levels due to their characteristics 
of assuming the predefined function, simplifying the learning processes independent of the 
data size. However, normally distributed data is beneficial for them that allows a perfect fit. 
The presented work effectively identifies the rockburst risk in deep underground excavation 
projects regardless of data size.
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1 Introduction

With increasing depletion of near surface deposits as well as underground space devel-
opment, underground engineering operations are driving deeper and deeper, causing 
problems related to rock mechanics. This has led to an increase in underground stress 
causing rockburst hazard which can be seriously damaging to an excavation (Bruning 
2018). Rockburst is a phenomenon which occurs in an underground opening from the 
violent failure of rock mass due to extreme stress concentrations (Hoek 2000;  Song 
et al. 2024). Rockburst particularly threatens the safety of workers and causes destruc-
tion to underground works, especially in deep level mining in which there are tunnels 
and shafts with hard brittle rock (Nussbaumer 2000). Since the beginning of human 
exploration towards minerals and underground structures, rockburst has become a com-
mon instability phenomenon hindering tremendous projects. The earliest recorded 
instance of rockburst, the Altenberg tin mine in Germany during 1640, is an example 
of such event that compelled a halt to mining operations for several decades (Ortlepp 
2005). Thereafter, various countries around the world such as Australia, China, South 
Africa, the USA, etc., have accounted for cases of rockburst in mining and tunnel-
ling works (GłOwacka 1993; Wang et  al. 2021; Ling et  al. 2023; Zhang et  al. 2024a, 
b). Due to the sudden and severe consequences led by the rockburst hazard, research-
ers around the world have been urged to identify prediction methods and measures 
for control. Generally, rockburst prediction is investigated on the basis of two main 
approaches: long-term prediction and short-term prediction (Man Singh Basnet et  al. 
2023). Long-term rockburst typically focuses on predicting the tendency of different 
levels of intensity at different sections of mines and tunnels, relying on different rock 
mechanical parameters during the design stage of the project. Nevertheless, long-term 
prediction does not tell the time of occurrence or location of events (Liang and Zhao 
2022). Unlikely in long-term prediction, short-term prediction employs field monitoring 
to estimate early warnings of rockburst during the excavation phase (Feng 2017; Zhang 
et  al. 2024a, b). In order to predict the rockburst in real time, microseismic monitor-
ing is commonly used in calculating three-dimensional source location and the different 
levels of damage severity depending on the monitored information (Song et al. 2024). 
Hence, scholars have utilised various kinds of MS information to evaluate the occur-
rence of rockburst. For instance, Feng et al., with the help of six MS parameters, estab-
lished a formula for dynamic warning of rockburst (Feng et al. 2014). Feng et al. studied 
the fractal behaviour of energy distribution associated with MS events during the rock-
burst development process (Feng et al. 2016). Chen et al. based on radiated MS energy, 
developed a quantitative intensity classification method (Chen et al. 2015). Additionally, 
Ma et al., applying MS monitoring, investigated the relation between rockburst and its 
influencing factors (Ma et  al. 2015). Further, Liu et  al. examined the MS parameters 
in the Hongtoushan copper mine and concluded that all multiparameter demonstrated 
precursory behaviour before the ground pressure hazard (Liu et al. 2013). Zhang et al. 
investigated the occurrence processes of the fault slip rockburst utilising in-situ failure 
analysis, geological surveys, and MS information to understand the development and 
occurrence mechanisms. The results demonstrated that fault-slip rockbursts could be 
effectively monitored and analysed using MS technology, highlighting the importance 
of understanding geological and stress conditions to mitigate such events (Zhang et al. 
2022). Tang et al. studied the mechanism of rockburst in water-rich (WR) areas during 
tunnel excavation using microseismic monitoring and experimental analysis, comparing 
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WR and water-poor (WP) sections. The results showed that rockbursts are influenced by 
the classification of surrounding rock and excavation methods, with high in-situ stress 
conditions accelerating rockburst occurrence in WR areas (Tang et al. 2023).

Although different scholars experimentally studied rockburst occurrence utilising vari-
ous MS multi parameters, due to inconsistencies aroused in establishing the exact rela-
tion between MS information and the intensity warning of rockburst, researchers devel-
oped mathematical and intelligent models to predict rockburst risks. Recently, intelligent 
machine learning methods have gained more concern because they do not need prior 
understanding related to the input and output variables and instead simply learn the pattern 
from data to predict the outcome (Pu et al. 2019; Man Singh Basnet et al. 2023). Taking 
advantage of ML application, attempts have been made to predicting short-term rockburst. 
Feng et al. developed the probabilistic neural network (PNN) model, feeding 93 rockburst 
cases obtained from Jinping II hydropower. This model is further improved using a mean 
impact value algorithm and modified firefly algorithm for better performance. After opti-
mizing the PNN model, accuracy increased by almost 25% in comparison to the single 
PNN model (Feng et  al. 2019). Liang et  al. employed the ensemble boosting technique 
to verify its strength in predicting short-term rockburst. The final result depicted random 
forest and the gradient boosted decision tree achieved better performance in classifying 
rockburst intensity (Liang et al. 2020). Liang et al. further developed the stacking ensem-
ble technique, embedding six different classifiers as a base learner. The model is evalu-
ated using different performance metrics and the final outcome simply illustrated ensemble 
classifiers are more powerful than each base learner in performing the task (Liang et al. 
2021). Zhao et al. created a decision tree (DT) model and also investigated the relationship 
between MS features and rockburst. The model was successfully employed to predict case 
histories and has only misclassified two sample (Zhao et al. 2021). Additionally, Yin et al. 
took 1500 MS events and proposed a tree-based model for real time prediction. In order 
to establish precursory MS sequences, the dimensionality technique is used and data is 
labelled to form 300 precursory MS sequences via the grouping rule. Finally, two types of 
precursor trees with and without pruning were used to validate the result (Yin et al. 2021). 
Jin et  al. built a nonlinear support vector machine (nonlinear-SVM) and tested 22 sam-
ples. Initially, radial basis function (rbf) was identified as the best performing kernel which 
is utilised to build a final model by optimizing the hyperparameters, proving remarkable 

Table 1  Characteristics of four rockburst intensity levels (Chen et al. 2015)

Rockburst 
intensity 
classes

Characteristics

None No distinct failures can be observed on the surface of rock mass. Construction and support 
system have no any effect

Slight/Weak Slight spalling and slabbing appear as a main failure type on the surface of rock mass; slight 
rock mass ejection occurs with the fragments having size of around 10–30 cm; failure 
depth reach < 0.5 m and slight cracking sound can be heard

Moderate Severe slabbing and spallings;30–80 cm ejected rock fragment size with; cracking sound 
that resembles detonator blasting; the size of failure depth reaches 0.5–1.0 m; shotcrete 
lining between rock bolts gets damaged

Intense Massive volume of rock mass ejected;80–150 cm ejected rock fragment size; failure zone 
contains fresh fracture planes; a lasting sound that resembles thunder and explosives; and 
the failure depth reaches 1.0–3.0 m
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in predicting samples with few misclassifications (Jin et  al. 2022). Feng et  al. employed 
knowledge of clustering analysis for establishing the rockburst intensity warning using MS 
monitoring parameters. The main advantage of the proposed work is that it only needs few 
samples as an input. The predicted cases of Jinping II hydropower China from his work 
corresponded with the actual situation (Feng et al. 2020). Finally, Basnet et al. developed 
an explainable risk prediction model and predicted short-term rockburst risks. The results 
showed that the model not only predicts the risks but also interprets the decisions made by 
the model (Basnet et al. 2024).

All aforementioned works are examples of the non-parametric model approach. In fact, 
recent trends of ML employment in short-term rockburst belong to non-parametric mod-
els. As other different types of ML models, parametric models such as logistic regression 
(LR), naïve bayes (NB), linear discriminant analysis (LDA), etc. have unique theory bases 
and processes of modelling in contrast to non-parametric models. Nonetheless, parametric 
models have been infrequently employed in short-term rockburst risk prediction, which is 
why it is tempting to explore its significance now. The characteristic of a parametric model 
is that it learns using a pre-defined functional form with a fixed number of parameters. 
While parametric models are generally less sensitive to the size of the data than non-par-
ametric models, and it basically assumes the data to follow a normal distribution. On the 
contrary, non-parametric models do not rely on shape of function and the distribution of 
data but instead generalise well when the number of data is large enough. As a result, to 
check the feasibility of the parametric model over the non-parametric model, two types of 
datasets are prepared that are normally (normally transformed) and non-normally (original) 
distributed data using a small numbers of samples and inputs.

Rockburst prediction work is often complex and complicated process, and there is no 
study of parametric models in short-term rockburst prediction. Hence, this work compares 
the result from a parametric and non-parametric model typified by LR and SVM, respec-
tively. The remainder of this paper is designed as follows: the dataset description section 
describes the source of data and provides the statistical information of two different data-
sets; the preliminaries section provides a brief of what are parametric and non-parametric 
models followed by an elaboration of LR and SVM. In the model building section, both LR 
and SVM are constructed using two different datasets which are compared and evaluated.

Fig. 1  Parallel plot of distribution of four input indices with respect to intensity levels
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Fig. 2  Histogram and QQ plot of features in Dataset I. a The histogram and QQ plot of CN. b The histo-
gram and QQ plot of CE. c The histogram and QQ plot of CV. d The histogram and QQ plot of RD
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2  Dataset description

The fundamental step for building ML models simply requires data samples to train 
and test the model. Therefore, a dataset has been collected by gathering information 
from the field work and various articles on short-term rockburst based on microseismic 
parameters.108 case records were gathered from different sources (Feng et  al. 2019, 
2013; Liu et al. 2021; Zhao et al. 2021) which contains four features, such as cumula-
tive no. of events (CN), cumulative released energy (CE), cumulative apparent volume 
(CV) and rockburst development day (RD). CN accounts for the number of microfrac-
tures during the events, CE tells the amount of radiated energy that measures the frac-
turing strength of rock mass, CV is the volume of the inelastic deformation which also 
describes the amount of damage in rock mass and RD refers to an incubation period 
of incident. In this study two predictors CE and CV are taken in logarithmic form 
to ensure the constant correlation and make calculation convenient. All of the men-
tioned input indices are used to predict the target variable “rockburst intensity”. Basi-
cally, there are four types of rockburst intensity levels which are categorised relying 
on the degree of damages. The characteristics of the four intensity levels are shown in 
Table 1.

The microseismic features contain the information that is utilised to build a model in 
order to predict the target (rockburst intensity). The characteristics and patterns between 
rockburst feature and target can be seen in Fig. 1 which is a parallel coordinate plot that 
describes the relation between inputs and outputs. Parametric models generally rely on 
assumption of normality for better performance; therefore, two datasets have been prepared 
in order to compare the models in both datasets, one with original data that is directly col-
lected from the field and literature and another with transformed data with normal distribu-
tion. The first one is named “Dataset I” whereas the second is named “Dataset II”. Since 
both datasets contain target variables in the form of categorical variables and ML models 
are unable to handle such type of labels, categorical labels are transformed into numeric 
form by assigning numeric value to each class; this is represented by 0, 1, 2, 3 for None, 
Slight, Moderate and Intense rockburst, respectively. Both datasets contain 38 None cases, 
27 Slight cases, 29 Moderate cases and 14 Intense cases.

2.1  Dataset I visualization

Dataset I contains the original information collected from the field and literature in its 
original form; for parametric ML models, normality is considered as a basic assumption 
because they rely on a known form of mapping function to make a prediction which aids 
in better fitting of a line or hyperplane. Therefore, there are two ways of checking normal-
ity using graphical and numerical methods (Park 2008). These two methods often employ 
the knowledge of histogram, Q-Q plot, skewness and kurtosis values to determine whether 
feature variables are normally distributed (Field 2013). Basically, normally distributed data 
should have a histogram plot resembling a bell shape curve and Q-Q plot having all data 
points falling on the straight line (Thode 2002). Similarly, skewness and kurtosis measure 
the symmetry and heaviness of distribution tails respectively. Observing Fig. 2, on the his-
togram and Q-Q plot, each feature is not much normally distributed; CN and RD are right 
skewed and kurtotic whereas CE and CV are left skewed. In terms of Q-Q plot, all of the 
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Fig. 3  Histogram and QQ plot of each feature. a The histogram and QQ plot of CN. b The histogram and 
QQ plot of CE. c The histogram and QQ plot of CV. d The histogram and QQ plot of RD



 Natural Hazards

data points do not fall on the straight line which simply means Dataset I is not much nor-
mally distributed. The publicly available Dataset can be found in Appendix.

2.2  Dataset II visualisation

From a statistical point of view, Dataset I does not meet the requirement of assump-
tion. Therefore, Dataset II has been prepared applying Box-Cox transformation, which 
transforms the non-normally distributed data into Gaussian or Gaussian like distribution 
(Box and Cox 1964). Drawing on Fig. 3, it is obvious that all features almost follow the 
Gaussian distribution. On the histogram plot, the distribution of independent variables 
more or less resembles the bell shape curve. In comparison to Dataset I, the Q-Q plot 
for Dataset II depicts that, for every feature, almost all of the data points fall on the 
straight line.

3  Preliminaries

3.1  Parametric and non‑parametric model

Parametric models generally assume the form of function (f) which portrays the relation 
between input(X) with output(Y), represented as Y = f(x). The algorithm utilises training 
records to learn the target mapping function. Parametric models presume the population 
can be accurately represented by a probability distribution with a defined set of parameters 
(James et al. 2013). This is acquainted with whether the population is normal, unless then 
it may be easily estimated using a normal distribution that is possible by invoking the cen-
tral limit theorem. Parametric approaches are often model based and rely on assumption 
regarding the shape of the function to be inferred. The suitable model is then considered to 
estimate the collection of parameters.

Non-parametric models do not make assumptions regarding the structure of the func-
tion to be estimated. These techniques work by estimating the unknown function (f), which 
may have any form and does not require any assumption about the population’s parameters 
(James et al. 2013; Russell 2010). In fact, the non-parametric method does not require data 
to be normally distributed; it simply tends towards additional precision which attempts to 

Fig. 4  Working principle of LR
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seek the best fit for the observations. Generally, a huge amount of data is necessary to 
approximate the undermined the function (f) exactly.

Both parametric and non-parametric models have their own form of strength and short-
comings depending on the specific problems. To explore the significance in short-term 
rockburst prediction with fewer data and features, Logistic Regression and Support Vector 
Machine classifiers are adopted as a parametric and non-parametric model, respectively.

3.2  Logistic regression

Logistic regression can be regarded as a transformed form of linear regression applying sig-
moid function. Logistic regression utilises sigmoid function to map the input variables and 
output probabilities. Say, X = (X1,… ..,Xn ) is an input vector containing the information of the 
features, then the conditional probability of output variable Y is estimated relying on a set of 
observations on X, represented as P(Y = y|X = x)(Cox 1958). General graphical representation 
of the probability curve of logistic regression can be seen in Fig. 4 in which the vertical axis is 
the probability result for a given classification and whereas the horizontal axis stands for the 
value of X.

Since, the distribution of y|x is assumed to be a Bernoulli distribution, the conditional 
probability is written as:

f(x) denotes the parameter of the Bernoulli distribution which is a function of the input 
data,

f(x) = p(y = 1|x) = E(y|x).
Further, f(x) can be calculated utilising the logistic function and the linear transformation 

of the input variable is given as:

�0 + �1x is analogous to the linear form y = ax + b. The sigmoid function attempts to con-
fine the Y value between 0 and 1.

(1)p(y|x) = f (x)y(1 − f (x))1−y

(2)f (x) =
1

1 + e−(�0+�1x)

Fig. 5  SVM general principle 
for hyperplane maximisation (Jin 
et al. 2022)
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LR experimentally uses several parameters; the “C” parameter refers to an inverse of 
regularisation degree in which the greater the value of C, the lesser the regularisation. The 
“fit_intercept” parameter defines whether a constant number is necessary for the decision 
function. Likewise, “solver” aids in the optimisation problem. Newton-cg, lbfgs, liblinear, 
sag and saga are the common types of solvers.

3.3  Support vector machine

Support vector machine is a non-parametric model that is built for classification and regres-
sion relying on the statistical learning framework (Cortes and Vapnik 1995). SVM maxim-
ises the width of the margin between two observations by mapping a collection of training 
samples to points in space. Then, new instances are mapped into the same space and fit into 
the category to which they belong. SVM can perform linear as well as nonlinear classifica-
tion problems; if data is nonlinear, it simply uses a kernel trick to classify the nonlinear 
data by representing it into the higher dimensional feature spaces.

For training samples in a feature space having n data points, it can be written as; ( x1 , 
y1),…(xn,yn ), where yi ∈ {+1,−1} , xi denotes the ith feature vector and yi estimates 
the label of xi . SVM aims to maximise the margin between the set of points xi as given 
in Fig. 5. For the set of points x, any hyperplane can be represented with the following 
equation:

w signifies a normal vector to the hyperplane.
If samples are linearly separable, two parallel hyperplanes that separate the two 

classes of data are selected so as to ensure that the maximum width existed between 
them. The area covered by these two parallel hyperplanes is renowned as margin and 
their respective equations can be defined as

Data points that lie on or above this boundary are indicated with label 1

On the contrary, data points that are situated on or below this boundary are labelled 
with -1. Geometrically, the distance between these hyperplanes can be denoted as 2

∥w∥
 , 

where ∥ w ∥  must be as minimum as possible to provide the largest margin between two 
planes. The distance is calculated applying the distance from a point to plane equation. 
In order to prevent the data points falling inside the margin, constraints are added. For 
each i, constraints are expressed by

Or

Solving (6) and (7), the following terms can be obtained

(3)wTx − b = 0

(4)wTx − b = 1

(5)wTx − b = − 1

(6)wTxi − b ≥ 1, for yi = 1

(7)wTxi − b ≥ − 1, for yi = −1
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By minimising ∥ w ∥  subject to Eq. (8), values for w and b can be obtained that deter-
mine our classifier. x ↦ sgn(wTx − b ), sgn(.) which denotes the sign function. The maxi-
mum margin hyperplane is totally decided by the xi which is situated nearest to it. Such xi 
are known as support vectors.

On the other hand, for the non-linearly separable data, a hinge function is utilised.

Simply, yi denotes ith target and wTxi − b is the ith output. The optimisation mainly 
focuses on minimising the given function

C is a non-negative parameter which penalises for misclassification. Minimising Eq. 
(10) is regarded as a constrained optimisation problem having a differential objective func-
tion which then expressed for every data point by introducing a new variable �i in order to 
rewrite the Eq. (8) in the following constraint condition

Finally, the problem of optimisation is given by the following order

Subject to yi
(
wTxi − b

)
≥ 1 − �i and �i ≥ 0 i = 1, 2….n

Applying the Lagrange function, Eq. (12) turns the simplest problem.

(8)yi
(
wTxi − b

)
≥ 1, for all 1 ≤ i ≤ n

(9)Max (0, 1 − yi(w
Txi − b))

(10)C ∥ w ∥2 +

[
1

n

n∑

i=1

Max
(
0, 1 − yi

(
wTxi − b

))
]

(11)yi
(
wTxi − b

)
≥ 1 − �i

(12)min
1

n

n∑

i=1

�i + C ∥ w ∥2

Fig. 6  Schematic diagram of fivefold cross-validation
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Since this belongs to the dual maximisation problem and the ci is denoted by the given 
expression

Once the optimal result is obtained after computing Eq. (13), the hyperplane and deci-
sion-making function is decided.

In the case of nonlinear SVM, kernel function k which satisfies the k 
(
xi, xj

)
 = �(xi)�(xj)  

is introduced for the transformed data points. Now, in terms of optimisation problem, SVM 
can be expressed as;

The final value of ci can be gained by resolving the Eq.  (15) and 

b −

�
n∑
i=1

cjyjk
�
xi, xj

��
− yi. After all, decision making non-linear SVM is given by

(13)Maximizef
(
c1 … cn

)
=

n∑

i=1

ci −
1

2

n∑

i=1

n∑

j=1

yici
(
xT
i
xj
)
yjcj

(14)w =

n∑

i=1

ciyixi

(15)

Maximize
(
c1 … cn

)
=

n∑

i=1

ci −
1

2

n∑

i=1

n∑

j=1

yicik
(
xi, xj

)
yjcj

subject to

n∑

i=1

ciyi = 0 and ≤ ci ≤
1

2nC
for

b −

[
n∑

i=1

cjyjk
(
xi, xj

)
]
− yi

Fig. 7  Best performing SVM kernel on dataset I
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4  Model building

4.1  Model building with dataset I

Models being trained and tested on dataset I have been termed LRI and SVMI . The model-
ling process is conducted in the python scikit-learn library (Pedregosa et al. 2012). In the 
initial phase, after importing the dataset, it is randomly partitioned into the training and 
testing sample in the ratio of 70:30, meaning that 30% of the observations separated from 
the dataset did not participate during the training phase. They are placed apart to validate 
the model’s performance. Further, the training and testing dataset is scaled using stand-
ardisation to avoid the negative influence caused by the differing magnitude of the features. 
Standardisation is adopted for feature scaling, which scales down the range of every feature 
with zero mean along with a standard deviation of 1 using the given formula.

where A is the original value of the variable, x′ indicates the standardised feature, � and 
� denote the mean and standard deviation of features, respectively. During the modelling 
process, concerning the size of our training set, an underfitting and overfitting issue could 
cause a problem; therefore, to address this matter, fivefold cross-validation is adopted while 
training the model. The schematic diagram of fivefold cross-validation is shown in Fig. 6. 
The idea behind cross-validation is that the training set is randomly broken down into five 
subsets with approximately equal dimensions. Then, training is conducted in five rounds so 

(16)x� =
A − �

�

Fig. 8  Hyperparameter tuning for SVM
I
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that four subsets are combined in each round, forming a training set, whereas the left one 
is tested as a validation set. The obtained results from five rounds are then averaged to pro-
duce an overall accuracy. This strategy often helps to generalise the model’s ability while 
treating new data to yield an unbiased result.

4.2  Modelling process for LR
I

In general, LR is a binary classifier that performs binary classification; hence it is 
extended to deal for multiclass classification problems (Greene 2003). While training 
the model, two hyperparameters, C and penalty, are optimised applying the Gridsearch 
method embedding fivefold cross-validation. C is an inverse of regularisation strength 
that adds penalty to increase the magnitude of the parameter values for reducing the 
overfitting. Likewise, penalty is a form of regularisation and there are basically three 
types of penalty parameter l1, l2 and elasticnet. l1 penalises the sum of absolute values 
of weights and l2 penalises the sum of squares of the weights. In elasticnet, both l1, l2 
terms are added. In this study, the C parameter value is chosen between 1e + 8 to 1e-3 
and four attributes for the penalty parameter are considered, including l1, l2, elasticnet 
and none. Nevertheless, the model achieved the best accuracy score of 66.67% on a test 
set when the optimal value for C = 10 and l2 as penalty parameter is obtained.

4.3  Modelling process for SVM
I

Similar to the multiclass LRI model, for modelling SVMI a multiclass approach of one 
vs one (OVO) (Wu et  al. 2004) is adopted by creating a base binary classifier repre-
sented as Cpq (p and q denotes the pth and qth categories present in the training samples) 
for every pairwise category available in training records. Altogether, m(m−1)/2 base 
classifiers are created when there are m categories in the training records. For training 
records T, if the base classifier placed T in category p then vote is given to category p, 

Fig. 9  Best performing SVM kernel on dataset II
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otherwise it is voted to category q. Training sample T was categorised into the category 
with the most votes up until all of the based classifiers had been voted on.

As is already indicated in Sect.  3.3, SVM can handle both linear and nonlinear 
data, therefore there are basically four types of kernel functions: linear, radial basis 
function(rbf), polynomial and sigmoid. These kernel functions work differently depend-
ing upon the nature of the data. In order to estimate the relevant kernel function that 
performs best with given data, kernel function is first identified using gridsearch method 
with five-fold cross validation with default parameter settings. The obtained result is 
shown in Fig.  7. Out of four kernels, rbf has the highest cross-validation accuracy of 
57.14, as we can also see that the accuracy between linear kernel and rbf kernel has only 
a slight difference and this represents the data is slightly non-linear. Hence the model is 
further evaluated based on rbf kernel optimising hyperparameters for SVM.

As rbf has the best performance among other kernels, while building the classification 
model, two hyperparameters C and gamma for rbf are further optimised through the grid-
search approach embedding fivefold cross validation. C is regarded as a penalty parameter 
that estimates the number of errors classifiers make during classification. Similarly, the 
gamma parameter estimates the data distribution which is mapped into the new dimension. 
While tuning the hyperparameters, the search range for C parameter is happened between 
1e + 09 to 1e-2 and 1e-09 to 1e + 02 for the gamma parameter in grid form, respectively. 
The pair that provides the best accuracy is selected as an optimal hyperparameter values. 
The heatmap in Fig. 8 shows the accuracy for different pairs of C and gamma and the dif-
ferent colour indicates different accuracies. When the optimal C and gamma parameter is 
obtained as 1e + 07 and 1e-04, the model achieved the prediction accuracy of 60.61 for the 
test sample.

Fig. 10  Hyperparameter tuning for SVM
II
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4.4  Model building with dataset II

The models that are being trained and tested on Dataset II are termed LRII and SVMII 
respectively. As in Sect. 4.1, in order to train the model, the dataset is still partitioned 
into the same ratio of 70:30. The same sample numbers have been used for training like 
in Dataset I, and the same rule also applies for testing samples. Feature scaling has not 
been done for this dataset because, after the box-cox transformation, all features are 
in a similar range due to auto standardization. However, a similar approach of fivefold 
cross validation is adopted like in Sect. 4.1 to overcome the problem of overfitting and 
underfitting.

4.5  Modelling process for LR
II

While creating a model on dataset II, the same consistency is maintained. The multi-
class classification approach is adopted and, whilst optimising hyperparameters, C and 
penalty parameters are optimised via embedding fivefold cross validation. The hyperpa-
rameter value for the C parameter is still considered between 1e + 8 to 1e−3 and the four 
attributes l1, l2, elasticnet and none are selected as a penalty parameter. After complet-
ing optimisation, LRII obtained an accuracy of 72.73 for predicting the test set when C 
and the penalty parameter equals 10 and l2 respectively. In comparison to Dataset I, 
the logistic regression model has better performance on Dataset II, this simply exag-
gerate parametric model is more reliable at prediction if data is relatively normal in 
distribution.

4.6  Modelling process for SVM
II

During the modelling process, SVMII follows the same standard of SVMI . Depending on 
the characteristics of different data, each kernel functions may have different results. Thus, 
the most suitable kernel is first estimated by applying gridsearch with five-fold cross-vali-
dation using default parameter settings. The result for the most appropriate kernel is shown 
in Fig. 9. The kernel rbf still has the best accuracy result for Dataset II, similar to Dataset I. 
Among the four kernels, rbf has the highest score of 60 whereas polynomial has the lowest 
score of 49.82.

Further, SVMII is built with the rbf kernel by optimising the C and gamma parameter 
with gridsearch and applying fivefold cross validation. The parameter tuning range is 
adjusted the same as with SVMI.The hyperparameter tuning process is shown in Fig. 10; 
when the optimal value of C and gamma reached 1 and 1, the model has the best prediction 
accuracy of 63.64 for the test sample.

5  Performance measurement and evaluation

In Sect. 4, prediction models were built based on two types of datasets after hyperparame-
ter tuning for each model. Even though classification accuracy is regarded as a straight for-
ward measure to evaluate performance, nevertheless, it cannot be reliable when data imbal-
ance is a problem. As mentioned, in Sect. 2, the classes distribution proportion is not equal 
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and, in such case, precision, recall and F1 measure metrics aid in ensuring how robust the 
classifier is at classifying each class correctly. In rockburst prediction, intense and moder-
ate levels are considered as “high risk” rockburst whereas none and slight are regarded as 
“low risk” rockburst. Generally, these two kinds of risks should be paid more attention 
because classifying high risk as a low risk spread false alarms that might cause unexpected 
casualties and could bring serious consequences to the project. Similarly, falsely predict-
ing low risk rockburst as high risk rockburst leads to large amounts of money being spent 
on controlling rockburst even if it is not happening. For these reasons, these two problems 
should be addressed properly. A confusion matrix for high-risk and low risk rockburst is 
presented in Table 2.

In Table 2, True Positive (TP) indicates the positively predicted sample which is actu-
ally positive, False Negative (FN) represents a negatively predicted observation which in 
reality is positive, False Positive (FP) denotes a predicted positive that is actually negative 
and True Negative (TN) is a predicted negative which is actually negative. For any model, 
precision, recall and F1 score is calculated based on this matrix.

Precision(P) is the total number of positively predicted samples upon the sum of posi-
tively predicted samples and the number of false positives (Goutte and Gaussier 2005). 
Simply given by formula:

Similarly, Recall (R) is the ratio of true positive upon the sum of true positive and false 
negatives (Goutte and Gaussier 2005) represented by the formula below.

A good classifier should have higher precision and recall value but in real case there is 
always a trade-off between them. Thus, F1 score estimates the quality of model by calcu-
lating the harmonic mean between precision and recall (Goutte and Gaussier 2005) using 
given formula:

From Table  2, if only the classification of low risk is considered a major concern 
because falsely predicting low risk as high risk rockburst leads to unnecessary costs for 
controlling the risk, we would expect a model which has a low false positive value because 
the higher value of the false positive is disadvantageous when the model predicts too many 
cases of low risk as high risk. A situation in which a false positive is most dangerous is 
regarded as a type I error. To minimise type I errors, a high precision model is more effec-
tive for accurate classification. Similarly, if high-risk prediction is the primary concern, 
models that have less false negative value are advantageous because once the models pre-
dict high-risk as low-risk, user may think there are no consequences when in actuality 

(17)P =
TP

TP + FP

(18)F =
TP

TP + FN

(19)F1 = 2
P × R

P + R

Table 2  Confusion matrix for 
high-risk and low-risk rockburst

Predicted

High-risk Low-risk

Actual High-risk True positive False negative
Low-risk False Positive True negative
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situation there is a high risk rockburst might occur and be very harmful in the end. In this 
case, a false negative is more dangerous, which is a type II error. For type II error, models 
that have a higher recall value are more beneficial. The final result for the models trained 
on two different datasets can be found in the confusion matrix plot in Table 3.

From the table we can see that parametric models have achieved better accuracy results 
than non-parametric models in both types of datasets, however, LRII  has better results 
which simply illustrates that parametric models perform better when features are trans-
formed into normal distribution. In the case of SVMII , it is also less benefited by Data-
set II but accuracy has not differed much in comparison to SVMI . Viewing the confusion 
matrix for each model, the samples in the diagonal entries denotes the true predictions 
made by the model with zero misclassification rate. All the samples that do not fall inside 
the diagonal matrix are false predictions made by the models whose misclassification rates 
are not zero. The matrix is asymmetric for each classifier because the classification results 
for each intensity class varies. The precision for models on two different datasets is shown 
in Fig. 11.

As already discussed above, when a type I error is more dangerous, higher precision is 
given more priority. Therefore, for low-risk cases SVMI (1.0) and SVMII(0.90) have better 
precision for none cases followed by LRI(0.90) and LRII(0.84). LRII(0.4) outperforms LRI

(0.27),  SVMI (0.26) and SVMII(0.2) for slight cases. In contrast, we can also check the 
precision for high-risk cases, all four models also have a precision score of one for intense 
rockburst, which means all of them can accurately classify the intense cases correctly. For 
moderate cases, LRII  has the higher precision score of (0.81) among others. However, LRI 
has slightly better precision in comparison to SVMI and SVMII.

When a type II error is more dangerous, high recall models are beneficial. Thus, from 
Fig. 12, for high-risk cases, LRI(0.75) shows higher recall value for intense rockburst with 
SVMII(0.75) and LRII(0.75). For moderate rockburst, LRI achieved a greater recall value 
followed by LRII(0.5) and SVMII (0.5). Nevertheless, SVMI shows a least recall score of 
0.41. On the contrary, we can also see the recall score for low risk rockburst. In terms of no 
rockburst LRI(0.83) and LRII(0.91) are better than SVMI (0.66) and SVMII(0.83). LRII (0.8) 
and SVMI(0.8) shows equal recall value for slight rockburst whereas SVMII(0.40) has the 
lowest recall score.

Regardless of whether high or low risk rockburst is more important, for real scenarios 
in terms of controlling and safety purposes, both cases of high risk and low risk should 
be paid equal importance and predicted accurately. Thus, both precision and recall should 
have higher value for both high-risk and low-risk cases. Generally, for an optimal model, a 
higher value of precision and recall are desirable but trade-offs always exist between them 
which means as one increases another decrease. In rockburst prediction, high-risk and 

Table 3  Confusion matrix of 
models trained on dataset I and 
dataset II for the testing set

Predicted

LR
I

SVM
I

LR
II

SVM
II

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
True 0 10 2 0 0 8 4 0 0 11 1 0 0 9 3 0 0

1 1 3 1 0 0 4 1 0 1 4 0 0 0 5 0 0
2 0 6 6 0 0 7 5 0 0 6 6 0 0 7 5 0
3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 2 2

Accuracy 66.67 60.61 72.73 63.64
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low-risk cases should be treated equally in same importance. As a consequence, we cannot 
simply rely on single precision and recall score to measure the robustness of each classifier. 

Fig. 11  Precision for models on two different datasets

Fig. 12  Recall for models on two different datasets

Fig. 13  F1 score for models on two different datasets
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Hence, when reliability of the model is not interpretable using single precision and recall 
score, the F1 score metric that evaluates the classifier’s performance can be further com-
puted by calculating the harmonic mean of precision and recall. The F1 score for each 
intensity class is given in Fig. 13. Based on the F1 score metric, best predicting models 
can be ranked as LRII> LRI> SVMI> SVMII which obtained the average F1 score of 0.7254, 
0.6754, 0.6458, 0.6412 respectively. Overall, LR outperforms SVM which has a better F1 
score for each intensity level in both type of datasets.

For further evaluating the performance of parametric and non-parametric models, a 
ROC (receiving operating curve) is used for measurement. Initially, ROC is used for binary 
classification as a performance metric (Spackman 1989). Here, we have extended it for a 
multiclass classification approach by drawing ROC for each intensity class. Later averaging 
ROC for both models on two different datasets has been drawn. Multiclass ROC features 
Y-axis with true positive rate and X- axis with false positive rate. In general, the best clas-
sifier is the one which has larger area under the curve (AUC). In this experiment, the AUC 
for averaging-ROC estimates the robustness of classifiers.

In general, a different value of AUC determines the different characteristic function 
for the classifier’s performance. Most commonly suggested values can be specified as 0.5, 
0.7–0.8, 0.8–0.9 and above 0.9. 0.5 denotes no discrimination at all, whereas, 0.7–0.8 and 
0.8–0.9 suggests acceptable discrimination and excellent discrimination, respectively. Sim-
ilarly, the most outstanding model should have an AUC greater than 0.9 (Hosmer Jr et al. 
2013).From Fig. 14a and b if we see two models LRI and SVMI trained on dataset I, LRI 
has the AUC score of 0.9 compared to SVMI which has the AUC score of only 0.86. This 
simply illustrates that when the availability of data is comparatively small, a parametric 
model can still reliably predict short-term rockburst. In the same way, from Fig. 14c and 
d, if we observe LRII , SVMII trained on Dataset II, LRII has the highest AUC score of 0.91 
even when compared to three other models. Further, we can notice that non-parametric 
SVMI  and SVMII trained on two different datasets have similar AUC scores, however in 
terms of average F1 score, SVMI is slightly ahead of SVMII which means a class imbalance 
problem non-parametric model trained on original dataset can achieve better result.

6  Results and discussion

Parametric and non-parametric ML models are two distinct types of methods with unique 
theory and modelling processes. However, in short term rockburst risk evaluation, applica-
tion of the parametric model approach is infrequent as these kinds of models do not rely 
on data size and normally distributed features are beneficial for them compared to non-
parametric models. Therefore, parametric (LR) and non-parametric (SVM) is employed 
and studied by preparing two different datasets: the original data (Dataset I) which is not 
much normally distributed and another (Dataset II) that is prepared by applying box-cox 
transformation which is approximately normally distributed. At first, the model is built on 
Dataset I by partitioning it into the ratio of 70:30, during the modelling process in Data-
set I standardisation technique is preferred for feature scaling to bring all the features in 
the similar range for both LR and SVM. Once the hyperparameter optimisation is done 
LR achieved an accuracy of 66.67 whereas SVM obtained only 60.61 for the testing set 
in Dataset I. Similarly, the models have been trained on Dataset II maintaining the same 
consistency and configuration as in Dataset I, with the only difference being feature scaling 
that is not performed for Dataset II because, after box cox transformation, all feature values 
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are set into auto scaling. The LR model still obtained the best accuracy of 72.73 whereas 
SVM achieved an accuracy of 63.64 for testing data. From the accuracy result, parametric 
LR scored higher accuracy in Dataset II.

Although accuracy is often regarded as a straightforward measure for model perfor-
mance, it cannot interpret the whole performance. Therefore, unlikely in previous stud-
ies, three other evaluation metrics, precision, recall and F1 score, are further calculated 
and average AUC is computed for each model to identify their robustness. In the per-
spective of predicting high risk and low risk rockburst cases, the final F1 score says that 
LR trained and tested on Dataset II is more suitable than a model trained on Dataset I. 
Similarly, SVM trained on Dataset I is slightly ahead of that trained on Dataset II. As 
we can see, SVMII has a comparatively higher accuracy than SVMI but from the F1 score 
point of view, SVMI is more appropriate to classify both high risk and low risk in imbal-
anced classes as it can lead to correct guidance. Moving forward, AUC is calculated for 
each classifier trained on both datasets to see their robustness. Overall, LRII has the best 
AUC score of 0.91 followed by LRI(0.90); likewise, SVMI and  SVMII scored equal AUC 
in terms of performance which simply exaggerates that, for short-term rockburst risk 
prediction, parametric models can still effectively identify risks even in small datasets 
with fewer features. These models are even more capable of predicting accurate out-
comes if non-normally distributed data are transformed into a normal distribution.

a) multiclass ROC for b) multiclass ROC for

c) multiclass ROC for d) multiclass ROC for

Fig. 14  Multiclass ROC forLR
I
 , LR

II
 , SVM

I
,SVM

II
 . a multiclass ROC forLR

I
 . b multiclass ROC forSVM

I
 . c 

multiclass ROC forLR
II

 . d multiclass ROC for SVM
II
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Short-term rockburst prediction using microseismic monitoring during the rockburst devel-
opment process relies on different factors. Depending upon the complex geological conditions 
during the data acquisition process, acquiring sufficient records and features for training the 
model is always challenging. The parametric model such as LR is often more powerful in defin-
ing the true relationship between input and output variables using a known form of functions 
that can also predict the outcome without being independent of the size of the data. This is 
because once the functional form is determined, the parametric model estimates the coefficients 
from training data to give a better predictive model. The amount of data will not impact the 
training processes. However, if the independent variables are more or less normally distributed, 
they can find the best fit for accurate prediction. The work of Feng et al. (Feng 2017) states that 
the degree of microseismicity is positively correlated with the frequency and intensity of rock-
burst, which means MS multi-parameters and rockburst risk levels also have higher level of cor-
relation. Parametric models are often more effective when dealing with inputs and outputs that 
have a strong relationship because assuming a specific functional form, such as a line or hyper-
plane, simplifies the training process. Therefore, a parametric model like logistic regression 
gave better results regardless of the data size compared to non-parametric models. The primary 
reason for the poor performance of non- parametric SVM on both datasets is that even though 
non-parametric models do not depend on the assumption of mapping function and normality 
of the variable distribution, in order to perfectly learn from the training samples as well as to 
generalise on unseen observation, it requires a large amount of supportive data and inputs to 
learn the pattern from it so that it may define the required functional form to best fit the training 
instances. However, in short-term rockburst prediction, it is always challenging to acquire the 
sufficient amount of data required to train the non-parametric models, due to this reason models 
trained with insufficient records often loses ability to generalise on unseen samples and cannot 
give the higher prediction result. On the other hand, if we see the accuracy of non-parametric 
SVM on two datasets, the accuracy has only a little difference. However, based on the other 
performance metrics, it has almost similar performance in every aspect. This is simply because 
non-parametric SVM depends on the number of training records for estimating the parameters 
necessary for making a prediction independent of the distribution of input variables. Hence, 
unlike the parametric model, only a more enormous amount of data increases the efficiency of 
the non-parametric model.

Although the overall results are promising, some limitations can be handled in future 
research in a similar area:

1. The available dataset contains four intensity classes. Among them, the proportion of 
intense rockburst cases is comparatively less. When an ML model is trained on a dataset 
where the ratio of some classes is not equal, a model could produce a biased result in 
such cases. Therefore, a dataset can be further updated in future work by giving equal 
preferences to each class to yield more accurate outcome; this can be done by adding 
more cases of minority classes into the dataset. It will further help the model to gener-
alise on observation of each intensity class for real time warning.

2. This paper mainly focuses on developing intelligent predicting models for immediate 
types of rockburst, such as strain burst and strain-structure slip burst that often occur 
immediately after excavating in deep engineering projects. There is also a different type 
of rock bursting known as fault-slip rockburst, which has a different mechanism, but due 
to the self-similarity of the rockburst development process, monitored MS information 
can be utilised for the early warning of risk levels (Feng et al. 2017). Future research on 
this topic using an intelligent model is worthy of exploring.
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7  Conclusion

The prediction of rockburst hazard relying on a traditional  approach is always chal-
lenging. As a result, an intelligent approach that aids in the accurate prediction of 
risk is necessary. Therefore, this paper proposes and compares two widely adopted   
parametric and nonparametric methods typified by LR and SVM based on two differ-
ent datasets. Initially, 108 rockburst data obtained from MS monitoring information 
that contained four attributes such as cumulative number of events, cumulative radi-
ated energy, cumulative apparent volume and rockburst development day, was col-
lected. Since a parametric model performs better when feature variables are normally 
distributed, two datasets were prepared to better understand the feasibility of both 
approaches. Dataset I is created using original data which is not normally distrib-
uted whereas normally distributed Dataset II is prepared by applying box-cox trans-
formation to Dataset I. After, the models were built on both datasets by using the 
same number of samples for training and testing in the splitting ratio of 70:30 for 
both conditions. While training the model, hyperparameter optimisation is done using 
the gridsearch method applying five-fold cross validation to find the C and penalty 
parameter for LR as well as the C and gamma parameter for the best performing rbf 
kernel of SVM using the multiclass classification approach. Once the optimal param-
eter is obtained for each classifier, the result shows that the logistic regression model 
trained on Dataset II obtained the highest accuracy of 72.73% on the testing sample 
when compared to other models. For further evaluation, three other performance met-
rics, precision, recall and F1 score were computed from which we can conclude that 
LR performed well on both datasets whereas SVM has almost equal performance in 
both type of datasets. In order to investigate the robustness of classifiers, ROC-AUC 
is drawn for each class and average AUC has been computed for each classifier. The 
final output indicates that when the LR model is trained on Dataset II, it achieved the 
highest AUC score of 0.91. When trained on Dataset I, it has an AUC score of 0.90. 
However, the SVM has an equal AUC of 0.86 while using both datasets. This simply 
says that, in terms of short-term rockburst risk prediction, the limited availability data 
is always a threat. Even though a non-parametric model is good in achieving better 
output, it still needs more data and inputs to generalise well and yield higher accu-
racy. Nevertheless, a parametric model performs well because the data size does not 
influence the model generalisation as it constrains an algorithm to a specified func-
tional form that estimates the coefficients from training data to give a better predic-
tive model. Regardless of data size highly accurate model can still be achieved if the 
data are relatively normally distributed. Hence, in future research parametric models 
are worth exploring when the datasets are comparatively small and the number of 
variables are limited.

Appendix

See Table4
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Table 4  Original dataset CN CE CV RD Intensity

1 0.78 3.441 3 None
3 4.448 4.261 9 None
3 3.668 3.609 6 None
7 4.3 3.018 9 None
1 2.97 4.164 3 None
5 3.996 3.279 5 None
1 1.65 2.787 6 None
1 0.9 2.759 1 None
4 4.737 4.173 5 None
1 1.67 4.033 3 None
1 1.72 3.857 6 None
2 1.39 2.908 2 None
5 2.435 3.878 11 None
4 1.316 3.114 9 None
1 0.78 3.441 4 None
3 4.211 3.794 4 None
2 1.94 3.25 2 None

11 3.973 3.769 13 None
1 4.78 2.985 1 None
5 4.04 3.555 2 None
5 3.154 3.309 2 None
3 3.616 4.603 7 None
3 4.376 4.079 2 None
1 1.54 4.31 1 None
2 2.61 2.925 1 None
2 5.16 2.936 18 None
3 3.493 4.857 11 None
6 4.594 4.743 12 None
8 2.197 2.511 7 None
4 5.82 3.728 13 None

17 4.619 4.844 14 None
10 4.008 3.221 5 None
6 5.3 2.735 4 None

15 3.486 5.03 7 None
13 5.348 4.78 14 None
3 1.25 4.944 1 None
7 4.834 4.116 13 Slight

10 4.614 4.611 9 Slight
4 4.53 4.557 6 Slight
3 4.61 3.732 3 Slight

10 4.446 4.37 6 Slight
4 4.595 3.708 4 Slight
7 4.381 4.132 4 Slight

13 4.408 4.428 6 Slight
3 4.443 4.291 5 Slight

11 4.029 4.944 9 Slight
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Table 4  (continued) CN CE CV RD Intensity

22 4.736 4.133 23 Slight
8 4.132 3.504 13 Slight

29 3.882 4.156 10 Slight
20 4.76 3.843 16 Slight
12 3.543 4.223 3 Slight
6 5.561 4.043 6 Slight
6 4.368 3.497 8 Slight
7 5.269 4.817 10 Slight
7 5.4 3.919 4 Slight
8 5.204 3.977 3 Slight

16 3.621 4.681 6 Slight
17 3.172 5.015 10 Slight
2 4.061 3.576 3 Slight
9 1.723 4.993 7 Slight

25 4.381 4.848 10 Slight
25 3.367 4.964 8 Slight
5 5.17 4.594 6 Slight

14 5.841 4.622 9 Moderate
17 4.754 4.397 9 Moderate
18 5.295 4.703 10 Moderate
10 5.322 4.238 7 Moderate
14 4.818 4.266 11 Moderate
17 4.944 4.598 11 Moderate
18 5.602 4.779 10 Moderate
19 5.865 4.263 10 Moderate
20 5.589 4.589 11 Moderate
11 5.926 4.141 9 Moderate
8 5.621 4.62 4 Moderate

12 4.912 4.565 8 Moderate
20 5.982 4.453 8 Moderate
6 5.008 4.627 5 Moderate

11 4.966 4.154 4 Moderate
24 4.748 4.66 6 Moderate
6 5.593 4.809 8 Moderate

11 5.724 4.251 13 Moderate
8 5.219 4.552 16 Moderate

21 3.543 4.732 18 Moderate
3 5.06 4.438 7 Moderate

19 3.68 4.832 10 Moderate
23 4.408 4.873 9 Moderate
12 5.098 3.516 7 Moderate
36 4.729 4.336 14 Moderate
21 5.848 4.834 11 Moderate
10 4.886 4.105 6 Moderate
18 3.825 4.703 6 Moderate
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