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Abstract
Rockbursts frequently occur in tunneling projects and pose a serious threat to workers 
and the environment. Therefore, accurate prediction of rockbursts is of great practical sig-
nificance. Currently, various rockburst prediction methods exist, with static and dynamic 
indicators playing a key role. This paper analyzes the importance of rockburst prediction 
methods based on Citespace software. The results indicate that microseismic monitor-
ing, acoustic emission, and machine learning are the most important methods. The paper 
focuses on four common rockburst prediction methods: empirical methods, microseismic 
monitoring, acoustic emission, and machine learning, from the perspective of static and 
dynamic indicators. The performance and application of static and dynamic indicators in 
the four common prediction methods in recent years are summarized, the limitations of 
static and dynamic indicators at this stage are discussed, and possible future development 
directions are proposed. This paper provides the necessary perspective and tools for better 
understanding the advantages and disadvantages of static and dynamic indicators in the 
four rockburst prediction methods.

Keywords  Rockburst · Rockburst prediction methods · Static indicators · Dynamic 
indicators · Citespace software
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BIM	� Brittleness index modified
BSR	� Brittle shear ratio
WTG	� Rockburst index
Mcoal	� Modulus after destruction
E	� Young’s modulus, GPa
Kcr	� Critical mining stress index
Kv	� Rock mass integrity coefficient
S	� Stress index
W

et
	� Strain energy storage index, kJ m−3

IRB	� Rockburst risk index
H	� Buried depth in the tunnel, m
�RB	� Maximum stress of rockburst, MPa
R0	� Tunnel diameter
�
′
3
	� Minimum principal stress at destruction, MPa

�t	� Tensile strength of rock mass, MPa
A′
CF

	� Peak energy impact index
�
0
	� Maximum ground stress in the surrounding rock before excavation

�p	� Peak strain
LERSi	� Localized energy release rate
Uh	� The energy dissipated to overcome frictional and support resistance during 

impact ground pressure, kJ m−3

RPI	� Rockburst propensity index
�
′
rm

	� Triaxial rock strength based on the Hoek–Brown strength criterion
DT	� Failure duration index
Ue

ET
	� Elastic strain energy density at the unloading level

Ud
ET

	� Dissipated energy density at the unloading level
WP	� Energy conservation index
WE	� Work done by pressure
�r	� Residual strain
�e	� Pre-peak elastic energy density
φst	� Dissipative strain energy
Bq	� Rockburst energy index
Ue

q
	� Elastic strain energy density

Ua	� Destructive energy density
RERI	� Relative energy release index
LERR	� Local energy release rate
Uimin	� Minimum elastic strain energy density
Ue	� Elastic energy density at peak
U0

BIM
	� Peak elastic strain energy density

Ud	� Dissipated energy density at peak
φsp	� Elastic strain energy
�p	� Peak stress
WP

ET
	� Peak strength strain energy storage index

�r	� Residual stress
K

p

ED
	� The ratio of peak point elastic strain energy to dissipation energy

Eimax	� Maximum strain energy density
Eimin	� Minimum strain energy density
K

f

ED
	� The ratio of elastic strain energy to dissipation energy at the failure point
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1  Introduction

With the continuous development of tunneling to large depths and high-stress directions, 
rockburst disasters began to appear frequently. Rockburst is a kind of excavation process in 
the rock mass of the energy stored in the sudden release, resulting in rock burst, spalling, 
ejection, and other phenomena of geological hazards, with a strong suddenness, random-
ness, and harm (Li et al. 2019; Liang et al. 2020c; Du et al. 2022). The earliest recorded 
rockburst incident took place in England at the Leipzig Coal Mine (Kaiser et  al. 1996). 
Subsequently, rockburst of varying magnitudes has occurred in tunnels, shafts, caves, and 
mines worldwide (Wang et al. 2018b, 2019; Tao et al. 2019). Rockbursts have occurred in 
China’s Qinling Tunnel(Wang et al. 2023b), Yuyangshan Tunnel(Wu et al. 2021), the Han-
jiang River to Weihe River diversion tunnel (Liu et al. 2019), the Jinping II Hydroelectric 
Power Station diversion tunnel(Gong et al. 2012), as well as Canada’s Cigar Lake Uranium 
Mine(Morgenroth et  al. 2022), resulting in significant economic losses and casualties. 
Today, achieving precise rockburst prediction remains a significant challenge. Therefore, 
how to accurately and efficiently make predictions about rockbursts has become one of the 
many research hotspots.

Studies have shown that whether or not a rockburst occurs depends on the stability of 
the rock mass, which depends on the mechanical properties of the rock (e.g. strength, stiff-
ness, and modulus of elasticity, etc.) and external conditions (e.g. dynamic disturbance, 
magnitude of in situ stresses and geological structure, etc.) (Liu et al. 2013; Meng et al. 
2017). Currently, scholars have established a large number of static parameters based on 
factors such as rock mechanical properties and strain energy evolution, including the rock 
mass integrity coefficient Kv, buried depth in the tunnel H, maximum ground stress in the 
surrounding rock before excavation �0 , maximum tangential stress �

�
 , etc. Consequently, 

empirical index guidelines, exemplified by the Turchaninov criterion (Turchaninov et  al. 
1972), Barton criterion (Barton et  al. 1974), Roussens criterion (Russenes 1974), Hoek 
and Brown criterion (Hoek and Brown 1997), Tao criterion (Tao 1988), strain energy stor-
age index Wet (Kidybiński 1981), peak intensity strain energy storage index Wp

et
 (Gong 

et al. 2019), residual elasticity energy index Cef (Gong et al. 2021) and five-factor criterion 
(Zhang et al. 2011) have been formulated as rockburst prediction criteria. In the construc-
tion stage, with the geological structure and rock stress state and other related static data 
gradually determined, the accuracy of trend prediction of rockburst disasters through the 
use of empirical methods has been significantly improved. However, for the higher risk of 
strong rockburst or very strong rockburst, the trend prediction of rockburst using empirical 
methods may have a lag phenomenon. The empirical method is mainly through indoor test-
ing to obtain static parameters of rock samples, which can not reflect the real situation of 
the rock mass. It can not meet the requirements of real-time dynamic early warning at the 
construction site (He et al. 2021).

The emergence of surveillance systems and monitoring equipment has gradually trans-
formed indicators from static to dynamic, making real-time dynamic early warning pos-
sible (Du et al. 2021). By monitoring the dynamic signals generated before and after rock 
ruptures, such as strain energy, elastic waves, electromagnetic radiation, and rock surface 
temperature, a diverse set of dynamic indicators has been established. These indicators 
encompass apparent stress, apparent volume, microseismic energy density, acoustic emis-
sion energy, ringer counts, electromagnetic radiation pulse counts, and infrared tempera-
ture jump rates (Wang et  al. 2011; Dou et  al. 2018; Ding et  al. 2022; Hao et  al. 2022). 
Consequently, A range of rockburst field monitoring techniques, including microseismic 



	 Natural Hazards

1 3

monitoring method (Tang et al. 2021), acoustic emission method (Becker et al. 2010), elec-
tromagnetic radiation method (Rabinovitch et al. 2002), infrared thermal imaging method 
(Liu et al. 2023b), micro-gravity method(Adoko et al. 2013) and drilling cutting method 
(Zhou et al. 2012), etc., has been developed based on these dynamic indicators. Empiri-
cal methods and on-site monitoring methods have avoided casualties and economic losses 
to a certain extent. However, static and dynamic indicators are more difficult to obtain, 
and there are outstanding problems such as data outliers and difficulties in data processing. 
Thus limiting the predictive accuracy of empirical methods and field monitoring methods. 
Rockburst is the result of the combined effect of a variety of influencing factors, and the 
high degree of non-linear relationship between the factors so that empirical methods and 
field monitoring methods are difficult to realize the integrated prediction of multiple indi-
cators, to a certain extent, reducing the prediction efficiency (Ma et al. 2018).

Advances in science and technology, as well as algorithmic modeling, have led to an 
extension of the application fields for machine learning approaches in recent years. Several 
academics have been devoted to the investigation of machine learning methods since Feng 
and Wang (1994) deployed neural network learning and adaptive recognition approaches 
for rockburst prediction. Four static indicators—rockburst ground stress, uniaxial compres-
sive strength of rock mass, uniaxial tensile strength, and strain energy storage index—were 
employed by Dong et al. (2013) as input data for the random forest algorithm model for 
predicting rockbursts. Meanwhile, Ghasemi et al. (2019) used four static metrics, namely 
Stress coefficient, rock brittleness coefficient, strain energy storage index, and maximum 
tangential stress, as input data for the C5.0 decision tree algorithm, which explicitly 
showed the relationship between inputs and outputs. Dealing with non-linear relationships, 
high dimensionality, and small sample database problems is characteristic of the support 
vector machine algorithm model (Zhao et al. 2007). Zhou et al. (2023) used six dynamic 
metrics, namely angular frequency ratio, p-wave to s-wave energy ratio, cumulative micro-
seismic energy, apparent stress, radius of concavity, and seismic moments, as input data to 
the support vector machine to perform rockburst prediction. Machine learning approaches 
have been shown in studies to be effective in dealing with static and dynamic index data, as 
well as non-linear connections between indicators, offering a vital tool for complete multi-
indicator forecasting (Zhou et al. 2023).

Currently, rockburst prediction methods based on static and dynamic indicators are 
shown in Fig. 1. They mainly include empirical methods (Zhao et  al. 2017; Gong et  al. 
2018a), experimental tests (Cai 2016), numerical modeling(Xue et  al. 2021), machine 
learning method (Shirani Faradonbeh et al. 2020; Li et al. 2023c) and geophysical method 
(Feng et al. 2015; Meng et al. 2016; Wang et al. 2021a). Geophysical methods also include 
the microseismic monitoring method, acoustic emission method, hydraulic support pres-
sure method, electromagnetic radiation method, infrared radiation method, microgravity 
method, and drill chip method. These methods can be categorized into two types: short-
term prediction and long-term prediction (Pu et  al. 2019a). Short-term rockburst predic-
tion mainly refers to on-site monitoring of a localized area, such as microseismic monitor-
ing and electromagnetic radiation, etc., with a shorter test cycle. Long-term prediction is a 
comprehensive assessment of the rockburst potential and site conditions, such as based on 
the mechanical properties of the rock and site conditions proposed by a variety of indica-
tors of the method. Because it has a more intuitive appearance and is widely used in the 
field of rockburst prediction (Zhou et al. 2018a; Afraei et al. 2019). However, there is no 
article to systematically summarize the rockburst prediction methods from the perspective 
of static and dynamic indicators. Therefore, it is necessary to analyze the application of 
static and dynamic indicators in rockburst prediction methods.



Natural Hazards	

1 3

Based on the numerous rockburst prediction methods demonstrated in Fig. 1, this paper 
aims to analyze four rockburst prediction methods, namely empirical methods, micro-
seismic monitoring, acoustic emission, and machine learning, which are commonly used 
nowadays, from the perspectives of static and dynamic indicators. First, the importance 
of various rockburst prediction methods is analyzed based on Citespace software. Then, 
the application of static and dynamic indicators in the four rockburst prediction methods 
is analyzed. Finally, the advantages and disadvantages of static and dynamic indicators in 
rockburst prediction methods and their problems are discussed. The possible future devel-
opment direction is proposed to provide a useful reference for the rockburst prediction 
research.

2 � Analysis of the importance of rockburst prediction methods

The topic of rockburst prediction is exceedingly complicated, and no mature and full the-
ory and technology exists. Since the beginning of the rockburst disaster, numerous scholars 
have created a series of study outcomes based on static and dynamic indicators of rockburst 
prediction research. A scientometric analysis of rockburst prediction methods is required to 
better grasp the existing area of knowledge and investigate the value of various rockburst 
prediction methods.

Citespace, as one of the scientometric analysis software, has the advantage of tracking 
the research frontiers (Liang et  al. 2020a), In this chapter, Citespace software is used to 
visualize and analyze the rockburst prediction methods.

The keyword co-occurrence network is shown in Fig. 2. The size of the keyword in 
the figure reflects the frequency of that keyword, i.e., the larger the keyword, the more 
frequently it appears. The blue bar graph in Fig. 3 reflects the specific frequency size 
of the keyword. From Figs.  2 and 3, it can be found that mechanism, energy, stress, 
numerical simulation, model, and classification are the keywords with a relatively high 
frequency of occurrence. Among them, mechanisms appeared 68 times, and energy and 

Fig. 1   Schematic diagram of rockburst prediction methods
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stress appeared 63 times. It indicates that the study of the evolution of energy and stress 
in the process of rock damage using model tests and numerical analysis is the main 
way to understand the mechanism of rockburst occurrence (Zhao et al. 2021; Cui and 
Wong 2023; Su et al. 2023). At the same time, it shows that the rockburst mechanism 
is closely integrated with rockburst prediction. The ultimate goal of understanding the 
rockburst mechanism is to accurately predict rockburst hazards, and rockburst predic-
tion can be implemented more effectively by exploring the rockburst mechanism.

Fig. 2   Keyword co-occurrence map for rockburst prediction for the period 2007–2023

Fig. 3   Frequency of occurrence of the first 20 keywords and their centrality



Natural Hazards	

1 3

Acoustic emission, machine learning, and microseismic monitoring appear frequently, 
indicating that the research for rockburst prediction mainly focuses on the three methods of 
acoustic emission, machine learning, and microseismic monitoring. Centrality refers to the 
mediating role played by a keyword in the transmission of information, reflecting the aca-
demic importance of that keyword (Fu et al. 2022). Figure 2 shows the centrality of the top 
20 keywords. The orange bars reflect the magnitude of the centrality of the keywords. (The 
values in the graph are actual centrality × 103). The results show generally high centrality 
of acoustic emission, machine learning, and microseismic monitoring. It indicates a crucial 
transfer value in the field of rockburst prediction. For example, microseismic monitoring 
can be directly used for field prediction, while the dynamic data it generates can be used as 
input data for machine learning methods, furthermore, microseismic monitoring has a sim-
ilar working principle to acoustic emission. There are many other cases where a keyword 
radiates to two or more keywords, and the centrality can be used to understand the range 
and intensity of a keyword’s radiation. The number of occurrences of index in the figure is 
low and the centrality is not high. It shows that the use of various indicators for direct rock-
burst prediction is relatively less used, such as empirical methods.

3 � Rockburst prediction methods based on static indicators

In the case of the rockburst mechanism has not been studied clearly (Liu et al. 2022), schol-
ars have established a large number of static indicators based on engineering experience 
and rockburst influence factors. It is also known as the empirical method of rockburst pre-
diction, which is widely used in practical engineering. At present, the empirical methods 
are mainly divided into empirical methods with single indicators and empirical methods 
with multi-index indicators (Wu et al. 2019).

3.1 � Empirical methods with a single indicator

For the prediction problem of rockburst susceptibility, a large number of single evalua-
tion indicators have been established from the perspective of a series of theories such as 
strength, energy, deformation, and stiffness. Among them, the majority of judgment indica-
tors are in terms of stress and energy (Liu et al. 2013; Zhou et al. 2018a; He et al. 2021). 
This section summarises the empirical methods developed based on static indicators from 
the energy and stress perspectives.

3.1.1 � Stress methods

The stress method has a variety of physical metrics that characterize the rock features. 
These include key factors such as the geometrical and mechanical parameters of the intact 
rock, the pathological stresses, and the magnitude of the induced stresses. Evaluation 
indicators based on these factors have been validated for rockburst prediction (Gong and 
Li 2007). Table 1 summarises the empirical methods based on strength theory that have 
emerged in recent years, along with their associated judgments and rockburst classification. 
However, there is no generalized rockburst criterion that can fully encompass all practi-
cal engineering conditions. Previously, a large number of criterion guidelines have been 
proposed based on the �1∕�c , σθ,max∕σc and 

(

�θ + �L

)

∕�c indices, such as Barton’s crite-
rion, Tao’s criterion, Hoek and Brown’s criterion, Russenes’ criterion and Turchaninov’s 
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criterion, etc. However, the application of rockburst discrimination criteria based on a cer-
tain index was found to be unsatisfactory, and it resulted in large prediction deviations, 
despite the advancement of engineering technology. For instance, Zhou et al. (2018b) tried 
to adopt these guidelines to discriminate the rockburst class of the Gaoligongshan tunnel. It 
was found that the various guidelines were independent of each other and applied to differ-
ent engineering conditions. To establish the connectivity between indices �1∕�c , σθ,max∕σc 
and 

(

�θ + �L

)

∕�c , Zhou et al. proposed a rockburst discrimination criterion based on these 
three indices, as shown in Table 1. However, there is still a lack of research on combining 
multiple discriminant indices for rockburst intensity classification.

By analyzing Table 1, it was found that the evaluation indexes established based on the 
maximum tangential stress of surrounding rock �

�
 , uniaxial compressive strength �c , uni-

axial tensile strength �t and Stress coefficient �
�
∕�c are the majority. It indicates that the 

mechanical properties of the rock have a great influence on the occurrence of rockbursts. 
However, it should be noted that the stress method established based on strength theory 
ignores the dynamic characteristics of rockburst. It is easy to confuse general brittle dam-
age with rockburst (He et al. 2023).

The occurrence of rockbursts is related to the mechanical properties of the surrounding 
rock and the stress transfer path (Liu et al. 2021c). Therefore, the empirical method that 
only considers the mechanical properties is not comprehensive. Some scientists consider 
the role of the stress gradient in the surrounding rock based on the stress–strength ratios 
criterion. They are establishing a new criterion based on stress–strength ratios and sur-
rounding rock stress gradient, namely the SR-SG criterion (Liu et al. 2023c). The advan-
tage of the SR-SG criterion is to improve the accuracy of prediction while overcoming 
the problem of inhomogeneity in the grading interval of traditional criterion indicators. 
Table 2 gives the application of the SR-SG criterion in rockburst intensity grading.

3.1.2 � Energy methods

The rock mass generates strain energy in a plateau state of locational stress or a low-stress 
state of external disturbance. Accumulation of strain energy is generally recognized as the 
main energy source of rockburst, and the strain energy stored in the rock largely determines 
the intensity level of the rockburst (Li et al. 2007; He et al. 2023).

Figure  4 shows the general process of energy evolution inside the rock mass under 
external perturbation. Various external perturbation loads act on the rock body, resulting in 

Table 2   Rockburst grading criteria based on the SR-SG criterion (Liu et al. 2023c)

TSGC: the tangential stress gradient coefficient of the surrounding rock, TSGC = �
1(7 − 5�)∕a ; � : the lat-

eral pressure coefficient, � = �
3
∕�

1
 ; a : the diameter of tunnel radius; R: the stress–strength ratios of the sur-

rounding rock, R = �
�max

∕�
ci

TSGC/MPa m−1 Rockburst intensity

None Light Medium Heavy

0–7.5 R < 0.20 R ≥ 0.20 – –
7.5–12.5 R < 0.22 0.22 ≤ R < 0.44 R ≥ 0.44 –
12.5–20 R < 0.28 0.28 ≤ R < 0.60 0.60 ≤ R < 0.97 R ≥ 0.97
20–40 R < 0.33 0.28 ≤ R < 0.74 0.74 ≤ R < 1.50 R ≥ 1.50
 > 40 R < 0.40 0.40 ≤ R < 2.00 R ≥ 2.00 –
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the generation of corresponding stresses inside the rock body to resist the external action. 
According to the law of conservation of energy, mechanical energy is input into the rock 
body’s interior and stored. When the energy stored inside the rock reaches the threshold 
of rockburst, the energy is actively released to the outside world. Once the crack is created 
afterward, some of the energy is converted into kinetic energy of the fragments, causing 
the rocks around the crack to be violently ejected and the rockburst occurs (Liu et al. 2013; 
Li et al. 2023b). Scholars have established a large number of rockburst evaluation indexes 
based on the energy evolution process. One of the most widely used indexes is the Wet 
index, which evaluates rock hardness, brittleness, and susceptibility to bursting.

Table 3 presents the empirical methods based on energy theory that have emerged in 
recent years, along with their associated discriminant and rockburst classifications. The 
rockburst phenomenon occurs when the external force acting on the rock reaches the limit 
of what the rock body can withstand. This phenomenon is observed both in the engineering 
field and in indoor tests. Therefore, studying the proportionality between the elastic strain 
energy density and the dissipated strain energy density at the peak intensity of a rock speci-
men may facilitate the assessment of rockbursts. Gong et al. (2019) proposed the WP

ET
 index 

for rockburst intensity classification in this context, as shown in Table 3. The advantage of 
using the WP

ET
 index is that it no longer calculates the strain energy density at the point of 

80–90% of the peak intensity, making the index more suitable for actual use. Additionally, 
several scholars have proposed or improved the theoretical discriminant for the Wet index 
(Zhang et al. 2011; Wang et al. 2021d). Further in-depth research is needed to improve the 
accuracy of the rock burst criterion based on the energy theory.

The establishment of different energy methods is mainly based on the energy density 
and energy release rate at different stages of the rock fracture process. On the one hand, 
it confirms that energy evolution is an important factor in determining the magnitude of 
the rockburst intensity. On the other hand, it reflects that the energy methods consider the 
dynamic behavior of the energy evolution, such as the local energy release rate, while con-
sidering the static quantitative indicators. Gong et al. (2020) further verified that the energy 
methods have better predictive performance by comparing 20 tendency evaluation indices 

Fig. 4   General process of typical energy evolution
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Table 3   Summary of rock burst criteria based on energy theory and assessment of qualitative indicators for 
rockburst grading

Serial 
number

References Index and/or equations Intensity grading

1 Zhang et al. 
(2011)

WET = Ue
ET
∕Ud

ET
WET < 2.0 None rockburst
2.0 ≤ WET < 3.5 Light rockburst
3.5 ≤ WET < 5.0 Medium 

rockburst
WET ≥ 5.0 Heavy rockburst

2 Jin and Zhou 
(2012)

E = WE = 2 × �e×V E < 15.7 None rockburst
15.7 ≤ E < 39.25 Medium 

rockburst
39.25 ≤ E ≤ 78.5 Heavy rock-

burst
E > 78.5 Serious rockburst

3 Deng et al. (2012) Bq =Ue
q
∕
(

Ue
q
+ Ua

) 0 ≤ Bq < 0.20 None rockburst

0.20 ≤ Bq < 0.50 Light rockburst
0.50 ≤ Bq < 0.80 Medium 

rockburst
0.80 ≤ Bq < 1.00 Heavy rockburst

4 Qiu et al. (2014)

RERI = 

[
(

Uimax − Uimin
)

Uimax

]

∕
[

Umax(p)

∕
(

Umax(p) − Ures(p)
)]

–

5 Keneti and Sains-
bury (2018)

BIM = U0∕U0

BIM
BIM > 1.50 Light rockburst

1.50 ≥ BIM > 1.20 Medium 
rockburst

1.20 ≥ BIM > 1.00 Heavy 
rockburst

6 Gong et al. 
(2018b)

A�
CF

= Ue∕Ua –

AEF = Ue − Ua AEF < 50 None rockburst
50 ≤ AEF < 150 Light rockburst
150 ≤ AEF ≤ 200 Medium 

rockburst
AEF > 200 Heavy rockburst

7 Jiang et al. (2019) LERR=U
imax

 −U
imin

–
8 Gong et al. (2019) WP

ET
= Ue∕Ud WP

ET
<2 None rockburst

2≤WP
ET

≤ 5 Light rockburst

WP
ET

> 5 Heavy rockburst
9 Zhang and Jiang 

(2020)
U ≥ Uh + Ud
�x ≥ Rx�[s, l − s]

–

10 Gao et al. (2020) WP = K
f

ED
∕K

p

ED
–

11 Wang et al. 
(2021d)

Wet = φsp /φst Wet<2.0 None rockburst
2.0≤Wet < 5.0 Light rockburst
Wet ≥ 5.0 Heavy rockburst

12 Luo et al. (2023) LEREi = (Eimax−Eimin) × LERS2
i

–
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such as the strain energy storage index, the energy impact index, the potential energy of 
elastic strain, the rockburst energy index, the deformation brittleness index, the brittleness 
index of rockburst proneness, the deformation modulus and the lag time ratio index, etc. 
However, the difficulty in determining and measuring the stress and strain fields has led to 
limitations in the use of energy methods in practice.

3.2 � Empirical methods with multi‑index indicators

Figure 5 summarises some of the factors that influence the occurrence of rockbursts. Some 
scholars have discussed the influence of size effect, rock material (rock type, rock proper-
ties, and structural planes), mechanical conditions (stress state, loading/unloading rate, and 
dynamic perturbations), and environmental conditions (moisture content and temperature) 
on rockburst by considering some of the influencing factors. It is shown that rockbursts are 
the result of a combination of factors (He et al. 2023). Therefore, the single indicator evalu-
ation method developed by considering only factors such as rock mechanical properties or 
rock energy evolution has limitations. It is easy to apply different evaluation indicators to 
the same rock samples when the results of the dispersion of the situation.

The advantage of the comprehensive evaluation index is that multiple factors affecting 
rockburst are used as control factors for rockburst prediction. Breakthrough the single indi-
cator evaluation method only considers the limitations of a single factor. Thus, the predic-
tion accuracy and reliability of the empirical index method have been further improved.

Some scholars have carried out research by combining the mechanical properties 
of rocks and the evolution process of strain energy. The elastic modulus damage index 
(EMDI) based on peak stress dissipation energy Ud, peak stress total strain energy U, elas-
tic modulus E, and peak strength �p is established by considering both strength theory and 
energy theory (Khan et al. 2022). EMDI is defined as in Eq. (1). When the EMDI value is 
less than 0.91 for no rockburst, greater than 1.93 for strong rockburst, between the middle 
range for weak rockburst. From the properties of the indicator, this approach has the dis-
tinctive feature of energy-feeding stress. The rockburst prediction is improved by combin-
ing the advantages of the energy methods with the disadvantages of the stress methods.

Fig. 5   Factors affecting rockburst (Modified according to Kaiser and Cai (2012) and Keneti and Sainsbury 
(2018))
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At present, the methods that are used more in the comprehensive evaluation method 
for the assignment of each indicator include the fuzzy comprehensive evaluation method 
(FCE), principal component analysis (PCA), analytic hierarchy process (AHP), and quan-
titative evaluation method (QEM).etc. (Du et al. 2021). The advantage of these methods 
is that the weights of the indicators can be assigned scientifically. This makes the predic-
tion results more accurate and reliable than single indicator evaluation methods. Zhang 
et  al. (2020c) scientifically assigned weights to five indexes, namely uniaxial compres-
sive strength �c , stress coefficient �

�
∕�c , brittleness coefficient of rock Bi, elasticity energy 

index Wet and rock mass integrity coefficient Kv, by adopting a comprehensive weight 
evaluation method combining AHP and variation coefficient methods, which comprehen-
sively considered the factors of pathological stresses, lithological properties and energy 
conditions. A comprehensive index evaluation method based on the five indexes was estab-
lished. Zhu et al. (2022) used a combination of AHP and FCE methods, considering the 
geodynamic environment, and geological and mining factors. A comprehensive evaluation 
index system was established based on 15 influencing factors, such as the dip angle of the 
tectonic depression, the ratio of the tectonic stress to the vertical stress, the vertical move-
ment velocity of fault blocks, the influence zone of fault structure, the mining depth, the 
thickness variation coefficient of the coal seam, the uniaxial compressive strength and the 
collapse degree of overlying strata, and so on. The weights of the factors are scientifically 
determined, and the prediction results are more in line with the actual situation.

Once the tunnel is excavated, the rockburst evolution process manifests itself as a grad-
ual release of radial stress and a gradual increase in tangential stress, forming a tangential 
stress concentration and inducing rock fragment ejection (Pan et al. 2020). On this basis, 
Hoek and Brown (1980) proposed a criterion for the stress-intensity ratio. However, a large 
number of evaluation indexes do not take into account the radial radius of the tunnel and 
the radius of the plastic zone. Later, a new comprehensive evaluation index ζ based on the 
stress-strength ratio criterion was proposed by Yang et al. (2022), which takes into account 
the radial stress �p

r  , tangential stress �
�
 , tunnel radius r0, plastic zone radius rp, and uniaxial 

compressive strength �c.
In recent years, some scholars have incorporated geological conditions and site con-

struction status into the comprehensive evaluation system. A multi-indicator evaluation 
method based on in-situ stress, rock brittleness, elastic deformation energy, maximum stor-
age elastic strain energy, rock integrity, groundwater condition, section design size, and site 
construction status was established by considering five aspects: rock mechanical proper-
ties, strain energy evolution, geological conditions, tunnel design parameters, and site con-
struction conditions. Verified by engineering examples, the predicted results are in general 
agreement with the actual occurrence of rockburst (Qu et al. 2022).

With the continuous deepening of the theoretical study of rock burst prediction, from 
a single stress method or energy method to the comprehensive consideration of mechani-
cal properties and strain energy evolution of the comprehensive method, and then to the 
establishment of the mechanical properties of the rock, the evolution of strain energy, geo-
logical conditions, tunnel design parameters and construction conditions of the site of the 
integrated evaluation system, the comprehensive indicators of the evaluation method has 
been gradually improved. Its prediction performance is gradually improved. It should be 
noted that although the weighting problem of each indicator is considered, the problem of 
nonlinear relationships between multiple indicators is not effectively solved. To a certain 
extent, this limits the predictive performance of the comprehensive indicator evaluation 

(1)EMDI = (�∕E) ⋅
(

U
d
∕U

)

⋅

(

�
r
∕�

p

)
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method. In addition, the evaluation indicators should be selected according to specific 
problems and data characteristics, while weighing them against the requirements of practi-
cal applications.

4 � Rockburst prediction methods based on dynamic indicators

In recent years, the focus of research has shifted from static indicators to dynamic indica-
tors. The reason for this is that static indicators have to be obtained manually from indoor 
tests or field measurements. The process is relatively complicated and lacks continuity and 
timeliness. Dynamic indicators are obtained in real-time by the monitoring system and 
monitoring equipment, which has the advantages of data integrity, continuity, and timeli-
ness (Du et al. 2021). microseismic monitoring (MS) and acoustic emission (AE) are the 
main in-situ monitoring methods for the common rockburst problems in tunneling (Mogan-
edi and Stacey 2019; Cheng et al. 2020).

4.1 � Microseismic monitoring method

The MS monitoring technique has the advantages of low cost, wide monitoring range, high 
immunity to interference, no impact on on-site construction, and can relatively accurately 
determine the location and timing of rock microfracture events (Ma et al. 2016; Tian et al. 
2022; Yang et al. 2023). Figure 6 shows a diagram of the microseismic monitoring system. 
The MS monitoring technology has gradually become one of the most effective tools in the 
field of rockburst monitoring since it was first introduced in China in 1959 for impact trend 
monitoring at the Mentougou coal mine (Li et al. 2007; Tang et al. 2015; Ma et al. 2016).

Tunneling causes disturbances in the surrounding rock mass (manifested as microseis-
mic events, also known as rock fracture events). This causes a redistribution of stresses 
within the rock mass. The altered stress paths cause localized microcracking and damage to 
the rock close to the working face. This causes some of the internal energy to be released 

Fig. 6   Topology of the microseismic monitoring system. (Zhang et al. 2021)
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outwards in the form of elastic waves (Zhang et al. 2018, 2020d). The frequency charac-
teristics of various waves are shown in Fig. 7. MS system sensors receive a large number 
of signals simultaneously. These include MS signals (e.g., p-wave and s-wave) and noise 
signals such as electric current, knocking, rock drill, and locomotive whistle. Monitoring 
data is voluminous and complex, requiring effective processing and interpretation by pro-
fessionals. The results are heavily influenced by environmental noise and interference. The 
MS signals are retained by the denoising process. Then, they are converted into electrical 
signals and uploaded to the analysis and warning center step by step. The analysis and 
warning center further analyze the source parameters and spatial distribution pattern of MS 
events to obtain rockburst precursor information. Finally, it is sent to the terminal to realize 
the effective prediction of rockburst (Mousavi and Langston 2016; Iqbal et al. 2018).

By analyzing the received elastic waves, a large number of microseismic source param-
eters (dynamic indicators) can be obtained, such as apparent stress ( �A ), apparent volume 
( VA ), p-wave arrival time, seismic energy density, microseismic event density, energy index 
(EI), 3S (stress accumulation, stress shadow and stress transfer) index, b value (b), and 
number of energetic tensile damage events (Cai et al. 2014; Dou et al. 2018; Ma et al. 2020; 
Yu et  al. 2022). etc. Apparent stress, apparent volume, energy index, and microseismic 
energy (E) are commonly used dynamic warning indicators. Among them, the apparent 
volume reflects the size of cracks in the rock mass. The energy index reflects the pressure 
level of the rock mass. Microseismic energy reflects the intensity of microseismic events. 
The use of these indicators can effectively explain the state of cracks in the rock mass for 
real-time early warning of a rockburst. Xue et al. (2020a) proposed that lgN/b can be used 
as a new indicator for rockburst warning based on the number of microseismic events and 
b value. The larger the value of lgN/b, the more serious the rockburst. Zhang et al. (2021) 
quantitatively analyzed the average release energy, apparent volume, b value, and s value to 
propose a new index the energy rockburst warning (ERW) index. Table 4 summarizes the 
early warning situation for selected indicators.

As mentioned above, each dynamic indicator has its theoretical formula. The differences 
between the indicators show that the development state of rock fracture can be interpreted 
from different aspects. Therefore, the comprehensive use of more source parameters to 
avoid the one-sidedness and limitation of a few indicators is an effective way to improve 
the accuracy of real-time warning (Feng et al. 2015; Wang et al. 2021e).

Fig. 7   Frequency characteristics of various waves (modified according to Su et al. 2017)



Natural Hazards	

1 3

Table 4   Real-time dynamic early warning discriminations for selected microseismic indicators

E is the energy released by microcracks; � is the rock density; c is the elastic wave velocity; R is the radius 
of the epicenter; J

C
 is the particle motion velocity integral; Fc is the empirical coefficient of seismic wave 

radiation type; M
0
 is the seismic moment; μ is the rock shear modulus; 

−

E
(

M
0

)

 is the average seismic 
energy; N is the number of events with magnitude greater than M; M is the magnitude; a and b are coef-
ficients

Dynamic 
indicators

Theoretical 
formula

Real-time warning Legend References

E, �A , VA , EI E = 4��cR2 JC

F2

C

Cumulative MS energy and cumu-
lative apparent volume increase 
rapidly after the first rock burst. 
The energy index continues to 
rise. This indicates that a rock-
burst is about to occur. After the 
second rockburst, the cumulative 
MS energy and the cumula-
tive apparent volume increase 
gradually. The energy index 
drops sharply. This indicates that 
a rockburst will not occur for 
some time

Wang et al. 
(2021e)

�A =
�E

M
0

EI, VA , E VA =
M

0

2�A

On January 5, the energy index 
curve was more volatile. The 
increment of cumulative apparent 
volume is large. Reveals that a 
rockburst is imminent. on January 
6, the increments of cumulative 
apparent volume and cumulative 
MS energy suddenly increased. 
A sudden decrease in energy 
index. Reveals that a rockburst is 
imminent

Xue et al. 
(2020a)

VA, EI, b
 
EI =

E
−

E(M0)

Around December 15, 2019, the 
energy index and b value curves 
suddenly decreased. The cumula-
tive apparent volume gradually 
increased. The rock mass enters 
the strain-softening phase and a 
large-scale microseismic event is 
about to occur. In early February 
2020, the energy index decreased 
sharply again. B value decreases 
slowly. A large-scale rockburst 
did not occur

Wang et al. 
(2023a)

lgN = a-bM On March 24 and 28, the energy 
index curve decreased sharply 
and the b-value curve decreased 
significantly. The cumulative 
apparent volume curve increased 
significantly. It indicates a sudden 
release of energy from the rock 
mass, revealing the occurrence of 
a rockburst

Du et al. 
(2022)
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Analyzing the cloud map of microseismic spatiotemporal distribution characteristics is 
another way to obtain information on rockburst precursors. Figure 8 shows the cloud map 
of spatio-temporal distribution characteristics of microseismic events in a section of the 
Qinling tunnel. From June 20 to 29, 2018, microseismic event density gradually increased. 
A red risk signal appeared on the 26th, with a high risk of rockburst. As of the 29th, the 
rockburst risk reached 90%, revealing that a rockburst is imminent (Ma et al. 2022b). Khan 
et al. (2023) proposed four microseismic precursor characterization indices, namely cumu-
lative frequency, cumulative energy, energy deviation, and frequency deviation, from the 
time dimension. The spatial distribution of each microseismic precursor warning index is 
obtained from spatially distributed cloud density maps. A temporally and spatially inte-
grated warning method is established based on the time and spatial dimensions to predict 
the probability of rockburst occurrence in a short period.

It should be noted that MS signals in field monitoring are mostly analyzed and pro-
cessed based on individual subjective experience. To a certain extent, this can cause the 
deviation of rockburst precursor characteristics in time and space. Therefore, by further 
combining microseismic and artificial intelligence technologies to establish a more objec-
tive MS signal processing system, the predictive performance of rockburst precursor char-
acteristics in time and space can be effectively improved.

4.2 � Acoustic emission monitoring methods

AE is the phenomenon of transient elastic wave emission resulting from the rapid release 
of energy within a material. It allows monitoring of the surrounding rock before internal 
cracks propagate to the surface of the material (Zhang et al. 2015). Accurately localizing 
microcracks and stress changes within rock formations is crucial for assessing rock sta-
bility and fracture conditions. However, interpreting monitoring data requires experienced 
professionals and the accuracy and reliability of the results are affected by the operator’s 
level of expertise. Figure 9 shows the topology of the AE system. According to the acoustic 
emission theory, the AE technique has a similar working principle to the MS technique. 
The difference is that the sensor receives acoustic signals rather than vibration signals gen-
erated by microcracks in the rock (Zhang et  al. 2014). Since the AE technique was first 
applied to the study of rock damage in 1962 (Kiyoo 1962), the technique has achieved a 
large number of research results in fields such as coal mining and rock bursting. It has been 
widely used in geotechnical monitoring (Browning et al. 2017; Xiao et al. 2019; Tan et al. 
2022).

In the paper on AE field monitoring methods, acoustic emission parameters, and wave-
form characterization are the main analysis methods. All AE signals can be covered by 
these two analysis methods, and AE dynamic indicators can be obtained (Li et al. 2017a). 
The AE parameter metrics include AE hit count, AE energy, ringer count, energy count, 
decay count, rise time, peak amplitude, b value, and number of acoustic emission rings 
(Ban et  al. 2020; Ding et  al. 2022; Dong et  al. 2022). Among them, the AE hit count 
reflects the density and intensity of AE activities inside the rock mass, and the AE energy 
can accurately capture the fine fracture behavior inside the rock mass. The ring count 
reflects the crack width. b value changes reflect the trend of cracks inside the rock mass. 
The AE ring count can reflect the damage to the rock mass to a certain extent. Based on 
the above parameters, the stability of the rock during loading can be further investigated to 
analyze the precursor characteristics of rock explosion.
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Hu et al. (2018) explored the rockburst process in the borehole by analyzing the AE hit 
count and AE energy. As shown in Fig. 10. Before the rockburst occurs, there is a quiet 
period in the AE hit count curve. This period has the remarkable characteristics of a sharp 
decrease in the AE hit count and a sharp increase in the AE energy. Therefore, the quiet 
period can be used as a precursor signal for the occurrence of a rockburst. Zhai et al. (2020) 
performed true triaxial compression experiments on granitic syenite to further validate the 
reasonableness of the quiet period as a warning signal for rockburst.

Wang et al. (2022) performed true triaxial compression tests on granite. Comparative 
analysis of AE impact counts, ringing counts, and AE energies revealed that the accelerated 
release characteristics of AE energies better reflect the precursor information of rockburst.

Ren et al. (2023) used marble rock samples to simulate static-driven rockburst, pulse-
disturbance rockburst, and period-disturbance rockburst. On the one hand, it is proposed 
that the trend of multiple fractal parameter curves increasing and then decreasing near the 
peak intensity can be used for rockburst warning for long-term monitoring. The inflec-
tion point is used to calculate the warning time, and the higher the rockburst intensity, the 

Fig. 8   Spatial and temporal distribution of microseismic events. a Density cloud map of microseismic 
events. b Map of microseismic events (Ma et al. 2022b)
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shorter the warning time. On the other hand, it is verified that the stress drop can be used 
for short-term monitoring of rockburst warning.

The significant decrease in b value can be used as a precursor feature of rockburst, and 
the softening effect of water can significantly reduce the incidence of rockburst (Zhang 
et al. 2020e; Dong et al. 2022).

The above analysis of rockburst precursor characteristics from the perspective of AE 
parameters belongs to the time domain parameter analysis. Differently, the frequency 
domain waveform analysis explains the dynamic damage characteristics of microcracks 
inside the rock mass by mapping the AE waveform signal from the time domain to the 
frequency domain.

Mei et al. (2019) conducted uniaxial compression experiments on marble rock samples. 
The AE dominant frequency characteristics were analyzed for the entire rockburst process 
(dominant frequency is the frequency of the maximum amplitude in the two-dimensional 
spectrum, which is usually obtained by the fast Fourier transform (FFT)). As shown in 
Fig. 11, the two red dashed lines indicate the beginning and the end of the rockburst. The 
results show that the migration of the dominant frequency density region from the low-
frequency domain to the relatively high-frequency domain, as well as the density of the 
dominant frequency distribution in the high-frequency domain before and after the rock-
burst can be used as a rockburst precursor characteristic signal.

Information entropy can effectively characterize information about the source of rup-
ture within a rock mass. It is useful for research on rockburst prediction(Zhou and Li 
2012). Figure 12 shows the main frequency entropy distribution of granite rock samples. 
The results show that the peak point A point before the sharp decrease of entropy can be 
used as a characteristic point for rockburst prediction.

As mentioned above, AE hit counts, AE energy, AE ringing counts, and primary fre-
quency are the main dynamic indicators for conducting rockburst early warning. It should 
be noted that the differences in the degree of internal fracture of the rock are reflected by 
different indicators, resulting in inconsistency in the information proposed based on differ-
ent indicators of rockburst precursors. It is prone to prediction misjudgment and predic-
tion delay phenomenon. Therefore, the further establishment of a multi-indicator syner-
gistic prediction method can significantly improve the accuracy of rockburst prediction. 
In addition, due to the limitations of AE sensors and the influence of the test environment 
at the current stage, the AE dynamic parameters cannot reflect the essential characteristics 
of rock damage (Chai et  al. 2018). The waveform signal contains all the information on 

Fig. 9   AE monitoring system topology
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mechanical properties and structural state inside the rock mass, which can better reflect 
the evolution of microcracks. Therefore, the rockburst precursor signal based on frequency 
domain waveform analysis is more reliable (Zhou et al. 2019; Zhu and Deng 2023).

Combined consideration of time domain parameters and waveform characteristics. To 
a certain extent, the combination of AE parameter signals and AE waveform signals to 
jointly implement rockburst precursor warning can avoid the errors caused by using one 
type of signal alone. Gao et al. (2023) verified that AE energy, AE ringing counts, and AE 
main frequency can be used as rockburst precursor signals. At the same time, they were 
defined as the key disaster-causing factors of rockbursts, to establish a comprehensive early 
warning method for brittle rockbursts. The initial warning point and key warning point of 
rock explosion were further obtained. As shown in Fig. 13.

5 � Machine learning methods

Machine learning methods have the characteristic of discovering the change rule from a 
large amount of data and extracting the corresponding features (Marsland 2015). It can 
effectively extract the features related to the occurrence of rockburst from static and 
dynamic index data. For example, geological structure, stratum lithology, stress state, seis-
mic activity, surface deformation, and so on. In addition, machine learning methods can 
make predictions based on real-time monitoring data. It can respond to rock changes and 
stress accumulation on time. It has a wide application potential in real-time rockburst pre-
diction and monitoring systems. With the rapid development of big data science, the use of 
machine learning methods for rockburst prediction is gradually becoming a popular way 
(Pu et al. 2019b).

In recent years, numerous machine learning methods have been developed that use 
static and dynamic indicators as data inputs. Table  5 summarizes the use of static indi-
cators as input data for machine learning methods in rockburst intensity classification in 
recent years. The table shows that �

�
 , �c , �t , and Wet are the earliest major static indicators 

used for machine learning in rockburst prediction, with prediction accuracies above 90%. 
The text suggests that the tangential stress, uniaxial compressive strength of rock, tensile 
strength of rock mass, and strain elasticity energy index Wet are advantageous in predicting 
rockburst and are highly applicable to certain algorithms. The field of rockburst predic-
tion has seen the introduction of various new algorithmic models with the development 

Fig. 10   Time series characterization of AE hit counts and AE energy. a Complete process. b The process of 
debris spalling to the occurrence of rockburst (Modified according to Hu et al. 2018)
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of computer engineering. It was determined that using only �
�
 , �c , �t , and Wet as input 

data did not yield satisfactory results for predicting rockburst. Therefore, scholars added 
the brittleness index �c∕�t and stress concentration factor �

�
∕�c to the existing �

�
 , �c , �t , 

and Wet index to improve the prediction accuracy.

Fig. 11   Scattering density plot of AE full-time domain main frequency characteristics. a N5 sample. b N7 
sample. (Modified according to Mei et al. 2019)

Fig. 12   Distribution of dominant frequency entropy of granite rock samples (Wang et al. 2021b)
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The machine learning methods use maximum tangential stress �
�
 , compressive strength 

�c , tensile strength �t , brittleness index �c
�t

Stresscoeff icient�
�
∕�c and elastic energy index 

Wet as common static inputs. �
�
 reflects the characteristics of the ground stress. Rocks are 

dense inhomogeneous bodies, and their lithological characteristics are reflected by �cand�t . 
Accumulation of strain energy is generally recognized as the main energy source of rock-
burst, Wet can reflect the ability of the rock to store strain energy. �c∕�t and �

�
∕�c also have 

a close relationship with the intensity level of rockburst (Li et al. 2023a). Therefore, these 
indicators are more representative in explaining rockburst than other static indicators such 
as tunnel burial depth H and stress concentration factor SCF. Li and Jimenez (2017) and Li 
et al. (2022b) analyzed and found that Wet is always the most important indicator for rock-
burst prediction. As shown in Fig. 14.

Table  6 summarizes the use of dynamic metrics as input data for machine learning 
methods for rockburst intensity classification in recent years. The table shows that the 
machine learning method based on dynamic parameters can carry out rockburst warning, 
signal identification, crack identification, microseismic source localization, and p-wave 
first arrival time pickup. The dynamic parameter-based machine learning method offers 
greater degrees of freedom, as reflected to a certain extent. Currently, machine learning 
methods primarily utilize microseismic energy, seismic moment, cumulative number of 
events, cumulative apparent volume, and apparent stress as the main dynamic input indi-
cators. Microseismic energy reflects the intensity of microseismic events to some extent. 
Seismic moment reflects the magnitude of the earthquake. Cumulative event count indi-
cates the number and density of microfractures occurring within the rock mass. Cumula-
tive apparent volume reflects the size of the cracks in the rock mass. Apparent stress indi-
cates the degree of stress release (Liu et al. 2021b; Yin et al. 2021b).

The establishment of the indicator database is mainly based on the static and dynamic 
indicators obtained from global rockburst cases, rock indoor tests, numerical simulations, 
or field monitoring. At present, scholars have carried out the following studies to address 
the problems of the original database (Zhang et al. 2020b; Yin et  al. 2021c; Zhou et al. 
2021):

(1)	 The number of rockburst cases in each class is disproportionate, causing the model to 
focus too much on the larger number of classes.

	   There are two main approaches to solving such problems. One is to oversampling, 
undersampling, or mixedsampling the data. The other is to replace algorithmic models 
that are insensitive to unbalanced data sets (Gnip et al. 2021). Xue et al. (2022) The 

Fig. 13   Integrated rock burst warning method based on key causative factors of acoustic emission signals. a 
rock sample 1. b rock sample 2 (Gao et al. 2023)
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Copula-MC oversampling algorithm is proposed based on Copula theory and Monte 
Carlo simulation. Through the validation of six machine learning models, the Copula-
MC oversampling algorithm performs better than the synthetic minority oversampling 
algorithm (SMOTE) in dealing with unbalanced datasets, and the accuracies of each 
model are shown in Fig. 15. The Copula-MC oversampling algorithm significantly 
reduces the impact of unbalanced datasets on machine learning.

	   Li et al. (2022b) used the SMOTETomek algorithm to process the unbalanced data-
set. Meanwhile, the BO-SMOTETomet-FNN model was established by combining 
bayes optimization (BO) and feedforward neural network (FNN). After engineering 
validation, the rockburst prediction accuracy reached 90.4%.

(2)	 The model ignores other valuable information in the prediction process and overly relies 
on certain metrics. This leads to a decrease in the model’s ability to predict new data.

	   The t-distributed Stochastic Neighborhood Embedding (t-SNE) (Van der Maaten 
and Hinton 2008) is a dimensionality reduction technique that effectively reduces the 
dependency between the parameters of each indicator. Pu et al. (2019b) combined the 
t-SNE technique and k-mean clustering with a support vector classifier (SVC). An SVC 
model based on the t-SNE technique and k-mean clustering was developed. And tenfold 
cross-validation was used to optimize the accuracy of this model to avoid overfitting. 
The results show that the model predicts well while reducing the indicator dependency. 
Feng et al. (2019) used a mean influence value algorithm (MIVA) to reduce indicator 
dependence and established a probabilistic neural network model for rockburst early 
warning.

(3)	 Data Outliers. Data outliers are currently handled in three ways, namely removal, 
replacement, and transformation.

	   The Yeo-Johnson transform (He and Zheng 2018) preserves anomalous data. 
Reduces the impact of anomalous data on the overall prediction results and avoids the 
destruction of the original characteristics of the data when removing and replacing 
outliers. Sun et al. (2022) first used Yeo-Johnson transform to solve the outlier prob-
lem. Then k-mean SMOTE algorithm is used for oversampling to solve the unbalanced 
dataset problem, and PCA dimensionality reduction is used to reduce the indicator 
dependency problem.

(4)	 Incomplete dataset due to missing data.
	   Liu et al. (2023a) proposed a histogram gradient boosting tree (HGBT) model for 

incomplete datasets. The model separates the samples from the missing values based 
on the potential gain at the point after finding the segmentation point, thus processing 
the missing values. By comparing seven models such as random forest (RF), K-nearest 
neighbors (KNN), extreme gradient boosting (XGBoost), support vector machines 
(SVM), and artificial neural network (ANN), the results show that the HGBT model 
has 77.78% prediction accuracy. The prediction performance is better compared to 
other models as shown in Fig. 16.

(5)	 The issue of weighting of indicators.
	   Li et al. (2023c) used Tent chaotic mapping and the crossover and mutation opera-

tors in the genetic algorithm (GA) to improve the Harris Hawk (HHO) algorithm to 
obtain the IHHO algorithm, which is capable of assigning weights to indicators more 
objectively. By comparing with optimization algorithms such as GA and HHO, the 
IHHO algorithm has higher search efficiency and faster convergence accuracy. The 
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extreme learning machine (ELM) model built based on the IHHO algorithm has better 
prediction performance.

Machine learning methods require a large amount of data to participate in training and 
testing, but the data sets used in machine learning are generally small at present, which 
reduces the robustness of the algorithmic model to a certain extent. Decision tree (DT) and 
naïve bayes (NB) models have better applicability to small samples, but the generalization 
performance is poor and cannot fundamentally eliminate the limitations of small samples 
(Li et al. 2017b; Ghasemi et al. 2019). In the future, there is a need to build a larger number 
of databases with higher quality and from a wider range of sources.

Machine learning methods show significant advantages in integrating multiple metrics 
and data processing, but they are susceptible to model limitations. For example, SVM algo-
rithms are sensitive to sample perturbations, and the presence of high variance and low 
bias makes the prediction results lack generalization and robustness. For small samples, 
logistic regression (LR) is more prone to transition fitting. Ensemble learning methods can 
significantly improve the accuracy, stability, and robustness of prediction by integrating 
multiple algorithmic models. To a certain extent, it can make up for the shortcomings of 
single machine learning methods (Sagi and Rokach 2018; Zhang et al. 2020a). For exam-
ple, Zhang et  al. (2020b) used static indicators as input data and combined seven clas-
sifiers such as back propagation neural network (BPNN), support vector machine, deci-
sion tree, k-nearest neighbors, logistic regression, multiple linear regression (MLR) and 
naïve bayes to build an integrated BPNN-SVM-DT-KNN-LR-MLR-NB model. Liang et al. 
(2021) developed an integrated LR-NB-GP-MLPNN-SVM-DT model that combines six 
basic classifiers, namely logistic regression, naïve bayes, Gaussian process (GP), multilayer 
perceptron neural network (MLPNN), support vector machine and decision tree, using 
dynamic indicators as input data. The results all show that the prediction performance of 
the integrated classifier is better than the six basic classifiers.

Fig. 14   Importance analysis of 
static indicators (Li et al. 2022b)
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Deep learning methods are mainly based on the concept of artificial neural networks, 
which simulate the workings of the human brain through a multilevel network of neurons 
(Strawn 2022). Deep learning models can make full use of the information and patterns 
in the data by training and learning from large-scale data, thus improving the accuracy 
and generalization of predictions. Commonly used deep learning models include multi-
layer perceptron (MLP), deep forests (DF), convolutional neural networks ( CNN), tem-
poral convolutional networks (TCN), recurrent neural networks (RNN), and long-short-
term memory networks (LSTM). CNN can effectively deal with the temporal and spatial 
dependencies in the dataset. Therefore, it is widely used in microseismic monitoring. Yu 
et  al. (2019) used microseismic raw waveform data as CNN input data to realize adap-
tive denoising. Song et al. (2020) used a CNN model to extract microseismic signals from 
blasting vibration signals to improve microseismic source localization accuracy. Peng et al. 
(2021) added Inception structures to the CNN model to form a deep CNN-Inception model 
for recognizing effective microseismic signals.

Attention is drawn to the fact that TCN models can handle the entire time series simul-
taneously, thus saving computational time. In addition, the TCN model can effectively deal 

Fig. 15   Radar plot of different model predictions (Xue et al. 2022)

Fig. 16   Comparison of incomplete database models. Missing data is populated by the following values: a 0; 
b Average value; c Median value; d Common value (Liu et al. 2023a)
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with the long-term dependence among indicators by capturing the time dependence of dif-
ferent ranges. Therefore, the application of TCN models in the field of rockburst prediction 
should be enhanced in the future.

6 � Limitations and prospects

Empirical methods, microseismic monitoring, acoustic emission, and machine learning are 
four widely used methods for rockburst prediction. However, due to the complexity of the 
rockburst mechanism and the uncontrollability of the influencing factors, some aspects of 
them have some shortcomings and need to be improved in the future.

The empirical methods are a typical traditional rockburst prediction method. Its predic-
tion process relies heavily on the criterion formula established by static indicators, which 
leads to at least two limitations of the empirical methods. For static parameters, a large 
number of single-indicator criteria consider only two or three factors, while the occurrence 
of rockburst is the result of a combination of factors, involving the mechanical properties 
of the rock mass, geological structure, digging methods, groundwater conditions, tunnel 
size and depth, etc. It is still unclear which factors are the most important. Thus the cri-
terion formulae established by considering only a small number of factors have serious 
prediction errors. Even with the comprehensive indicator evaluation method considering 
multiple factors, the nonlinear relationship between the factors is difficult to determine. 
In the future, we should further study which factors play a dominant role in the process of 
rockburst occurrence, and at the same time consider more factors in the establishment of 
rockburst criterion. What is the relationship between rock tectonic properties, such as rock 
mineral composition, original pore state and texture orientation, and rockburst still needs 
to be further explored. In terms of criteria, each criterion formula has its rockburst grading 
standards. Therefore, the use of different criteria for the prediction of the same rockburst is 
prone to different rockburst grades, and a large number of criteria are uneven grading inter-
val, resulting in rockburst intensity level imbalance. To a certain extent, this has increased 
the difficulty of accurate prediction of rockburst. In the future, the establishment of indica-
tors should focus on how to build a uniform grading interval. The establishment of a uni-
fied and common rockburst criterion is still a long way to go.

Microseismic monitoring and acoustic emission are the two main field monitoring meth-
ods. A large number of waveform signals are often released before and after a rockburst. 
Whether the waveform signals received by the sensors are generated by the corresponding 
rupture event, or whether the sensors can segment the signals after receiving them over-
lapped together. Taking acoustic emission as an example, the overlapping of elastic wave 
signals leads to a decrease in the AE hit rate, but the cumulative AE counts and energy are 
increasing exponentially. This anomaly reduces the accuracy of AE monitoring to some 
extent. Therefore the problem of elastic wave signal overlap needs further study by schol-
ars. A large number of dynamic indicators can be obtained by analyzing the elastic wave 
signals, such as p-wave arrival time, microseismic energy density, energy index, 3S index, 
b value, energy counts, decay counts, rise time, and peak amplitude. How to quantify the 
sensitivity of these indicators to rockburst warning needs further study. Source parameter 
warning and spatial–temporal distribution warning in microseismic monitoring, as well as 
time-domain parameter warning and frequency-domain feature warning in acoustic emis-
sion are the main methods of rockburst warning. Regardless of the warning method, the 
warning time obtained through rockburst precursor characteristics is not always reliable. 
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This is related to the strong randomness of the rockburst, while specific rockburst inten-
sity levels cannot be obtained. This makes it difficult to effectively implement graduated 
prevention and control at a later stage. The current field application is usually based on the 
energy release characteristics to estimate the rockburst intensity level, which increases the 
bias caused by individual subjectivity. In the future, we should pay attention to the issue of 
rockburst warning time, and at the same time consider combining it with related intelligent 
devices to further study how to determine the rockburst intensity level more objectively 
through the trend of dynamic parameters such as energy release characteristics. In short, 
the development of a rockburst disaster whole process recording equipment to assist the 
site monitoring will greatly improve construction efficiency and safety.

Both microseismic monitoring and acoustic emission monitoring by receiving elastic 
wave signals. However, the difference is that microseismic monitoring is non-contact mon-
itoring by monitoring and analyzing the seismic waves released by microseismic events to 
understand the state of underground rocks or geological structures. Acoustic emission is 
to understand the deformation, rupture or stress release of rocks or structures by monitor-
ing and analyzing the tiny acoustic waves generated inside them, which belongs to con-
tact monitoring. This determines that microseismic monitoring has a wider range and can 
monitor the location and energy of rockbursts in real time. On the contrary, in acoustic 
emission monitoring, although the positioning accuracy is higher, the monitoring range is 
much smaller, resulting in less satisfactory results when applied individually to practical 
engineering. Based on the characteristics of microseismic monitoring and acoustic emis-
sion monitoring, early warning relying only on certain indicators or a certain method of 
each is not comprehensive. Therefore, in the future, the joint early warning technology of 
multi-methods and multi-indicators should be further established and enriched. In addition, 
due to the large number of dynamic indicators and strong correlation, which combinations 
of indicators can be more effective for rockburst early warning needs to be further studied.

Machine learning methods have shown good predictive ability in comprehensive multi-
indicator prediction, and they can effectively deal with the problem of non-linear relation-
ships between multiple indicators. Therefore, it has been widely used in recent years. In 
terms of input data, the static input indicators of the machine learning methods focus on 
maximum tangential stress �� , compressive strength �c , tensile strength �t , brittleness index 
�c∕�t, Stresscoeff icient��∕�c and elastic energy index Wet, Dynamic input indicators 
focus on Microseismic energy, seismic moment, cumulative event count, cumulative appar-
ent volume and apparent stress. Although the above indicators are representative, they can-
not cover the effects of tunnel depth and stress drop on rockburst. In general, the more 
input indicators, the better the model classification effect, so the future should be combined 
with more indicators to improve the rockburst prediction ability. For example, combining 
MS raw wave data and parametric data can significantly improve the prediction perfor-
mance (Ji et al. 2020). In addition, the high prediction accuracy of current machine learn-
ing methods is still dominated by small sample datasets. For machine learning methods, 
small sample datasets limit the prediction performance of machine learning methods to a 
certain extent. Therefore, the establishment of larger databases in the future is necessary to 
improve the prediction performance.

It is worth noting that rockburst data have a family resemblance structure, which may 
affect the original nature of the data indicators when processing the data. For example, 
the elimination and replacement of outliers may destroy the original characteristics of the 
indicators, leading to a reduction in the objectivity of the data. Therefore, how to minimize 
the damage to the original rockburst data and how to quantify the degree of impact on the 



	 Natural Hazards

1 3

rockburst prediction of the change in the original characteristics of the indicators after data 
processing needs to be considered by scholars.

At the level of algorithmic structure, traditional shallow machine learning methods gen-
erally suffer from catastrophic forgetting. One of the main reasons is that a large number 
of algorithmic models assume that the data distribution is steady and the samples are inde-
pendently and identically distributed, so that the algorithmic models can repeatedly learn 
data with the same constructive features. There are unsteady data distributions in static and 
dynamic data, such as microseismic raw signal waveform data, which are not only unsteady 
but also a continuous data stream. Incremental learning in deep learning can effectively 
solve the catastrophic forgetting problem. However, there are not many incremental learn-
ing algorithms used for rockburst prediction, so further research on incremental learning 
should be carried out in the future to broaden its scope of application in the field of rock-
burst prediction.

Ensemble learning synthesizes multiple basic classifiers, and its prediction performance 
is better than that of a single basic classifier. Currently, ensemble learning uses either static 
or dynamic indicators as input indicators to the integrated model. In the future, is it pos-
sible to consider establishing hybrid indicators based on static and dynamic indicators? Its 
feasibility needs further research.

7 � Conclusions

This paper presents a systematic review of rockburst prediction methods based on static 
and dynamic indicators from the nature of indicators. First, the importance analysis of 
rockburst prediction methods was conducted based on Citespace software. The results 
show that microseismic monitoring, acoustic emission, and machine learning have the 
highest degree of importance. Through the scientometric analysis, the rockburst predic-
tion methods were focused on four methods: empirical methods, microseismic monitoring, 
acoustic emission, and machine learning. Then, the application of the four prediction meth-
ods is analyzed and summarized from the perspective of static and dynamic indexes, and 
the following conclusions are obtained:

(1)	 The stress method’s parameters are static quantitative indicators, while the energy 
method’s parameters consider the dynamic behavior of the rock system. The latter 
method, based on energy indicators, better reflects the tendency of rockburst and has 
a more accurate prediction effect. The comprehensive index evaluation method can 
predict a variety of static indicators jointly, with energy feedback stress characteristics, 
showing better prediction performance than single-indicator methods. In the future, 
research should focus on the non-uniformity of the criterion formula and the problem 
of non-uniformity of the grading interval.

(2)	 Microseismic monitoring has a main defect in that it has a prediction delay effect 
and cannot predict the specific time and intensity level of rockburst occurrences. The 
accuracy and validity of spatio-temporal distribution of characteristic cloud maps are 
significantly affected by MS signal processing. The introduction of artificial intelli-
gence technology into MS signal processing is a future trend.

(3)	 Acoustic emission monitoring techniques developed for indoor testing have not yet been 
applied in the engineering field. Further research is needed to determine how to transi-
tion from indoor testing to field monitoring. Although prediction miscalculation and 
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prediction hysteresis have less influence on the time domain waveform warning, they 
remain a key research topic. The integration of time domain parameters and waveform 
characteristics into early warning methods is expected to become a mainstream trend.

(4)	 Machine learning methods for indicators face several challenges, including missing 
data, unbalanced datasets, anomalous data values, indicator dependency, indicator 
assignment, and small sample databases. To minimize damage to the original features 
of the indicator data, the focus should be on data processing. Further research on 
advanced algorithmic structures to increase the intensity of data processing and expand 
the database is key to solving these problems.

No matter which prediction method, it has its advantages and shortcomings, no one 
method can be used to predict the rockburst activity of all projects. The key to the selection 
of the best model for rockburst prediction lies in the accuracy and applicability of static 
and dynamic indicators.
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