
Vol.:(0123456789)

Natural Hazards
https://doi.org/10.1007/s11069-024-06642-w

1 3

ORIGINAL PAPER

Uncertainty analysis of SPI and SRI calculation using 
bootstrap in the Mediterranean regions of Algeria

Mohammad Achite1,2 · Ommolbanin Bazrafshan3  · Zohreh Pakdaman4 · 
Andrzej Wałęga5 · Fateme Pourhaghverdi3 · Tommaso Caloiero6

Received: 24 September 2023 / Accepted: 20 April 2024 
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract
The standardized precipitation index (SPI) and the standardized runoff index (SRI) are 
widely used in drought monitoring. In the calculation of these indices, the time scale and 
distribution functions are especially significant. In the current study, the uncertainty in the 
estimation of the two indices, in terms of time scale and distribution functions, was inves-
tigated in the wadi Mina basin (Algeria) using monthly precipitation and runoff values 
based on the gamma-II (GAM-II), extreme value-III (EVD-III), Pierson-III (PEI-III) and 
Weibull-II (WEI-II) distribution functions. With this aim, precipitation and runoff amounts 
were calculated considering 12- and a 24-month time scales; then, using the bootstrap 
method, 1000 random sample were generated for each precipitation and runoff event and 
for each time scale, and the confidence interval of the two indices was calculated at around 
95%. The size of the confidence interval was considered as uncertainty and the error rate 
between the estimated and observed data was calculated. The results showed that all the 
considered distributions fit the time series acceptably, and that the time scale of the data 
is not significantly correlated with the goodness of fit. Moreover, there is no apparent rela-
tionship between the rejection cases and the scale and position of the regional stations or 
the investigated variables. The lack of significant differences between the observed and 
estimated time series for a specific distribution caused the averages estimated in SPI to 
fall within the same descriptive class. Based on the results, WEI-II and EVD-III showed 
the lowest estimation error and uncertainty in meteorological and hydrological drought, 
respectively, at both 12- and 24-month time scales, thus suggesting the use of these two 
functions for drought monitoring at medium-term and long-term time scales.

Keywords Drought monitoring · Uncertainty · Bootstrap · Sampling · Precipitation index · 
Standardized runoff

1 Introduction

Territories overlooking the Mediterranean basin, considered a highly vulnerable area to cli-
mate change, are particularly susceptible to the adverse effects of drought due to its irreg-
ular precipitation patterns (Tramblay et  al. 2020). As an example, in recent years North 
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African regions have witnessed an increase in the frequency and severity of drought events, 
leading to growing concerns regarding water scarcity, food security, and ecosystem health 
(Spinoni et al. 2014).

Meteorological and hydrological droughts are complex phenomena driven by a com-
bination of climatic and hydrological factors. Meteorological droughts are primarily 
characterized by a prolonged deficit in precipitation, while hydrological droughts mani-
fest as decreased streamflow, groundwater levels, and reservoir storage, impacting water 
availability in various sectors (Achite et al. 2023). Generally, drought indices are a widely 
adopted tool for the evaluation of drought conditions. Among the various indices one of 
the most applied is the standardized precipitation index (SPI) that was initially formu-
lated by McKee et  al. (1993). The SPI operates on the basic principle of converting the 
probability of cumulative precipitation on different time scales into an index. This flex-
ible approach allows the assessment of different types of droughts: shorter time scales are 
suitable for meteorological and agricultural drought assessments, while longer time scales 
prove more suitable for characterizing hydrological and water resource-related droughts. 
This index serves multiple purposes, acting as a valuable tool for assessing drought sever-
ity, issuing early warnings about droughts, and discerning the influence of climate change, 
as several studies highlighted, e.g. Bordi et  al. (2009), Buttafuoco and Caloiero (2014), 
and Buttafuoco et  al. (2018). In addition, the SPI boasts several advantageous features. 
First, it is based solely on precipitation data, making it possible to assess drought even in 
the absence of other hydrometeorological measurements. Second, its adaptability to differ-
ent time scales makes it possible to evaluate drought conditions in different meteorologi-
cal, hydrological and agricultural contexts. Finally, the standardization of the SPI ensures 
that the frequency of extreme drought events remains relatively constant across locations 
and time scales, as demonstrated by Lloyd-Hughes and Saunders (2002) and Hayes et al. 
(1999). Consequently, it maintains its status as a robust and widely favored index for mete-
orological drought diagnosis, making it the preferred choice for researchers to unravel and 
characterize drought events in terms of duration and intensity (Bordi et al. 2004). Along-
side its advantages, the potential disadvantages associated with the SPI should be consid-
ered. These include the difficulty of finding appropriate probability distribution functions 
to model observed precipitation patterns, as highlighted by Guttmann (1999), Wu et  al. 
(2007), and Angelidis et al. (2012). Another disadvantage in the use of the SPI is that suf-
ficiently lengthy time series data are necessary to ensure dependable estimates, as empha-
sized by Guttman (1994, 1999) and Wu et  al. (2005). In addition, the potential inability 
to identify the onset of drought (Wu et al. 2007) or its conclusion (Blain 2012) should be 
considered in cases where SPI series deviate from normal distributions, often seen in pre-
cipitation data with a high frequency of zero values. Finally, the omission of other climate 
variables, such as temperature which, as underscored by Vicente-Serrano et al. (2010), may 
be crucial in the context of climate warming, because this variable makes it possible to 
include precipitation loss, like evaporation, in the drought analysis. Nevertheless, given the 
importance of the SPI, Shukla and Wood (2008) applied the concept employed by McKee 
et al. (1993) for the SPI in defining the standardized runoff index (SRI) as the unit standard 
normal deviate associated with the percentile of accumulated hydrologic runoff over a spe-
cific duration.

As previously evidenced, the identification of a probability distribution suitable 
to describe precipitation or runoff data can be considered a possible source of uncer-
tainty in the SPI or SRI evaluation. In effect as underlined by Guttmann (1999), if dif-
ferent distributions are used to describe an observed series of precipitation or runoff 
data, as a result, different SPI or SRI values may be obtained. Accurate assessment and 
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quantification of the uncertainties associated with drought indices and their impacts 
are crucial for effective drought management and mitigation strategies. For this reason, 
some authors have conducted analyses to examine the impact of probability distribu-
tion selection and record length on the calculation of drought indices or the evaluation 
and comparison of all sources of uncertainty inherent in drought index estimates. For 
example, recent studies (Naumann et  al. 2012; Hu et  al. 2015) have introduced boot-
strap-based methods to quantify the uncertainty associated with the SPI calculations. 
Specifically, in the work of Naumann et al. (2012), the primary focus was to compare 
the SPI confidence intervals derived from datasets of varying lengths, while Hu et al. 
(2015) predominantly discussed the impact of sampling uncertainty on the estimation 
of SPI value. Vergni et al. (2018) employed a bootstrap-based approach to evaluate how 
the SPI confidence intervals behave when subjected to variations in multiple sources of 
uncertainty: the underlying probability distribution, time scale, time series length, and 
month (for time scales shorter than 12 months). Ghasemnezhad et al. (2022) analyzed 
the uncertainty of the SRI in Iran for different time scales, from 3 to 48 months, using 
the Monte Carlo sampling and considering normal, log normal, Weibull and gamma dis-
tribution functions. The results showed that the highest uncertainty is related to the nor-
mal and log normal distributions and the lowest uncertainty is related to the gamma and 
Weibull distributions. In addition, increasing the time scale and decreasing the length of 
the record led to an increase in uncertainty.

In this context, the objective of this scientific paper is to enhance our understand-
ing of meteorological and hydrological droughts in a Mediterranean area (Algeria) by 
conducting a rigorous uncertainty analysis using the Bootstrap resampling technique. 
The findings of this research may offer valuable insights into drought monitoring, early 
warning systems, and water resource management practices in this climatically vulner-
able region, ultimately fostering the development of more resilient and sustainable strat-
egies for addressing drought challenges.

1.1  Study area and data collected

The study area is the Wadi Mina basin, in northwest of Algeria, which covers an area of 
4900  km2 and lies between 00° 22′ 59″ E and 01° 09′ 02″ E and between 34°41′57″ N 
and 35° 35′ 27″ N (Fig. 1). The wadi Mina involves four major tributaries: wadi Mina, 
wadi Haddad, wadi Abd and wadi Taht. The topography of the basin is complex and 
rugged, and the altitude varies from 164 to 1327 m. The climate at the study area is con-
tinental with cold winters and hot summers with large temperature differences. Aver-
age annual precipitation in the basin ranges from 250 to 500 mm, mostly concentrated 
between November and March, while the mean annual temperature ranges from about 
16–19.5 °C. Almost half of the basin is covered by vegetation of varying densities, such 
as scrubs (32%), forests (35.8%), and cereal crops (Achite and Ouillon 2007). Monthly 
precipitation and runoff records for a 40-year observation period (1974–2009) were 
compiled for five precipitation (S1, S2, …, S5) and hydrometrics (H1, H2, …., H5) 
stations from the National Agency of the Water Resources (Fig.  1 and Tables  1 and 
2). Data were examined for homogeneity using the double mass curve, linear regres-
sion, and Mann–Whitney test procedures to ensure quality. The technique found a few in 
homogeneities, and the irregular data were corrected using data from nearby homogene-
ous stations (Achite et al. 2021).  
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2  Methodology

2.1  Standardized precipitation index (SPI) and standardized runoff index (SRI)

The calculation process for the SPI and the SRI is exactly the same but with precipita-
tion data as input for SPI and runoff data as input for SRI (Bazrafshan et al. 2015). The 
process starts with fitting the appropriate probability distribution function to the data 
series in any desired time interval. If X represents the total amount of the variable dur-
ing a period of � month in month j, by fitting the desired distribution to the time series 
of X, the density distribution function or marginal CDF u = F

X�(x�) is obtained. Then the 
index is calculated for each observation with the inverse normal function or ∅−1 = (u

�
) . 

In other words, instead of showing cumulative probability, the index is described by a 
standard normal variable (with zero mean and 1 standard deviation).

Table 3 shows the classification of drought severity based on SPI or SRI values.

Fig. 1  Map of the study area along with located hydro-meteorological stations

Table 1  Precipitation stations characteristics

ID Code Name Longitude Latitude Elevation (m) Mean STDEV

S1 013306 Oued Abtal 0° 40′ 33.97″ E 35° 28′ 03.59″ N 354 21.57 21.73
S2 013401 Sidi Abdelkader 

Djillali
0° 34′ 08.35″ E 35° 29′ 20.71″ N 225 20.11 21.30

S3 013302 Ain Hammara 0° 39′ 16.85″ E 35° 23′ 15.39″ N 288 21.13 21.93
S4 013001 Kef Mehboula 0° 49′ 34.20″ E 35° 18′ 40.72″ N 475 27.29 27.10
S5 013304 Takhmaret 0° 37′ 27.25″ E 35° 06′ 49.01″ N 655 20.63 21.21
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2.2  Drought characteristics

The drought characteristics investigated this study are duration, severity, magnitude and 
peak. According to McKee et al. (1993), a drought event is defined as a period in which 
the SPI or the SRI values are less than zero. Consequently, the drought duration (D) 
refers to the period during which drought values consistently remain below zero, and the 
accumulated drought values within each event represent the drought severity (S), which 
for convenience is considered as an absolute value as follows:

The drought magnitude results from dividing the severity by the duration within each 
event (Azhdari et al. 2021). Finally, the drought peak is the maximum value of S in a 
period of D months.

2.3  Resampling using bootstrap method

This method is classified in the group of non-parametric statistics methods and resam-
pling techniques and is used to estimate the parameter of a statistical population using 
sampling with placement. Bootstrap is also used to calculate the confidence interval for 
the estimation (Verdonck et al. 2001). In the bootstrap method, subsamples are gener-
ated by resampling with replacement from the original sample. Considering that the 
number of original samples is equal to n, it is possible to create infinite sub-samples of 
size n with placement (Dixon 2006).

The bootstrap steps in this research are as follows:
Step 1: N times from the main precipitation or runoff data values X = X1 …Xn should 

be sampled by the sampling method with placement, then N groups resulting from the 
bootstrap samples will be obtained.

(1)S =

||||||

D∑

i=1

SPIi

||||||

(2)X∗
(j)
= X∗

1(j)
…X∗

n(j)
forj = 1…N

Table 3  SPI/SRI drought 
severity classification (McKee 
et al. (1993))

Drought severity classes Threshold value Abbreviations

Extreme wet  > 2 ED
Severe wet 1.5–2 SW
Moderate wet 1–1.5 MOW
Mild wet 0.5–1 MIW
Normal 0.5–(− 0.5) N
Mild drought  − 1– − 0.5 MID
Moderate drought  − 1– − 1.5 MOD
Severe drought  − 1.5– − 2 SD
Extreme drought  <  − 2 ED
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Step 2: Using the maximum likelihood method, the theta parameter of the distribu-
tion function f(x.θ) based on each bootstrap sample X∗

(j)
.j = 1…N is estimated. Then N 

sets of �∗
(j)
.j = 1…N parameters are obtained.

Steps 3: For a given precipitation or runoff event Xi.i = 1…n using eqs. 3 and 4 and 
using N sets of parameters�∗

(j)
 , the number N estimate the cumulative probability H(xi) as 

H(Xi,(j)).i = 1… n;j = 1…N can be calculated.

Step 4: Using Eq.  5, the SPI or the SRI value is estimated for events Xi.i = 1… n 
according to estimates of the cumulative distribution function that values 
H
(
Xi(j)

)
.i = 1… n;j = 1…N; then to calculate the SPI or SRI for each phenomenon x_i, 

N estimates of SPI or SRI are obtained as SPI(orSRI)i.(j) for i = 1… n;j = 1…N.

Step 5: By putting the SPI(orSRI)i.(j) values for i = 1… n;j = 1…N as the sampled SPI 
or SRI for the data event xi , based on it, a point estimate or an interval estimate for SPI or 
SRI can be obtained (Hu et al. 2015).

2.4  SPI and SRI bootstrap sampling algorithm

To evaluate SPI or SRI, the first step was to calculate the amount of cumulative precipi-
tation or runoff in the year i and the month j, which ranges from 1 to 12. The value of j 
depends on the time scale τ, which can be any scale from 1 to 48 months.

where xij is the amount of monthly precipitation or runoff for the year i and the month 
j = 1.2… .12 and; Yt

i.j
 is the cumulative precipitation or runoff value for the desired τ 

scale.
As an example, Y12

1983.12
 means the scale of one month, in the twelfth month (December) 

1983 (τ = 12; j = 12 and i = 1983).
In current study, we applied the Gamma (GA), Weibull (WEI), Extreme value (EVD) 

and Pearson (PE) distributions (Fig. 2).
Based on the presented method to calculate the uncertainty, starting from precipitation 

or runoff data for Y12

i.12
 , which means 1 month scale in the 12th month of 1974–2009, resa-

mpling has been done 1000 times with bootstrap as follows:

In the next step, based on each bootstrap sample, Y∗12
i.12(j)

 a set of 1000 parameters of θ∗
j
 of 

each function has been obtained. Then, using relations Eqs. 1, 2 and 3, there are 1000 esti-
mates of SPI or SRI according to the amount of precipitation or runoff from Y12

i.12
 , for which 

SPI(orSRI)i.j = 1… 1000 can be obtained. Finally, from these thousand estimates, it is 
possible to calculate the upper and lower bounds based on the 5% and 95% quantile.

(3)SPI(orSRI) = �−1(F(X))

(4)H(x) = q + (1 − q)F(x)

(5)SPI(orSRI) = �−1(H(X))

(6)Y�

i.j
=

�−1∑

t=0

Xi.j−t

(7)Y∗12
i.12(j)

=
(
y∗12
1974.9(j)

.y∗12
1975,12(j)

.y∗12
1976.12(j)

.…… ..y∗12
2009.12(j)

)
forj = 1, 2,…… ., 1000
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2.5  Estimation of error

Equation 8 was used to compare the efficiency of the bootstrap simulation values with 
the observed values as suggested by Hugh et al. (2015).

in which ARE is the absolute value of the error ratio and  SPIObs and  SPIEst are the observed 
value and the average value of the estimates in 1000 times of sampling in each time scale, 
respectively.

(8)ARE =
|||||

(
SPIObs − SPIEst

)

SPIObs

|||||
× 100

Fig. 2  The interval for SPI and SRI, by bootstrap method procedure. For example, for SPI, τ = 12; j = 12 
and i = 1983 precipitation is 9 mm. (a) The M (M = 1000) EVD cumulative distribution functions (fitted to 
each sample bootstrap from the original precipitation data), and M possible values of cumulative probabil-
ity P ( X12

1983,12
) are estimated, (b) the empirical cumulative distribution function of the M values of P(X�

i,j
 ), 

and the 0.5th P(X�

i,j
) = 0.0001 and 0.95th P(X�

i,j
) = 0.0.018 percentile discovered. The lower and upper limits 

of the SPI confidence (P = 90%) is − 4.07 and − 2.08 respectively; (c, d) repeated for SRI
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2.6  Kappa Kohen weighted (Kw)

In order to compare the observed and predicted classes of SPI and SRI, the Cohen’s 
kappa statistic was used. Kappa statistic was first introduced by Cohen (1968) as a meas-
ure of agreement in psychology. Given that Pij is the ratio of the total components of the 
time series that belong to class i of one series and to class j of the second series, these 
ratios can be formed inside a matrix whose main diameter contains the unique Pii ratios 
of the components that match in both series and P0 is the sum of Pii values. Considering 
Pe,ii as the product of the sum of the respective row and column ratios (Pe,ii = P•i. Pi•), 
the expected agreement value is equal to the sum Pe of the Pe,ii values. The Kappa statis-
tic is then defined as:

Landis and Koch (1977) presented Table 4 to classify agreement into different cat-
egories. In the comparison of SPI or SRI classes in the observed and predicted series, 
the disagreement between mild drought and moderate drought is not as big as the disa-
greement between mild drought and severe drought. Therefore, by considering specific 
weights for each of the non-agreement states, a more accurate comparison of the SPI 
or SRI classes in the observed and predicted series can be made. By considering the 
weighted wij for the disagreement in the ij domain of the matrix, the weighted disa-
greement is obtained from the sum of the products of the ratio Pij × wij. Therefore, the 
weighted kappa statistic is obtained from the following equation:

The significance test statistic of the weighted kappa statistic with the null hypothesis 
of disagreement is as follows:

where n is the number of time series observations.

(9)K =
P0 − Pe

1 − Pe

(10)K = 1 −

∑
wijPij

∑
wijPe,ij

(11)
t =

K
�

∑
w2

ij
Pe,ij−(

∑
wijPe,ij)

2

n(
∑

wijPe,ij)
2

Table 4  Bescription of Kw and 
value of agreement

Kw statistics Agreement

 < 0.00 Poor
0.00–0.20 Slight
0.21–0.4 Fair
0.41–0.6 Moderate
0.61–0.8 Substantial
0.81–1 Almost perfect
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3  Results and discussion

3.1  Goodness of fit

The evaluation of the efficiency of the four mentioned functions and the goodness-of-fit 
test on precipitation and runoff data in the five climatological and hydrological stations 
are shown in Table 5, which provides K–S and P-value statistics for each distribution.

Rejection percentages are similar among the distributions, with GAM-II and EVD-III 
performing slightly better (no rejection) than PE-III and WEI-II (5% rejection). There-
fore, in general, the performance of all four candidate distribution functions can be con-
sidered acceptable. The noteworthy point is that the goodness-of-fit test is not signifi-
cantly related to the time scale, so that 5% rejection occurred in both 12 and 24 month 
scales. Furthermore, no apparent relationship has emerged between the rejection cases 
with the scale and position of the regional stations or the investigated variable. The 
results of Vergni et al. (2017), Stagge et al. (2015), Lloyd-Hughes and Saunders (2002) 
and Khatun et  al. (2007), Bazrafshan et  al. (2020) also reported the same results on 
goodness of fit.

Table 5  Kolmogorov–Smirnov test for precipitation and runoff

Bold number: No significant at 95%level

Variable St.name Time scale PE-III GAM-II GEV-III WEI-II

K-S Pvalue K-S Pvalue K-S Pvalue K-S Pvalue

Precipitation S1 12 0.02 0.41 0.03 0.14 0.02 0.41 0.05 0.6
24 0.025 0.51 0.028 0.39 0.02 0.64 0.05 0.3

S2 12 0.02 0.73 0.01 0.91 0.02 0.76 0.02 0.48
24 0.030 0.30 0.024 0.61 0.025 0.50 0.02 0.81

S3 12 0.03 0.29 0.020 0.79 0.029 0.33 0.021 0.75
24 0.01 0.95 0.04 0.76 0.02 0.51 0.03 0.23

S4 12 0.024 0.55 0.033 0.22 0.02 0.71 0.021 0.76
24 0.02 0.77 0.02 0.80 0.03 0.10 0.02 0.40

S5 12 0.020 0.80 0.01 0.96 0.04 0.022 0.04 0.06
24 0.01 0.83 0.03 0.24 0.02 0.62 0.02 0.46

Runoff SH1 12 0.023 0.65 0.023 0.63 0.01 0.92 0.026 0.48
24 0.029 0.34 0.015 0.97 0.33 0.204 0.026 0.50

SH2 12 0.024 0.60 0.024 0.59 0.020 0.78 0.04 0.042
24 0.018 0.88 0.031 0.26 0.027 0.45 0.021 0.75

SH3 12 0.021 0.761 0.02 0.49 0.024 0.58 0.02 0.56
24 0.03 0.23 0.034 0.18 0.03 0.32 0.047 0.22

SH4 12 0.032 0.23 0.017 0.91 0.03 0.22 0.03 0.26
24 0.024 0.359 0.030 0.30 0.02 0.54 0.018 0.89

SH5 12 0.03 0.23 0.022 0.71 0.02 0.76 0.032 0.25
24 0.04 0.01 0.02 0.34 0.03 0.25 0.017 0.92

Percentage of rejection at 5% 
significant level

5% 5% 0% 0% 5%
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Table 6 shows the descriptive statistics including mean, minimum, maximum and stand-
ard deviation of SPI and SRI at the 95% confidence level for the 12- and 24-month time 
scales and the investigated stations considering the four investigated functions.

Based on the results, the averages estimated in SPI are in the same descriptive class, so 
that the extreme meteorological wet (maximum SPI) is estimated by the PE-III function 
and the extreme meteorological drought (minimum SPI) is estimated by the EVD-III func-
tion, which has the highest standard deviation. In hydrological drought, the most severe 
hydrological drought is estimated by WEI-II, but the most severe hydrological drought and 
the highest standard deviation is estimated by GAM-II, which is often seen in a 12-month 
time scale.

3.2  Election of distribution function and time scale on drought monitoring

SPI and SRI were extracted in the 12- and 24-month time scales with four distribution func-
tions, and drought events were estimated based on the classification proposed by McKee 
et al. (1993). Figure 3 (a, b) shows the SPI and Fig. 3 (c, d) the calculated SRI at station S1 
and SH1 for the 12- and 24-month time scales. The SPI on a 12-month scale has several 
fluctuations, so that the duration of drought changes with different intensity and weakness 
in different years. Several historical wet/dry events have been detected by all functions for 
the SPI and the SRI at both 12- and 24-month time scales (Table 7). For example, on a 
12-month scale (τ = 12), in 1983 (i = 1983) in December (j = 12), with 9 mm of precipita-
tion, the most severe drought (SPI =  − 3.72) has been estimated by the EVD-III, followed 
by the GAM-II (SPI =  − 3), while the WEI-II and the PE-III estimated − 2.06 and − 2.05 
respectively. Considering the event  Y12

1975,6 with P = 39 mm, the WEI-III has estimated the 
most severe wet period (SPI =  − 3.10) followed by the PE-III (SPI =  − 2.81), the GAM-II 
(SPI =  − 2.67) and the EVD-III (SPI =  − 2.23). Considering the 24-month scale, two short-
term drought periods and two long-term drought periods have been observed, in which the 
historical drought event  Y24

2000,5 occurred. Similar to the 12-month scale, the EVD-III has 
estimated the most severe drought (SPI =  − 3.14) followed by the WEI-II (SPI =  − 1.53). In 
general, for the meteorological drought, EVD-III estimated the most severe drought while 
the WEI-II has estimated the values of lower intensities.

Regarding hydrological wet and drought events, the SRI showed three long-term 
drought periods for the 12-month time scale and, in the period 2003–2007, two histori-
cal events Y12

2005,8
 and Y12

2007,6
 occurred. On a scale of 24 months, the duration of drought is 

increasing and a historical event Y24

2005,12
 occurred. The GAM-III estimated the most severe 

droughts in all the years while the PE-III showed the least severity of drought. On the other 
hand, considering the historical wet events Y12

1981,5
 , Y12

1998,5
 , and Y24

1975,12
 were rated as the 

most severe for the PE-III while the EVD-III evidenced the least severity.
Figure 4 shows the drought zoning in two historical events of meteorological (Fig. 4a) 

and hydrological (Fig. 4b) drought with the help of the EVD-III and the GAM II functions, 
respectively, in Mina basin. The above occurrences are the most exceptional droughts that 
have been mentioned by the functions during the study period. In the event SPI12

1983,12
 the 

most vulnerable parts of the region in terms of lack of precipitation have been identified in 
the southern parts, while in event SRI12

2007,6
 the most vulnerable points in terms of surface 

currents have been detected in the northern regions.
Figure 5 is calculated considering the classification (9 categories) proposed by Lloyd-

Hughes and Saunders (2002) for two time scales and two indicators investigated in sta-
tions S1 and SH1. Based on the results of the SPI-12 (Fig. 5a), most of the frequency of 
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Fig. 3  Time series of SPI (a,b) and SRI (c,d) in the time scale of 12 at station S1 and SH1
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Fig. 4  Spatial drought mapping of SPI12
1983,12

(a)andSRI12
2007,6

(b) using EVD and Gamma III in the Mina 
Basin
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Fig. 5  Drought frequency in each category of wet/drought descriptive class (a) SPI and (b) SRI at 12 and 
24-month time scales (N: normal; EW: extreme wet; SW: severe wet; MW: moderate wet; MIW: mild wet; 
MOD: moderate drought; SD: severe drought; ED: extreme drought) (Threshold value of each class pre-
sented in Table 3)
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droughts in the study area fall within normal and mild drought classes, with percentages of 
normal conditions equal to 37% for the PEI-III, 40% for the GAM-II and the EVD-III and 
475 for the WEI-II and percentages of mild drought conditions estimated to be 22%, 20%, 
17% and 14% for the WEI-III, PEI-III, GAM-II and EVD-III functions, respectively. Simi-
lar results have been obtained for the SPI-24. In the two investigated scales, EVD-III and 
GAM-II functions compared to the other two functions have successfully estimated SD, 
ED drought events (Fig. 5a).

These results confirm past studies, such as Achite et al. (2023), evidencing that, in the 
Mediterranean regions of Algeria, due to the distribution of precipitation around the aver-
age, the condition of drought generally falls within the normal class.

As regards the SRI-12 (Fig.  5b), the PEI-III estimated more than 40% of the condi-
tions to be normal, while the other functions estimated 32% on average. The 24-month 
time scales presents almost the same results. PEI-III and WEI-II functions have been con-
siderably more successful in estimating historical drought events for both the time scales.

Generally, a higher frequency of hydrological droughts in the severe and extreme classes 
compared to meteorological droughts have been observed and this can be considered a con-
sequence of climate change and anthropogenic activities (Aghakouchak et al. 2021; Zheng 
et al. 2023).

3.3  Uncertainty analysis

Based on the introduced methodology, for both the time scales, year and month, the 
values of SPI and SRI were calculated with 1000 production sampling and error val-
ues, bands and average. Table  8 shows some historical drought events in the investi-
gated scales. The results of the 12-month historical drought with 9  mm rainfall, SPI 
estimated by the PEI-III is − 2.06, SPI estimated by bootstrap is − 2.19, estimation error 
(ARE) is 0.06, upper and lower band are − 1.70 and − 2.87 respectively, and the degree 
of uncertainty or band difference is 1.16. Considering the GAM-II, SPI is − 3.00, boot-
strap SPI is − 2.65, estimation error is 0.11, upper and lower bands are − 2.07 and − 3.35 

Table 8  The observed, estimated by bootstrap, simulation error, upper and lower bands of SPI and SRI in 
several historical drought events at station S1 and SH1

OBS SPI/SRI observed, EST SPI/SRI estimated, AER Absolute error ratio, UB Upper band, LB Lower 
band, UN Uncertainty

Value SPI OBS EST ARE UB LB UN OBS EST RE UB LB UN
Yτ
i,j Y12

1983,12
Y24

2005,5

PEI-III  − 2.06  − 2.19 0.06  − 1.70  − 2.87 1.16  − 0.84  − .097 0.15  − 0.50  − 1.55 1.04
GAM-II  − 3.00  − 2.65 0.11  − 2.07  − 3.35 1.27  − 0.94  − 0.99 0.05  − 0.44  − 1.65 1.21
EVD-III  − 3.72  − 2.86 0.23  − 2.08  − 4.07 1.99  − 0.98  − 0.95 0.03  − 0.35  − 1.68 1.33
WEI-II  − 2.05  − 2.03 0.008  − 1.67  − 2.44 0.76  − 0.74  − 0.93 0.24  − 0.51  − 1.40 0.88

SRI Y12

2007,6
Y24

2005,12

PEI-III  − 2.22  − 2.39 0.07  − 1.70  − 3.70 2.04  − 2.51  − 3.11 0.23  − 1.94  − 4.52 2.58
GAM-II  − 3.05  − 4.79 0.56  − 3.79  − 6.01 2.21  − 2.49  − 4.30 0.72  − 3.08  − 5.92 2.83
EVD-III  − 2.28  − 3.90 0.70  − 2.99  − 4.64 1.64  − 2.30  − 4.19 0.81  − 3.25  − 4.67 1.42
WEI-II  − 2.86  − 3.41 0.19  − 2.93  − 3.99 1.05  − 2.22  − 2.91 0.30  − 2.33  − 3.55 1.21
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respectively, and the degree of uncertainty is 1.27. For the EVD-III, SPI is − 3.72, 
bootstrap SPI is -2 0.86, estimation error is 0.23, upper and lower bands are − 2.08 
and − 4.07, respectively, and the uncertainty level is 1.99. Finally, as regards the WEI-II, 
SPI is − 2.05, bootstrap SPI is − 2.03, estimation error is 0.008, upper and lower band 
are − 1.67 and − 2.44, respectively, and uncertainty level is 0.76. The changes in band 
values are shown in Fig. 6 (a1–a4). Based on the results, all the estimates for SPI are 
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Fig. 6  Comparison of observed, estimated, upper and lower bond SPI12
1983.12

 (a1-a4) and SRI12
2007.6

 (b1–b4) 

in station S1 and SH1 Zoning of upper band (a), lower band (b) and uncertainty (c) of ���12
1983.12

 event in 
EVD-III function and zoning of ���12

2007.6
 upper band (d), lower band (e) and uncertainty (f) in GAM-II are 

shown in Fig. 7 The interpolation is based on the kriging method
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within the confidence range and the bootstrap estimated values are in good agreement 
with the observed values in all functions and are in the defined confidence band.

The same values were calculated for SRI historical events. For example, in the histori-
cal event of Y12

2007,6
 with a runoff of 0.1  m3/s, the estimated SRI with the PEI-III is − 2.22, 

the SRI estimated by bootstrap is − 2.39, the estimated error is 0.07, the upper and lower 
bands are − 1.70 and − 3.70, and the amount of uncertainty or difference between the bands 
is 2.04. For the GAM-II, with SRI is − 3.05, SPI estimated with bootstrap is − 4.79, esti-
mated error is 0.56, upper and lower band are − 3.79 and − 6.01, respectively, and uncer-
tainty level is 2.21. In the EVD-III results, observed SRI is − 2.28, bootstrap SRI is − 3.90, 
estimated error is 0.70, upper and lower bands are − 2.99 and − 4.64, and the uncertainty is 
1.64. Considering the WEI-II, observed SRI is − 2.86, bootstrap SRI is − 3.41, estimated 
error is 0.19, upper and lower band are − 2.93 and − 3.99, respectively, and the uncertainty 
is 1.05. The changes in upper and lower bands are shown in Fig. 6 (b1–b4). Based on the 
results, only for the PEI-III estimated and observed value fall within the uncertainty band, 
while for the other functions, although the SRI estimated is within the confidence band, 
the observed values are outside the band, and there is a great difference in the estimated 
and the observed event. In Fig. 6 (b1–b4), this discrepancy in historical event Y12

2007,6
 can be 

clearly understood. Most of the estimated values have maintained the observed trend, but 
in the minimum value of SRI that occurred (historical drought) on the mentioned date, the 
significance difference between observed and estimated is well evident.

As a result, considering the upper band (Fig. 7a) the central areas of the Mina Basin 
are the most vulnerable areas suffering from severe droughts (SPI <  − 1.9). These areas 
constitute 13% of the region surface, while more than 60% of the region in the northern 
and southern parts is under normal conditions (SPI <  − 0.5). In the lower band of the men-
tioned historical event, the central regions with an area of more than 15% are under severe 
and extreme droughts, while more than 50% of the region is under normal conditions. 
Therefore, from the comparison of the upper and lower bands, it emerges that the spatial 
pattern of drought does not change significantly among the maps, but in this example, the 
only factor affecting the size of the confidence interval is shown by the variability of the 
rainfall data of each station. Considering that the central parts have the highest intensity of 
drought, therefore the greatest distance between the upper and lower band is also in these 
places with an uncertainty of 2.2, while the northern and southern parts have the lowest 
uncertainty.

Regarding the historical SRI12
2007,6

 event, the most vulnerable points in this event are the 
northern parts of the Mina basin, where the spatial pattern of the upper and lower band is 
similar, which indicates the highest variability of the runoff. The uncertainty of the esti-
mates is also high in the northern parts.

Figure 8 shows the uncertainty and error rate for the different functions and time scales 
in the entire time range under investigation. The average uncertainties of SPI-12 (Fig. 8a) 
in the whole basin using PEI-III, GAM-II, EVD-III, WEI-II function are 0.8, 0.742, 1.14 
and 0.742, respectively, while the errors (Fig. 8b) are equal to 12.26, 20.8, 62.08 and 1.91 
respectively. Therefore, on a 12-month scale in the case of SPI, WEI-II in the first degree 
and PEI-III in the second degree have the least uncertainty and error in meteorological 
stations. For the 24-month time scale, the average uncertainties of the SPI (Fig.  8c) in 
the whole basin using PEI-III, GAM-II, EVD-III, WEI-II function are 1.67, 1.102, 1.066 
and 1.09, respectively, with errors (Fig. 8d) equal to 11, 38.2, 55.04 and 26.2 respectively. 
Therefore, for this time scale, WEI-II and PEI-III functions have the least uncertainty 
and error. The comparison of uncertainty and error between the time scales showed that 
with the increase of the time scale and the decrease of the sample size, the amount of 
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uncertainty and estimation error increases. In fact, on average, the amount of uncertainty 
and error in the SPI-12 are 0.85 and 24.24, respectively, while in the SPI-24 they are 1.106 
and 32.61 respectively.

Researchers such as Guenang and Kamga (2014), Pieper et al. (2020) and Sherif et al. 
(2014) introduced WEI-II as the best function in SPI modeling while Zhang and Li (2020) 
believe that WEI-II has not been successful in estimating SPI in long and medium term 
periods and it is better to use it only for a short-term scale (1–3 months).

In the case of hydrological drought, the average uncertainties of SRI-12 (Fig.  8e) in 
the whole basin using PEI-III, GAM-II, EVD-III, WEI-II function are 1.064, 0.846, 0.828 
and 0.872, respectively, with errors equal to 1.704, 1.542, 0.574 and 1.07 respectively 
(Fig. 8f). Therefore, on a 12-month scale in the case of SRI, EVD-III distribution has the 
lowest uncertainty and error in hydrometric stations. For the 24-month time scale, the aver-
age uncertainties of SRI-24 (Fig. 8g) in the whole basin using PEI-III, GAM-II, EVD-III, 
WEI-II function are 1.604, 1.34, 1.238 and 1.378 respectively, with errors equal to 1.73, 
1.742, 1.57 and 1.66 respectively (Fig. 8h). Therefore, for this time scale, EVD-III has the 
least uncertainty. Regarding hydrological drought, increasing the time scale or reducing the 
sample size causes the uncertainty to increase from 0.90 to 1.36 and the error from 1.22 to 

Fig. 7  Map of upper band (a), lower band (b) and uncertainty (c) SPI12
1983.12

 in in EVD-III and SRI12
2007.6

 zon-
ing of upper band (d), lower band (e) and uncertainty (f) in the GAM -II
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1.68. It is noteworthy that the uncertainty in SPI is lower and its error is higher compared 
to SRI. The greater the band difference, the lower the certainty and the greater the uncer-
tainty (Vergni et al. 2015). The higher SPI error compared to SRI is due to the fact that this 
index reflects only precipitation data, since it does not include other factors, such as evapo-
ration in the water balance. By contrast, the SRI reflects all hydrological processes influ-
encing runoff; therefore, the error can be lower (Cerpa Reyes et al. 2022). Consequently, a 
longer period of time (more number of sampling) has less uncertainty, since the number of 
samples decreases as of the time scale increases, so the uncertainty bandwidth increases 
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Fig. 8  Average of estimated error and uncertainty for the different functions and time scales. a and c: uncer-
tainty of SPI 12 and 24; b and d: ARE of SPI 12 and 24; e and g: uncertainty of SRI 12 and 24; f and h: 
ARE of SRI 12 and 24
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as well. Perhaps one of the most important factors of higher ARE in SPI than in SRI is the 
greater precipitation variability compared to runoff.

Researchers such as Zhu et al. (2019), Vicente-Serrano et al. (2012), Shukla and Wood 
(2008) and Engeland et al. (2004) introduced the EDV-III function as the best distribution 
function in SRI modeling.

3.4  Comparison of the agreement between observed and estimated values 
in the severity of drought classes

To compare the agreement of the observed values with the bootstrap estimate in the assess-
ment of the drought severity classes presented in Table 9, the weighted kappa statistic was 
used. The highest agreement between observed and estimated drought values in meteoro-
logical drought (almost perfect agreement) has been calculated in the WEI-II for both the 
SPI-12 and SPI-24. Then, the EVD-III and the GAM-II are placed in the class of substan-
tial and almost perfect agreement, and the PE-II is in the class of substantial and moderate 
agreement.

The lowest agreement (slight and poor agreement) was observed for SRI-12 and SRI-24 
by the EVD-III. Other functions have substantial and moderate agreement. In terms of the 
time scale, the lowest agreement in both indicators was seen in the 24-month time scale. 
Therefore, in a summary, it can be said that the WEI-II has the highest agreement in mete-
orological and hydrological drought in a time scale of 12 months (longer sample size).

3.5  Drought characteristics in observed and estimated values

Based on the presented methodology, drought characteristics including severity, duration, 
magnitude and peak were estimated for sample stations S1 and SH1. Figure 9, 10, 11 and 
12 show the Max, Min and average characteristics for the observed and estimated values 
in different functions and time scales of SPI, SRI. It can be said that the characteristics of 
drought in the estimated values by bootstrap are far more than the observed values, espe-
cially in the 24-month scale in two indices.

Paired t-test was used to compare drought characteristics in observed and estimated 
characteristics. The statistical comparison of the mentioned characteristics is presented in 
Table 10. Based on the results, there is a significant difference between the severity and 
peak of SPI-12 estimated by the WEI-II and the PEI-III, while this significant difference 
does not emerge among any of the characteristics in different functions in SPI-24. An inter-
esting result has been obtained considering the characteristics of drought in SRI-24 caused 
by the WEI-II. In fact, the results of the WEI-II have a significance difference with other 
distributions with the estimates in hydrological drought that are sometimes overestimated 

Table 9  The weighted Cohen’s 
kappa statistic between SPI/SRI 
observed and estimated

SPI/Kw EVD-III SA GAM-II SA PE-III SA WEI-II SA

SPI-12 0.77 S 0.89 AP 0.76 S 0.96 AP
SPI-24 0.64 S 0.75 S 0.58 M 0.84 AP
SRI-12 0.2 S 0.63 S 0.55 M 0.72 S
SRI-24 -0.06 P 0.6 M 0.49 M 0.66 S
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Fig. 9  Drought severity of SPI 12 (a), SPI 24 (b), SRI12 (c), SRI 24 (d) for different distribution functions
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or underestimated compared to the other distribution functions. This situation is not evi-
dent in meteorological drought.

According to Vergni et  al. (2017), as expected, the uncertainty increases when each 
record length decreases. Therefore, the main source of uncertainty is the length of the 
record, and the effects due to the time scale are insignificant. Because the uncertainties in 
time scale, record length and drought characteristics did not show significant difference.
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The results of uncertainty of hydrological drought showed that two-parameter distribu-
tions (WEI-II, GAM-II) produce shorter confidence intervals than three-parameter distri-
butions (EVD-III, PE_III). However, due to the poorer fit of two-parameter distributions to 
runoff values, estimates from these two-parameter distributions may provide less reliable 
runoff probability. Therefore, drought characteristics will be significantly different from the 
values of two-parameter distribution functions.

Regardless of the type of distribution function and the number of parameters, the esti-
mated SRI related to extreme values of runoff is always associated with an uncertainty. 
This uncertainty is due to the variability of the hypothetical distribution function that is 
used and this situation occurs when the data (runoff) approaches the tails of this hypotheti-
cal distribution function.

As regards the meteorological drought uncertainty, the WEI-II distribution function had 
the lowest uncertainty, and its drought characteristics showed a significant difference with 
the PEI-III. According to Zamani and Bazarfashan (2020), in the regions with high fluctua-
tions of precipitation regimes, the standard deviation is high; therefore, the coefficient of 
variation of precipitation (the ratio of standard deviation to the average precipitation) is 
high, causing an increase in kurtosis and light tail. This situation indicates the high fre-
quency of irregular rainfall events throughout the year in Mediterranean regions. In this 
case, the WEI-II distribution function will be the best estimate of drought (Table 10).

4  Conclusion

Drought investigation is now one of the most important challenges, especially in arid and 
semi-arid regions. SPI and SRI are simple and commonly used indicators for meteorology 
and hydrology drought. Despite their simplicity, both indicators are based on the statistical 
distribution of precipitation and runoff time series. The properties of these time series can 
depend on the estimates of parameters in statistical distributions, ultimately affecting the 
uncertainty of drought analysis. This is particularly important in the context of spatial and 
temporal drought analysis and projections.

The objectives of this work were to analyze the uncertainty of meteorological and hydro-
logical droughts based on SPI and SRI in the wadi Mina basin in northwest Algeria. The 
following distributions of precipitation and runoff time series were considered: Gamma 
(GA), Weibull (WEI), Extreme value (EVD), and Pearson (PE). Bootstrap methods were 
used to generate samples of data, and subsequently, the uncertainty of both drought indica-
tors was assessed.

The results show that all considered distributions were acceptable fits for the time series, 
and the time scale of the data was not significantly related to the goodness of fit. Moreo-
ver, there was no apparent relationship between the rejection cases and the scale and posi-
tion of the regional stations or the investigated variable. The lack of significant differences 
between time series for a particular distribution caused the averages estimated in SPI to fall 
within the same descriptive class. The most severe meteorological droughts were observed 
for the PE-III function and the EVD-III function. In the case of hydrological drought, the 
most severe drought was estimated by the WEI-II and the GAM-II. The type of periods 
(dry or wet) depends on the type of distribution of the data. In general, for meteorological 
drought, the EVD-III represents the most severe drought, and the WEI-II has estimated 
values of lower intensities. Regarding hydrological drought, all events are rated as the most 
severe for the EVD-III.
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In the uncertainty analysis, most of the observed SPI values fell within the confidence 
range for all distributions, both for the SPI and the SRI. Only in the case of the SRI, results 
from the PEI-III were above the true value in the bootstrap band. Based on the weighted 
Kappa statistics, the highest agreement between observed and estimated values for both 
kinds of drought occurred with the WEI-II at SPI 12 and SPI 24. Following this function, 
the EVD-III and the GAM-II showed substantial and almost perfect agreement, while the 
PEI-III fell into the category of substantial and moderate agreement.

The results of the results, WEI-II has the lowest estimation error and uncertainty in 
meteorological drought in the two investigated time scales, but in hydrological drought it is 
related to EVD-III. Investigating the use of the two mentioned functions for drought moni-
toring in two medium-term and long-term time scales is recommended.

These results are important from a methodological perspective because they highlight 
the necessity of including uncertainty in drought analysis, especially now when future cli-
mate projections are subject to strong uncertainty. It is also crucial to select the statistical 
distribution for calculating SPI and SRI appropriately, especially for longer time-periods.

Considering the temporal distribution of precipitation and its effect on runoff in Medi-
terranean regions, the results of this study can help to develop a meteorological/hydrologi-
cal drought warning and monitoring system in similar regions.
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