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Abstract
Sikkim Himalaya, a part of the North-Eastern Himalayan region, is affected by the 
landslides and it causes the loss of life, property, and other human infrastructure, etc. 
The objective of study is identification of landslides susceptibility zones of the Sikkim 
Himalaya, using various factors/thematic layers, such as absolute relief, relative relief, 
relief ratio, dissection index, hypsometric integral, slope index, drainage density, drainage 
frequency, drainage intensity, drainage texture, infiltration number, junction frequency, 
length of overland flow, ruggedness index, stream transport index, topographic wetness 
index, stream power index, and rainfall and all these layers are integrated in Arc GIS 
software using FR model. These spatial factors are generated using Alos Palsar DEM 
and rainfall data with the help of the Arc GIS. The FR model was utilised for the purpose 
of determining the weights of such all-thematic layers for the possibility of landslides 
occurring in regions that are susceptible to the effects of landslides. These weight of 
such all thematic layers are combined using the Arc GIS to create the map of landslide 
susceptibility zones. The map of the landslide susceptibility zones of the region has 
been split into five distinct categories, including ‘very high’ (13.20%), ‘high’ (19.75%), 
‘moderate’ (30.81%), ‘low’ (27.14%), ‘very low’ (9.09%). For accuracy analysis of the 
model the area under the curve is used and is estimated as 84.6% with the help of the FR 
model and occurrence of previous landslides in the region.

Keywords  Morphometrical · Hydrological · Remote sensing and GIS · Frequency ratio 
model · Sikkim Himalaya

1  Introduction

Natural disasters such as earthquakes, avalanches, landslides, and glacier lake outburst 
flood (GLOFs) represent a major threat to life and infrastructure  damage in Himalayan 
terrain mainly (Chowdhuri et  al. 2022a). Landslides have recently occurred in India’s 
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Himalayan hilly regions, causing destruction of infrastructure and cultural heritage (CH), 
loss of life, traffic challenges ranging from mildly inconvenient to catastrophic, and it 
impact on the economy’s foundation (Kumar et al. 2018; Saha et al. 2021; Chakrabortty 
et  al. 2022; Sonker et  al. 2022). Because of intense tectonic movement, the Himalayan 
have terrain that is steep and a complex geological structure that causes avalanches, mass 
movements, and earthquakes. Among the many mountainous hazards that occur in the 
Himalayan region, landslides happen to be the most frequent and prominent occurrences. 
Overall, 80% of all landslides happen in India’s Himalayan area, and particularly during the 
period with the most precipitation, the "Gharwal Himalaya, Himachal Himalaya, Kumaun 
Himalaya, Sikkim-Darjeeling, and middle Himalaya" have all seen several disastrous 
landslide incidents (Chowdhuri et al. 2022b; Islam et al. 2022).

In India, the Sikkim Himalaya of North-East Himalayan is one of the most susceptible 
regions for the landslide occurrence.  This is because of transforming a forest area into 
cleared land, heavy rainfall, constructing more human settlement and industrialization, 
and changes in climate have all caused landslides here at all spatial scale (Bhattacharya 
2013; Skilodimou et al. 2018; Tripathi et al. 2022). All of which have resulted in greater 
rock degradation and waterlogging of the soil that generates landslides on gentle to sharp 
and scraping gradients in the hilly terrain (Bhattacharya 2012, 2013; Chamling 2013; 
Mandal and Maiti 2013). Each year, hundreds of human lives are lost by landslides in the 
Sikkim Himalaya. More than 36,000 people have been killed in the year of 1968 due to the 
landslide (Bhasin et al. 2002; Kaur et al. 2019).

Therefore, the use of landslide susceptibility zonation (LSZ) is considered the 
initial stage in landslide risk zones preparation, analysis, and elimination. Due to this, 
numerous authors over the world have utilised these stages for identification of landslide 
susceptibility zonation (Gupta and Joshi 1990; Van Westen 1994; Binaghi et  al. 1998; 
Gupta 2003; Sarkar et  al. 2006; Lee 2005; Nefeslioglu et  al. 2008, 2010; Pradhan et  al. 
2010; Pourghasemi et al. 2012a, b; Kayastha et al. 2013; Dou et al. 2015; Sangchini et al. 
2016; Pal and Chowdhuri 2019; Basu and Pal 2020; Sonker et al. 2021, 2022). In recently, 
landslide susceptibility zonation (LSZ) map is a map that utilizes remotely sensed data and 
geographic information systems (GSI) to identify areas that are susceptible to landslides 
which produce better high precision outcomes. To make a landslide susceptibility zonation 
(LSZ) map, it is now necessary to make a factor/thematic layer of landslide causes and 
give each of them a calculated weight. Remote sensing is a useful tool because it works in 
space and time, as well as repeatedly collecting data, and it can also be used in inaccessible 
locations (Yalcin et  al. 2011; Anbalagan et  al. 2015; Zhao and Lu 2018; Mersha and 
Meten 2020; Gupta et  al. 2022; Taloor et  al. 2021a, b, c; 2022). Through the utilisation 
of GIS, we may collect geospatial data gathered from remote sensing and several different 
data products for use in assessment, modelling, simulations, and visual analytics, all of 
which help us arrive at more informed conclusions (Ilanloo 2011; Kannaujiya et al. 2019; 
Velayudham et al. 2021; Islam et al. 2022).

In this study, we utilise a frequency ratio (FR) method in remote sensing (RS) and a 
geographic information system (GIS) setting to determine potential landslide susceptibility 
zones by analysing a variety of morphometric and hydrological features. Morphometry is 
a term that is widely used to refer to the process of quantifying and performing statistical 
modelling on the arrangement of the surface of the earth, as well as the shape and size 
of the earth’s landforms (Horton 1945; Miller 1953; Melton 1957; Clarke 1996; Agarwal 
1998; Reddy et  al. 2002; Yangchan et  al. 2015; Farhan 2017; Bhatt et  al. 2020; Sonker 
et  al. 2023). The study of morphometric parameters measures the condition of the geo-
hydrological phenomenon of a drainage basin of the study region, which also represents 
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the predominant climate condition, lithology types, landforms, and other characteristics 
of the region (Horton 1932, 1945; Strahler 1952; Mueller 1968; Cox 1994; Oguchi 1997; 
Mishra and Rai 2020). Hydrological parameters represent sediment transportation during 
surface runoff and the region’s moisture condition, which help understanding of the surface 
condition of the drainage basin (Rekha et al. 2011; Sreedevi et al.2013; Soni 2013). The 
goal of the research is to learn how the combination of morphometry and hydrological 
parameters can help us understand landslide susceptibility zonation mapping.

Researchers have used morphometric parameters to learn more about areas of the 
Himalayas that are prone to landslides (Ghosh 2015; Das and Lepcha et  al., 2019). 
Therefore, the researcher has used morphometric parameters such as drainage density, 
drainage frequency, junction frequency, relative relief, relief ratio, altitude, texture, slope, 
and other responsible factors for landslides to generate the landslide susceptibility zonation 
map (Devkota et  al. 2013; Anbalagan et  al. 2015; Ghosh 2015; Rawat et  al. 2017; Das 
and Lepcha et al. 2019; Saha et al. 2022). The hydrological parameters TWI (topographic 
witness index), SPI (stream power index), STI (stream transportation index), and rainfall 
have also been used by several researchers to generate the LSZ map (Rożycka et al. 2017; 
Kalantar et al. 2018; Das and Lepcha et al. 2019; Moazzam et al. 2020, Sur et al. 2020; 
Sonker et al. 2022). The major causes of landslide in the Sikkim Himalaya are the rainfall 
in rainy season, so this factor plays major role for help to understand the morphometric and 
hydrological analysis for the LSZ mapping in this region.

The objectives of this study are: (1) the integration of the morphometric and 
hydrological parameters for the mapping of the landslide susceptibility zonation with the 
help of remote sensing data and GIS, (2) this map of landslide susceptibility zonation is 
validated and calculated with accuracy using the landslide inventory location for predicting 
the possibility of landslide susceptibility in interior regions of the state of Sikkim.

2 � Materials and methods

2.1 � Study area

The Sikkim Himalaya (Fig.  1) lies mostly in the Lesser and Greater Himalaya of the 
North-Eastern Himalayan, and is made up of a younger mountain structure with fault-
ing and folding. The topography of the region is entirely hilly, with less flat areas, and 
the elevation varies from 240 to above 8000 m, above mean sea level (msl). The area’s 
latitude and longitude are 27° 5′ to 28° 10′ and 88° 01′ to 88° 58′. The length of the 
state from north to south is 113 kms, while the width of the region from east to west 
is 65 kms. The total land area of the region is 7096 square kilometres. Nepal, Bhutan, 
Tibet, the state of West Bengal surrounds it on the west, east, north, and south, respec-
tively. The state of Sikkim has four districts: North, East, South, and West Sikkim. Sik-
kim’s largest district is North Sikkim, which has a land area of 4226 km2 and contrib-
utes for almost 60% of the surface area of the state. The remaining three districts have 
included East, West, and South Sikkim, each of which covers around 13%, 16%, and 
11% of the total surface area, respectively. Gangtok, the state capital and most impor-
tant city, is located in North Sikkim district. The region contains two rivers such as the 
Teesta River and Rangit River. The landforms and river systems of the Teesta River are 
primarily distinguished by the presence of four-tiered terraces, canyons or gorge-valleys 
at various elevations, asymmetric valleys, polyprofilic U-shaped valleys and steps or 
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troughs, lakes, alluvial cones, truncated ridge-spurs, and terracettes (soil landscape sys-
tems). The river exhibits many different types of river systems, ranging from straight 
to meandering and braided channels, including rectangular-barbed-parallel-trellis-radial 
to sub dendritic river systems. Each of the above physical characteristics shows that 
degradation, erosion, and deposition are still happening in the region, which makes it 
very fragile. The climate of the area can be generally classified as tropical, temperate, or 
alpine zone. Humidity and cold dominate the weather pattern for the majority of season. 
The majority of the region has consistently high rates of rainfall from May to October.

2.2 � Landslide inventory data

The concept of "landslide inventory location" refers to the historical data on landslides 
that have happened in various locations and at different periods. It is used for the 
forecasting of the LSZ mapping and evaluations of risk (Wu et al. 2016; Sonker et al. 
2021). Landslide’s locations for the inventory (Number of landslides are 688 and 
locations show in Fig. 1) were gathered from the Bhukosh portal (Geological Survey of 
India) and utilized to assessment and validity of the present research. These inventory 
locations  are  separated among two separate categories as random, such as training 
data, which is utilized 70% (479) to generate the FR model,  and validation and result 
verification, utilizing 30% (209) of the data. The aim of the current inventory was to 
forecast and minimize the potential of future landslides.

Fig. 1   Study map of the Sikkim Himalaya with location of the landslide inventory and drainage order of the 
region
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2.3 � Steps for identification of landslides susceptibility mapping

The Sikkim Himalaya regions that are susceptible to landslides prone are identified 
using a frequency ratio and geospatial tools method based on the assessment of 
morphometric and hydrological parameters. Frequency ratio model is used to analyse 
the landslide susceptibility map in this area with the help of the Arc GIS tools. In this 
model, weights of the factors are calculated on the basis of landslide inventory location 
and factors classes of the morphometry and hydrological parameters. Therefore, each 
step of the methodology for the LSZ mapping are given below:

2.3.1 � Generating thematic layers

The drainage order of the study area was extracted using Alos Palsar (spatial resolu-
tion of 12.5  m) DEM (Digital Elevation Model) data and the order is seven which is 
validated with toposheet of Sikkim (Survey of India) (Because they belong to a bor-
der state, not all toposheets are available.). The Alos Palsar-DEM data was downloaded 
from Earth Data (https://​asf.​alaska.​edu/​data-​sets/​sar-​data-​sets/​alos-​palsar/). The drain-
age system and DEM data of the study area used to generate different raster maps of 
morphometric parameters (factors of drainages and relief) with the help of different 
formula given in Table 1 and the class of the factor in Table 2, such as absolute relief 
(Ar), relative relief (R), relief ratio (Rh), dissection index (Di), hypsometric integral 
(HI), slope index (Sl), drainage density (Dd), drainage frequency (Fs), drainage inten-
sity (Di), drainage texture (Dt), infiltration number (If), junction frequency (Jf), length 
of overland flow (Lg), ruggedness index (Rn), with the help of the Arc GIS Software, as 
shown in Fig. 2a–n. The hydrological parameters such as stream transport index (STI), 
topographic wetness index (TWI), stream power index (SPI), were generated using 
DEM data with the help of the Arc GIS, as shown in Fig. 2o–q. Rainfall (Rf) map was 
generated using rainfall data using Arc GIS, as shown in Fig.  2r. Daily rainfall data 
from 1988 to 2018 was collected by IMD, Pune (Indian Metrological Department, Pune 
(https://​www.​imdpu​ne.​gov.​in/).  

2.3.2 � The logic that involved into choosing of the different factor/thematic layers

Landslides typically happen owing to a range of variables, such as high precipitation and 
subsoil wetness, gradient variability, landscape degradation, forest degradation, subsurface 
composition, etc. in different areas of the study region. The morphometric and hydrological 
parameters are preferred based on this above condition. Landslide-causing circumstances 
can be assessed with the use of these variables. Explanation of the logic involved into 
choosing of such factor/thematic layers are shown in Table 3.

2.3.3 � The scale/weight procedure as well as its justification of the factors in FR model

All the thematic layers are classified into 10 classes. The scale/weight has been classi-
fied into a 10 ranked scale where 0 is the lowest and 1 is the highest effect of the land-
slide occurrence with respect to the factors which are selected for landslide phenomenon 

https://asf.alaska.edu/data-sets/sar-data-sets/alos-palsar/
https://www.imdpune.gov.in/
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occurrences. Table  4 below illustrates the weight procedure and the logic for the scale/
weight.

2.3.4 � Frequency ratio (FR) Model

The Frequency ratio (FR) model is utilized in this study. The FR model is the statistical 
method that is currently being utilized to evaluate landslide susceptibility zonation (LSZ). 
This model is used to figure out the relationship between the reported geographical 
distribution of prior landslides and all of the factors that are considered to be the primary 
contributors to the occurrence of landslides. Many researchers have utilized this model for 
LSZ mapping ( Yilmaz 2009; Mezughi et al. 2011; Choi et al. 2012; Mohammady et al. 
2012; Yalcin et al. 2011; Lee 2014; Anbalagan et al. 2015; Das and Lepcha 2019; Mirdda 
et al. 2020; Sonker et al. 2022).

The FR method can be utilized for figure out how much that every component has an 
impact in zonation  mapping of landslides. The FR model is calculated (Table  5), given 
below:

where frequency of landslides for each factor class (a), sum of all landslides that are present 
in the factor (b), frequency of pixels of each class of factor having landslides happen (c), 
and the sum of all number of the pixels that are present in the factor (d).

FR =
a∕b

c∕d

Table 2   Range values of the 
classes of various morphometric 
(drainage and relief factors) and 
hydrological parameters

Factors Class

Relief parameters
Absolute relief (Ar)  > 6000 ≤ 1500 (m)
Relative relief (Rr) 30–2496 (m)
Relief ratio (Rh) 0.0019–0.0221 (m)
Dissection index (Di) 0.02–0.85
Hypsometric integral (HI) 0.18–0.77
Slope index (Sl) 0–84 (Degree)
Drainage parameters
Drainage density (Dd) 0.71–4.24 (km/sq km)
Drainage frequency (Fs) 0–9.57 (No. of drainage/sq km)
Drainage intensity (DI) 0–4.76
Drainage texture (Dt) 0–2.13 (No. of drainage/km)
Infiltration number (If) 0–37
Junction frequency (Jf) 0–9
Length of overland flow (Lg) 0.35–2.12 (km)
Ruggedness index (Rn) 0.0098–0.9902
Hydrological parameters
SPI − 3.15–13.3
STI 0–409.92
TWI 1.11–18.81
Rainfall (Rf)  > 3200 ≤ 2600 (mm)
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Fig. 2   Factor/thematic layer for different morphological and hydrological parameters: a absolute relief, b 
relative relief, c relief ratio, d dissection index, e hypsometric integral, f slope index, g drainage density, h 
drainage frequency, i drainage intensity, j drainage texture, k infiltration number, l junction frequency, m 
length of overland flow, n ruggedness index, o SPI, p STI, q TWI, and r rainfall for the landslide suscepti-
bility zonation mapping in Sikkim Himalaya
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Greater correlations between landslide phenomena and influencing factors are shown by 
FR values greater than one, whereas lower correlations are indicated by FR values less than 
one (Fig. 3).

The calculated FR values, it’s are normalized and the normalized FR is calculated 
(Table 5) as given below:

Fig. 2   (continued)
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Table 3   The logic for choosing the factors of morphometry and hydrological parameters

Factors Logic for choosing the factors

Relief parameters
Absolute relief (Ar) This factor is the DEM data, which indicates the lowest and highest altitudes of 

the study area. It generates the gradient of the surface, which influences flow 
and material movement (Babu et al. 2016; Saha et al. 2022)

Relative relief (Rr) This factor is a key characteristic of the topography of an area that indicates 
the effects of erosion or uplift and also indicates the tectonics of the area 
(Qiu et al. 2018). This component represents the geometrical conditions that 
promote the formation of landslides

Relief ratio (Rh) This factor is very important in predicting the durability of the underneath rock 
and the slope gradient of the area (Mahadevaswamy et al. 2011; Basu and Pal 
2019)

Dissection index (Di) This index alludes to the sloped degradation or separation degree of landscape 
changes. It demonstrates how, over time, the landscape varies across all 
geographical and climatic regions

Hypsometric integral (HI) The hypsometric integral is a useful indicator that correlates strongly with 
the degree of dissection by the drainage network to determine the specific 
developmental stage of a landscape. The HI also indicate surface runoff, 
sediment erosion, and tectonic evolutions of the region (Strahler 1952; 
Mishra and Rai 2020)

Slope index (Sl) Trigger for a mass movement could be a change in slope angle. This slope 
angle can be produced by a variety of causes, including tectonic upliftment, 
surface erosion caused by various agents, climate change, morphometric 
index, etc. (Claessens et al. 2013; Donnarumma et al. 2013)

Drainage parameters
Drainage density (Dd) This factor is a good way to measure and evaluate the natural landscape, 

even though it is affected by changes in climate, rock properties, structural 
features, soil type, and the regionals topography. It can be used as a key 
marker to show how some of these things happened and how landforms were 
made (Melton 1957; Sonker et al 2021)

Drainage frequency (Fs) The amount of rain that falls, how thoroughly it soaks in the area, how quickly 
it runs off, how porous the ground is, and how steep the slope are all factors 
that influence the frequency of drainage (Kale and Gupta 2001; Prabhakaran 
and Jawahar Raj 2018; Adhikari 2020)

Drainage intensity (DI) A quantity for drainage intensity reveals how much the surface has been 
dissected by geomorphic agents, and hence how much slower or faster the 
runoff is being drained from the basin (Strahler 1964; Farhan 2017)

Drainage texture (Dt) This factor is dependent on the characteristics of the soil, including its type and 
pattern of vegetation, types of rocks and their composition, the capacity and 
density of infiltration, as well as the frequency and spacing of drainage, all of 
which have a direct correlation to drainage textures and the evolution of the 
landscape (Horton 1945; Smith 1950; Kale and Gupta 2001)

Infiltration number (If) It reveals the basin’s propensity for infiltration and the nature of its discharge. 
An increase in infiltration can accelerate the growth of a landslide (Strahler 
1964; Prabhakaran and Jawahar Raj 2018)

Junction frequency (Jf) The frequency at which two or more streams converge at a single location is 
a difference that can be attributed to the instability of slope gradient, since 
slope failures occur at points where the more than one stream converge

Length overland flow (Lg) This factor represents the physico-hydrological behaviour of the river basin. It 
denotes the time it takes for water to travel across land before forming distinct 
river courses (Horton 1945; Kale and Gupta 2001; Prabhakaran and Jawahar 
Raj 2018)
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Therefore, the landslide susceptibility index (LSI) map is generated by adding all values 
of normalised FR with their factor. This is a quantity that has no dimensions and is utilised 
for the categorization of landslide susceptibility zonation:

where FRn represents the normalization of FR for each factor class.
There are different ways to categorize the landslide susceptibility index, but in this 

study, the natural break is used.

3 � Result and discussion

3.1 � Frequency ratio model for landslide susceptibility mapping

The frequency ratio model was utilised to categorize the susceptibility map into the 
following five categories: “very high,” “high,” “moderate,” “low,” and “very low” (Fig. 4). 
These categories, when applied to the region as a whole, represent, respectively, 13.20%, 
19.75%, 30.81%, 27.14%, and 9.09% of the total area as shown in Fig. 5a. The lower side 
of the study region, mainly West, South, and East Sikkim, may have higher chances of the 
occurrence of a landslide with very high to high susceptibility (about 32.95% of the total 
study area) (Fig. 5a). These regions represent about 86.78% of the total number of prior 
landslides that are shown in Fig. 5b. It contains the highest density of landslide inventory 
locations (Fig. 6). The FR model indicates how probable or essential each class is to trigger 
a landslide based on our variables for multiple classes of each factor. In the case of the 

FRn =
FR

ΣClassFR

LSI = Σ FR¬n

Table 3   (continued)

Factors Logic for choosing the factors

Roughness index (Rn) This factor is a morphometric measure that depicts the heterogeneity or 
instability of the terrain; it describes the surface as rugged or smooth terrain, 
as well as the composition and structure of the landform (Strahler 1956; 
Nakileza and Nedala 2020)

Hydrological parameters
SPI This factor assesses a stream’s ability to transport material and is directly 

related to the occurrence of landslides (Moore 1991; Pawluszek and 
Borkowski 2017; Sur 2020)

STI This factor gives details about how earth mass movement and deposition, as 
well as where they are in space (Moore and Wilson 1992; Ahmad 2019)

TWI This factor is often utilized to evaluate and analyse how terrain impacts 
hydrological conditions. High soil moisture causes the soil stability to 
decline, which makes landslides more likely (Beven and Kirkby 1979; 
Sörensen 2006; Das and Lepcha 2019; Abu El-Magd et al. 2021)

Rainfall (Rf) Rainfall is the most significant contributing factor that can cause landslides 
in regions with moderate to high gradient. Because of its ability to create 
landslides, it causes soil to get saturated and then runoff, which is caused 
by water penetrating the soil and leading to increasing pore-water pressure 
(Long and De Smedt 2018)
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relief parameters (Fig. 2), landslide susceptibility zones vary from different relief classes. 
Low class (1 to 3) of the absolute index (Fig.  2a), the FR value greater than 1 is most 
effective (very high to high zones, FRn values vary from 0.6 to 1), but FR values less than 
1 (in the high absolute index class) are least affective (moderate to low zones, FRn values 
varies from 0 to 0.6) for the landslide susceptibility, as shown in Fig.  3a and Table  5. 
Landslides are most common in low-absolute-index (low-altitude) areas. This region is 
mostly found along the drainage valleys (Teesta and Rangit Rivers) and moderate hill areas 
of Sikkim’s southern region (West, South, and East Sikkim), as shown in Fig. 1. This factor 
is most responsible for landslide occurrence in the study region. The relative relief and 
relief ratio (Fig.  2b, c) is very high from classes 4 to 6, indicating moderate relief in 
Sikkim’s southern region, but the graph shows the same variation in FR values, shown in 
Fig. 3a. The FR values of these classes are greater than 1, which indicates higher chance of 
the landslide’s occurrence because that indicates the effects of erosion or uplift and also 
indicates the tectonics of the area. FRn values of these classes vary from 0.6 to 1, which is 
a higher correlation for very high to high susceptibility for landslide occurrences. Classes 
1, 2, 3, 7, 8, 9, and 10 of the factors occur in the moderate to low region of the susceptibility 
for landslides because the FR values are less than 1 and the FRn values lie from 0 to 0.6 
(Table 5). This region is shown in the northern region of the study area, which has shown 
moderate-to-low chances of landslides occurrence. The dissection index (Fig. 2d) of the 
area is very high, as are the valleys of the region, particularly the Teesta and Rangit River 
basins, where FR values are greater than 1, indicating the possibility of landslides due to 
slope degradation or separation degree of landscape changes, as shown in Fig.  3a and 
Table 5. The FRn of the dissection class such as classes 9 and 10 varies from 0.6 to 1, 
which indicates a very high to high susceptibility for landslides. The classes 1, 2, 3, 4, 5, 6, 
7 and 8 of the dissection occurred in the moderate to low susceptibility region for landslides 
because the FRn values lie from 0 to 0.6 (Table 5). The hypsometric integral (Fig. 2e) of 
the area is very high along the valley (Teesta and Rangit River) and on moderate terrain in 
the region where FR values are greater than 1 (Fig. 3a and Table 5) because it generates a 
significant amount of surface runoff, which caused sediment erosion and also indicates the 
tectonic evolution of the region. The tectonic evolution of the rocks indicates a decrease in 
rigidity, which causes landslides. The FRn value for the classes of the hypsometric integral, 
such as classes 6 and 10, varies from 0.6 to 1, which indicates a very high to high 
susceptibility for landslides, and the FRn value for the classes 1–5 of the hypsometric 
integral varies from 0 to 0.6, which indicates a moderate to low susceptibility. The slope 
(Fig. 2f) of the area is varying from 0 to 84 degrees, in which the moderate to high gradient 
is more prone to landslides occurrences where the FR values are greater than 1, as shown 
in Fig. 3a and Table 5. The very high to high susceptibility zones occur in class 4 to 8 of 
the slope gradient where the FRn values from 0.6 to 1 and the FRn value for class 1, 2, 3, 9, 
and 10 of the slopes varies from 0 to 0.6 (Table  5), which indicates a moderate to low 
susceptibility. The drainage density (Fig. 2g) of the area ranges from 0.71 to 4.24 km/km2, 
and drainage density classes 1, 5, and 9 are more vulnerable to landslides due to FR values 
larger than 1. As indicated in Fig.  3b and Table  5, the very high, high, and moderate 
susceptibility zones occur in this class 1,4, 5, 6, and 9 of drainage density where the FRn is 
more than 0.4 and FRn value less than 0.4 indicating low to very low susceptibility of 

Fig. 3   a Figure of the FR values of different relief factor with class of the factors, b figure of the FR values 
of different drainage factor vrs class of the factors c figure of the FR values of different hydrological factor 
vrs class of the factors

▸
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landslide occurrence. The drainage frequency (Fig. 2h) of the area ranges from 0 to 9.57 
(number of drainages/km2), and the drainage frequency of classes 4, 7, 8, 9, and 10 are 
more susceptible to landslides due to FR values greater than 1. The very high, high, 
moderate susceptibility zones occur in the class from 2 to 10 of the drainage frequency 
where the FRn is more than 0.4, this mainly occurs along the valley slope of the southern 
region of the drainages in the area. FRn value of class 1 is less than 0.4 indicating low to 
very low susceptibility to landslide occurrence mostly occurs in the northern region of the 
area as shown in Fig. 3b and Table 5. The drainage intensity (Fig. 2i) of the region ranges 
from 0 to 4.76, and classes 6, 7, 8, and 9 are more prone to landslides due to FR values 
greater than 1. The very high, high, and moderate susceptibility zones occur in the class 
from 6 to 10 of the drainage intensity where FRn is more than 0.4. The drainage texture 
(Fig. 2j) of the region ranges from 0 to 2.13 (No. of drainages/km), and classes 4, 7, 8, and 
9 are more prone to landslides due to FR values greater than 1 (Fig. 3b and Table 5). The 
very high, high, and moderate susceptibility zones occur in the class from 2 to 10 of the 
drainage texture where FRn is more than 0.4 and the class 1 of the drainage texture is very 
low to low susceptibility zones because the FRn value is less than 0.4 (Table  5). The 
drainage texture and frequency of the region show the same FRn value shown in the graph 
(Fig. 3b). Infiltration number (Fig. 2k) of the area varies from 0 to 37, and classes 3, 4, 5, 6, 
8, and 9 are more prone to landslides due to FR values greater than 1 (Fig. 3b, Table 5). 
Class 9 of the infiltration number is higher infiltration numbers indicating lower infiltration 
and higher run-off, which lead to higher occurrences of landslides. The junction frequency 
(Fig. 2l) of the area varies from 0 to 9, and classes 6 to 10 are more prone to landslides due 
to FR values greater than 1 (Fig.  3b, Table  5). The very high, high, and moderate 
susceptibility zones occur in the class from 4 to 10 of the junction frequency where FRn is 
more than 0.4 and the class 1 to 3 of the junction frequency is very low to low susceptibility 
zones because FRn value is less than 0.4 (Table 5). Length overland flow (Fig. 2m) varies 

Fig. 4   Landslide Susceptibility map of Sikkim Himalaya
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from 0 to 2.12, and very high, high, and moderate susceptibility zones occur in classes 1, 4, 
5, 6, and 9 because FRn values are greater than 0.4. Roughness index (Fig. 2n) varies from 
0.0098 to 0.9902, and very high, high, and moderate susceptibility zones occur in classes 1 
to 8 because FRn values are greater than 0.4 (Table 5). Low to higher roughness area is 
highly susceptible to landslides in this area which lies on the river valley side of the region. 
The SPI (Fig. 2o) of the region varies from − 3.51 to 13.30, and classes 3, 4, 5, 6, and 8 are 
more prone to landslides due to FR values greater than 1 as shown in Fig. 3c and Table 5. 
Class 3–10 of SPI has zones of very high, high, and moderate susceptibility for the 
occurrence of the landslide because FRn values are more than 0.4 (Table 5). The SPI of the 

Fig. 5   a Landslide susceptibility zones in area (%) of the Sikkim Himalaya, b Landslide susceptibility 
zones in area (%) with respect to number of past landslides in (%) of the Sikkim Himalaya
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region increases whenever there is an increasedrisk of landslides occurring in the region. 
The STI (Fig. 2p) of the region varies from 0 to 409.92 and classes from 2 to 6 are more 
prone to landslides due to FR values greater than 1 as shown in Fig. 3c and Table 5. Class 
1–6 of STI factor has zones of very high to moderate susceptibility for the landslide 
because FRn values are more than 0.4 (Table 5). The region’s TWI (Fig. 2q) ranges from 
1.11 to 18.81, and classes 1 through 9 have zones of very high, high, and moderate 

Fig. 6   a. The successive rate curve for FR model for LSZ mapping of Sikkim Himalaya, b. validation rate 
curve for FR model for LSZ mapping of Sikkim Himalaya
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sensitivity because FRn values are larger than 0.4 (Table 5). This region has a low to higher 
TWI, which implies a high susceptibility to landslides. Class of Rainfall 1, 3 to 6 and 10 
shows the very high to moderate risk zones of landslide and second most responsible 
parameter for landslide occurrences as shown in Fig. 2r, 3c and Table 5.

3.2 � Importance check of the thematic layers using sensitivity of map removal 
analysis

The purpose of this method is to explore the consequences of eliminating any of the 
thematic layers used to estimate the landslide risk zones (LSZ). After deleting each 
thematic layer, a new LSZ map with the remaining layers overlay is generated. Now, the 
sensitivity index is estimated using equation () every time.

where SI represents the sensitivity index linked including an omitted thematic layer, LSZ 
represents landslide susceptibility zones mapping using each the thematic factors, LSZ′ 
represents landslide susceptibility zones mapping by eliminating one thematic layer at 
once, N represents the number of factors utilized in the production of the LSZ map, while 
n represents the number of factors evaluated in the creation of the LSZ map. The estimated 
values of all factors, such as Min, Max, Mean and Standard deviation (Table 6). The abso-
lute index and rainfall are the two most sensitive parameters, with standard deviations of 
0.44 and 0.42 (Table 6) for thematic layers when mapping landslide susceptibility zones, 

SI =

|
|
||

(
LSZ

N

)
−
(

LSZ�

n

)||
||

LSZ
× 100

Table 6   Statistical analysis of 
map removal sensitivity analysis 
for the Landslide susceptibility 
zonation mapping

Factor Class Min Max Mean Standard 
deviation

Absolute index − 3.88 1.82 − 0.2 0.44
Relative relief − 3 1.51 0.02 0.32
Relief ratio − 2.94 1.68 0.02 0.33
Dissection index − 2.75 1.44 0.03 0.31
Hypsometric integral − 3.04 1.67 0.08 0.30
Slope index − 2.39 1.65 0.06 0.28
Drainage density − 2.39 1.65 − 0.07 0.28
Drainage frequency − 2.39 1.8 0.07 0.28
Drainage intensity − 2.59 1.8 0.07 0.29
Drainage texture − 2.39 1.85 0.08 0.29
Infiltration number − 2.39 1.58 − 0.15 0.28
Junction frequency − 3.18 1.34 − 0.33 0.28
Length of overland flow − 2.39 1.65 − 0.07 0.28
Ruggedness index − 2.59 1.76 0.09 0.28
SPI − 2.69 1.59 0.03 0.28
STI − 2.39 1.65 − 0.07 0.28
TWI − 2.59 1.91 0.16 0.28
Rainfall − 4 1.87 − 0.05 0.42
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respectively. The relative relief, relief ratio, dissection index and hypsometric integral are 
moderately sensitive parameters because the standard deviations of the thematic layers are 
0.32, 0.33, 0.31 and 0.30 (Table 6). However, slope index, drainage density, drainage fre-
quency, drainage intensity, drainage texture, infiltration number, junction frequency, length 
of overland flow, ruggedness index, SPI, and TWI are showing equal importance according 
to the standard deviation, shows the almost same value, which varies from 0.28 to 0.29 
(Table 6) for the sensitivity analysis for the landslide susceptibility zones mapping.

3.3 � Validation of landslide susceptible model using ROC

The validation of the landslide susceptible zones created by the FR model and previous 
landslide location can be assessed using the receiver operating characteristic (ROC) curve, 
which is a commonly used statistical tool. The ROC curve was prepared with the use of 
the Arc SDM tool, which can be add within the Arc GIS software. For this work, the total 
number of previous landslide locations is 688 and these landslides were randomly divided 
into two distinct types of data sets: 70% for training data (479 landslides) and 30% for 
validation data (209 landslides). The area under the curve (AUC) was utilised to execute an 
analysis of the efficiency of this model (AUC). This curve represents an approximation of 
the proportion of the method’s successive rate as well as its prediction rate. Training and 
validation data sets are used to execute the model’s successive and predication rate. The 
FR model performs well when the AUC value is closer to 1. The AUC successive rate and 
validation rate are approximately 82.00% and 84.6%, respectively, as shown in Fig. 6a, b.

4 � Conclusion

In this study, morphological and hydrological parameters were considered to generate the 
landslide susceptibility zonation in Sikkim Himalaya using frequency ratio model and 
geospatial technologies. The LSZ map has been classified into five different categories such 
as ‘very high (13.20%)’, ‘high (19.75%)’, ‘moderate (30.81%)’, ‘low (27.14%)’, and ‘very 
low (9.09%)’. According to this research, the most risky zones for the landslide-prone area 
are located in the southern region of Sikkim (the South, West, and East Districts of Sikkim). 
These prone areas of landslides mostly occur in the river valley (mostly in the southern 
region of the Upper Teesta and Rangit river valleys) and due to deforestation, complex 
geological and tectonic settings, farming, and other human activities. These most sensitive 
areas of the relief parameters indicate less than 2500 m of absolute index, classes 5 and 6 
(800–960, 960–1100) of relative relief, classes 4 and 5 (0.0060–0.0074, 0.0074–0.0088) 
of relief ratio, classes 6 to 10 (0.39–0.46, 0.46–0.53, 0.53–0.61, 0.61–0.68, > 0.68) of 
the dissection index, classes 6, 7, 9 (0.44–0.47, 0.47–0.50, 0.53–0.56) of hypsometric 
integral, classes 4 to 8 (23–28, 28–33, 33–38, 38–43, 43–49) of slope index in which 
the FR values greater than 1. However, most sensitive areas of the drainage parameters 
indicate classes 1, 5, 9 (< 1.28, 1.88–2.06, 2.72–3.14) of drainage density, classes 4,7 
to 10 (3.38–3.94, 4.92–5.44, 5.44–6.04, 6.04–6.87, > 6.87) of the drainage frequency, 
classes 6 to 9 (2.33–2.54, 2.54–2.74, 2.74–2.99, 2.99–3.30) of drainage intensity, classes 
4, 7 to 10 (0.75–0.88, 1.10–1.21, 1.21–1.35, 1.35–1.53, > 1.53) of drainage texture, 
classes 3 to 6 ( 6.32–8.04, 8.04–9.77, 9.77–11.64, 11.64–13.65) and 8 to 9 (15.95–18.96, 
18.96–23.42) of infiltration number, classes 6 to 10 (4.90–5.40, 5.40–5.91, 5.91–6.42, 
6.42–7.06, > 7.06) of junction frequency, classes 1, 5, 9 (< 0.64, 0.94–1.03, 1.36–1.57) of 
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the length of overland flow, and classes 1 to 3 (< 0.2597, 0.2597–0.3443, 0.3443–0.402) 
and 5 to 6 (0.4481–0.4865, 0.4865–0.5250) in which classes the FR values is greater than 
1. Other most sensitive areas of the drainage parameters indicate classes 3 to 6 (2.29–3.15, 
3.15- 3.94, 3.94- 4.80, 4.80–5.65) and 9 (7.63–8.88) of SPI, classes of 2 to 6 (1.61–8.04, 
8.04–17.68, 17.68–28.94, 28.94–43.40, 43.40–61.09) of STI, classes 1, 2, 7, 8 (< 4.23, 
4.23–5.00, 8.61–9.72, 9.72–11.04) of TWI, and classes 1 (< 2473), 4 to 8 (2685–2819, 
2819–2959, 2959–3088, 3088–3223, 3223–3363), 10 (> 3492) of rainfall in which the FR 
values is higher than 1. Single thematic layer removal analysis is used for thematic layer 
sensitivity for landslide susceptibility zonation mapping. The absolute index and rainfall 
are highly influential factors for landslides.  This finding is validated by using the ROC 
curve, which provides an accuracy assessment of around 84.6% for the model. The future 
scope of the landslide susceptibility zonation mapping of this study may indicate advanced 
predictive modelling and early warning systems, integrating with remote sensing, GIS, and 
FR model technologies. Additionally, this research may focus on sustainable mitigation 
strategies and policy frameworks to minimize the impact of landslides in vulnerable 
regions, fostering a safer environment for communities in this region.
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