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Abstract
Recurrence statistics of large earthquakes has a long-term economic and societal 
importance. This study investigates the temporal distribution of large (M ≥ 6) earthquakes 
in the Nepal Himalaya. We compile earthquake data of more than 200 years (1800–2022) 
and calculate interevent times of successive main shocks. We then derive recurrence-
time statistics of large earthquakes using a set of twelve reference statistical distributions. 
These distributions include the time-independent exponential and time-dependent 
gamma, lognormal, Weibull, Levy, Maxwell, Pareto, Rayleigh, inverse Gaussian, inverse 
Weibull, exponentiated exponential and exponentiated Rayleigh. Based on a sample of 
38 interoccurrence times, we estimate model parameters via the maximum likelihood 
estimation and provide their respective confidence bounds through Fisher information 
and Cramer–Rao bound. Using three model selection approaches, namely the Akaike 
information criterion (AIC), Kolmogorov–Smirnov goodness-of-fit test and the Chi-square 
test, we rank the performance of the applied distributions. Our analysis reveals that (i) the 
best fit comes from the exponentiated Rayleigh (rank 1), exponentiated exponential (rank 
2), Weibull (rank 3), exponential (rank 4) and the gamma distribution (rank 5), (ii) an 
intermediate fit comes from the lognormal (rank 6) and the inverse Weibull distribution 
(rank 7), whereas (iii) the distributions, namely Maxwell (rank 8), Rayleigh (rank 9), Pareto 
(rank 10), Levy (rank 11) and inverse Gaussian (rank 12), show poor fit to the observed 
interevent times. Using the best performed exponentiated Rayleigh model, we observe 
that the estimated cumulative and conditional occurrence of a M ≥ 6 event in the Nepal 
Himalaya reach 0.90–0.95 by 2028–2031 and 2034–2037, respectively. We finally present 
a number of conditional probability curves (hazard function curves) to examine future 
earthquake hazard in the study region. Overall, the findings provide an important basis for 
a variety of practical applications, including infrastructure planning, disaster insurance and 
probabilistic seismic hazard analysis in the Nepal Himalaya.
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1  Introduction

With the increasing population, urbanization and economic development, the occurrence of 
large earthquakes has a long lasting impression. The knowledge of temporal properties of 
these damaging earthquakes in a geographic region is a crucial factor in earthquake hazard 
quantification and associated disaster mitigation (Scholz 2019; Verma et al. 2024; Pasari 
and Sharma 2020). Traditionally, it has been assumed that the number of earthquakes in 
a fixed time interval follows a Poisson distribution, suggesting that the interevent times 
must follow the time-independent exponential distribution (Cornell 1968; Utsu 1984). 
However, due to the “memoryless” nature of the exponential model, recent studies have 
considered a variety of time-dependent models to examine the recurrence statistics of large 
earthquakes (Utsu 1984; Yadav et al. 2012; Pasari 2018). In fact, as earthquake occurrence 
is influenced by dynamic factors such as aftershocks, foreshocks and seismicity clusters 
that evolve over time, employing time-dependent models would be crucial to accurately 
capture and predict seismic activity patterns (Kagan and Jackson 1991; Mangira et  al. 
2019). In other words, the time-dependent models would be more appropriate to provide 
valuable insights for earthquake risk assessment and disaster preparedness (Kagan 
and Jackson 1991; Papazachos et  al. 1997). These studies essentially assume that the 
occurrence of large events (main shocks) in a spatial region is consistent with a random 
process. As a consequence, the dependent events, such as foreshocks and aftershocks, are 
commonly removed from the earthquake records to produce a sequence of random sample 
(Pasari 2015). The interevent time statistics and associated long-term (10–30 years) large 
earthquakes’ occurrence probability values are then derived through the observed sample 
data. In the present study, we focus on the interoccurrence time between successive M ≥ 6 
events in the seismically active Nepal Himalaya and its adjacent regions with population of 
more than 50 million people. Using time-independent, time-dependent, heavy-tailed and 
exponentiated models, we not only estimate the cumulative probability of M ≥ 6 events, but 
also generate a series of hazard function curves for various combination of elapsed times 
(time elapsed since the last large earthquake) and residual times (time to a future large 
earthquake).

Lying in the central part of the ~ 2900-km-long Himalayan megathrust system, Nepal 
and its adjacent regions are reported to have intense seismicity rates due to the ongoing 
tectonic collision between the India plate and the Eurasia plate (Yin 2006). On April 25, 
2015, the country has experienced a devastating Mw 7.8 (Gorkha) earthquake that has led 
to a death toll of ~ 9,000 people, injuring 22,000 more. Besides, the country has witnessed 
a series of large earthquakes in the past. For example, an earthquake of magnitude Mw 
7.6–7.9 occurred near the Kathmandu valley in 1833, causing around 500 human causality; 
in 1934, the Bihar–Nepal megathrust earthquake of magnitude Mw 8.0 struck near the 
Mount Everest, killing around 12,000 people and causing extensive damage in Nepal and 
in northern part of Bihar (India); in 1988, another strong earthquake with magnitude Mw 
6.9 occurred in the eastern part of Nepal near the Indian border, killing at least 700 people 
from Bihar and Nepal (Sharma 2021). About a year ago, a moderate event (Mw 5.7) hit the 
district of Doti (Nepal) on November 9, 2022, and killed six people. The event, although is 
not a severe one, has reignited the panic of large earthquakes among the citizens of Nepal 
and its neighboring regions. Therefore, it is timely to re-estimate the recurrence statistics 
of large earthquakes in the Nepal Himalaya and estimate the occurrence probability to infer 
future earthquake hazards in the region.
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As noted above, in addition to time-independent exponential distribution, several 
previous studies have used time-dependent models, such as lognormal, gamma and 
Weibull models (Utsu 1984). The efficacy of other models, such as the bell-shaped 
normal distribution (Papazachos et  al. 1987), asymmetric inverse Gaussian or Brownian 
Passage Time (BPT) distribution (Matthews et  al. 2002; Pasari 2018), triple exponential 
model (Kijko and Sellevoll 1981), generalized gamma model (Bak et  al. 2002), heavy-
tailed (heavier tail than the exponential distribution) distributions, such as Pareto, Levy, 
lognormal and inverse Weibull (Frechet) (Pasari 2015), and the exponentiated group of 
distributions, such as exponentiated exponential, exponentiated Rayleigh and exponentiated 
Weibull distributions (Pasari and Dikshit 2015a, b; Pasari 2015, 2018), has also been 
explored in deriving recurrence time statistics and associated earthquake forecasts in a 
seismic renewal process. Many of these competitive distributions share exciting physical 
properties. For example, the inverse Gaussian (BPT) distribution offers a physical 
connection between observable event times and a formal state variable that not only 
follows a Brownian relaxation oscillator but also reflects the macro-mechanics of stress and 
strain accumulation (Matthews et al. 2002). Both inverse Gaussian and lognormal exhibit 
unimodal density curve with non-monotone hazard function (ratio between the density and 
the survival function); for both distributions, the hazard function starts from zero, increases 
to reach to the maximum value and then gradually decreases to a constant asymptotic value 
(for inverse Gaussian) or to zero (for lognormal); both distributions exhibit reproductive 
(hereditary) property, in additive manner (inverse Gaussian) or in multiplicative manner 
(lognormal) (Pasari 2019b). Likewise, the exponentiated exponential, exponentiated 
Rayleigh and the exponentiated Weibull not only reveal similar characteristics to the 
familiar gamma and Weibull distributions, but also enable researchers more flexibility due 
to the additional shape parameter (Gupta et al. 1998; Pasari and Dikshit 2018); for instance, 
the density function of exponentiated exponential distribution is monotonically decreasing 
when β ≤ 1, and for β > 1, it is unimodal and right-skewed similar to gamma and Weibull 
densities (Gupta and Kundu 1999); the hazard function of exponentiated exponential 
assumes increasing (β > 1), decreasing (β < 1) and constant (β = 1) shape like the hazard 
functions of gamma and Weibull distributions (Pasari 2018). Together, various shapes 
of hazard (failure) function play key role in earthquake reliability and survival analysis, 
especially for the interpretation of future earthquake probabilities for a set of elapsed times 
and residual times (Sornette and Knopoff 1997; Pasari 2015).

Here we consider twelve reference probability distributions to examine various statistical 
properties of interoccurrence times in the Nepal Himalaya. We estimate model parameters 
via the maximum likelihood estimation and assess modeling uncertainty through Fisher 
information and Cramer–Rao bound. Using three model selection approaches, we rank 
the suitability of these competitive distributions. The conditional probability plots (hazard 
function curves) and their implications for future earthquakes are also discussed in detail.

2 � Study area and earthquake data

2.1 � Tectonic background

The study area comprises entire Nepal, southern part of Tibet, some portion of the fertile 
north Indian river plain, and its adjoining areas bounded by 26° N to 31° N and 79° E to 
89° E (Fig. 1). The region is one of the most seismically active areas in the world due to the 
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high deformation rates from India–Eurasia plate collision (Bilham et al. 2001; Yin 2006). 
The earthquakes have mostly of thrust focal mechanisms occurring at shallow to interme-
diate depths (depth 10–80  km). The Himalayan megathrust system comprising a series 
of three east–west megathrust faults, namely the Himalayan Frontal Thrust (HFT), Main 
Boundary Thrust (MBT) and the Main Central Thrust (MCT), has a clear demarcation in 
this region (Fig. 1) (Sharma 2021). This megathrust system is assumed to merge beneath 
the Himalaya at ~ 20–25 km depth into a basal decollement, known as the Main Himalayan 
Thrust (MHT). The MHT, serving as an interface between the down-going Indian plate and 
the overriding Himalayas, has hosted many devastating earthquakes in the region. A num-
ber of geodetic studies have suggested that the deeper part of the MHT is creeping under 
the higher Himalaya, whereas the shallower part (i.e., MFT) is locked in the lesser Hima-
laya with a slip deficit rate of 14–18 mm/yr (Sharma  et al. 2023a, b). This deficit rate accu-
mulated over time gathers sufficient energy to produce large Himalayan earthquakes in the 
region (Bilham et al. 2001; Ader et al. 2012; Sreejith et al. 2018; Sharma et al. 2020). To 
mention, the western Nepal that belongs to the “central seismic gap” bounded by the epi-
centers of the 1905 Kangra earthquake and the 1934 Bihar–Nepal earthquake is believed to 
host one or more highly damaging earthquakes in the near future (Khattri and Tyagi 1983; 
Sreejith et al. 2018; Sharma et al. 2020).

In the Nepal Himalaya, there are more than 90 peaks of elevation 7000  m including 
the world’s highest mountain peak, the Everest (8,848  m). The Siwalik group forms 
a folded Cenozoic piedmont region along the Nepal Himalaya. The higher Himalaya 
comprises ~ 10  km thick succession of crystalline rocks and fossiliferous sedimentary 
rocks, whereas the lesser Himalaya in this part consists of the un-fossiliferous sedimentary 
and meta-sedimentary rocks of Precambrian to Miocene age (Yin 2006). Three major 
formations in the Nepal Himalaya are the Kathmandu Nappe (~ 3–4  km thick Lower-
Paleozoic Himalayan strata), Dadeldhura Klippe (a synformal klippe that is a continuation 

Fig. 1   Seismotectonic map of the Nepal Himalaya (denoted by the blue solid line) and its adjacent regions. 
Spatial distribution of large earthquakes (M > 6.0) occurred on the study area (bounded by 26° N to 31° N 
and 79° E to 89° E) (Table 1). Red stars indicate the location of the 1934 Bihar–Nepal event (Mw 8.0) and 
the most recent 2015 Gorkha event (Mw 7.8); HFT—Himalayan Frontal Thrust, MBT—Main Boundary 
Thrust and MCT—Main Central Thrust
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of the Almora Klippe in the east direction) and the Jajarkot Nappe that represents the lowest 
metamorphic grade exposures of the Himalayan orogeny (Sharma 2021). In addition, the 
region includes the Faizabad Ridge (FZR), a subsurface extension of the Bundelkhand 
massif with a very low-magnitude seismicity. This ridge detaches Gandak depression in 
the east from Sarda depression in the west (Sharma et al. 2020). Although the region shows 
several seismotectonic variations including spatial heterogeneity in seismicity pattern and 
faulting mechanism, such effects will not be considered in the present empirical analysis 
that focuses on the statistical distribution of earthquake interevent times in a simple point 
process (Utsu 1984; Pasari and Dikshit 2015a, b).

2.2 � Earthquake data

Nepal and its adjacent regions have a long history of large earthquakes. For the present 
analysis, we compile earthquake data of M ≥ 6 events from 1800 through 2022 using three 
seismicity databases, namely the Indian Meteorological Department (IMD), International 
Seismological Centre (ISC) and Global Centroid Moment Tensor (GCMT) database. 
We note that the earthquakes are not homogeneous in magnitude, particularly the events 
listed in IMD during the pre-instrumental era. Using empirical relations (Scordilis 2006; 
Figures S1, S2, S3) mentioned below, we convert all different magnitudes to the moment 
magnitude scale 

(
MW

)
.

The homogenized catalog comprises 48 events with magnitude Mw ≥ 6. The geographic 
location of epicenter, earthquake depth, event size (magnitude) and time of occurrences 
of these large earthquakes are mentioned in Table  1. The catalog, however, contains 
dependent events, such as foreshocks and aftershocks, which must be identified and 
subsequently removed to adhere to the assumption of independent sequence of earthquake 
point processes in the study region (Utsu 1984). For this, we classify the dependent events 
using a space–time window approach which states that any event in the proximity of 
another larger event in both space and time should be treated as a dependent event (Gardner 
and Knopoff 1974). Moreover, realizing the earthquake size dependency in aftershocks, 
we consider a dynamic space–time window method (Uhrhammer 1986) with a more 
conservative choice (Pasari 2018). After examining several distance and time windows in 
producing robust and consistent conclusions to remove dependent events, we add/subtract 
60  days to the time window and 15  km to the distance window of Uhrhammer (1986) 
relations. Therefore, the search radius for earthquake declustering is considered as

(1)

MS −MW ∶

MW = 0.67(±0.005)MS + 2.07(±0.03), for
(
3.0 ≤ MS ≤ 6.1

)

MW = 0.99(±0.020)MS + 0.08(±0.13), for
(
6.2 ≤ MS ≤ 8.2

)

mb −MW ∶

MW = 0.85 (±0.040)mb + 1.03(±0.23), for
(
3.5 ≤ mb ≤ 6.2

)

ML −MW ∶

MW = 0.934(±0.135)ML + 0.356(±0.714), for
(
3.4 ≤ ML ≤ 7.6

)

(2)r = exp
(
−1.024 + 0.804MW

)
± 15,
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Table 1   Focal parameters of M
W
≥ 6.0 events in the Nepal Himalaya and its neighboring areas during 

1800–2022

S. No Year Month Day Latitude (N) Longitude 
(E)

Focal depth 
(km)

Reported Magnitude Data
Magnitude (in Mw) Source

1 1809 1 1 30.0000 79.0000 M
l
 6.0 6.0 IMD1

2 1816 5 26 30.0000 80.0000 M
l
 6.5 6.4 IMD

3 1826 10 28 28.0000 85.0000 M
l
 6.0 6.0 OLD2

4 1826 10 29 27.0000 85.0000 M
l
 6.0 6.0 IMD

5 1833 8 26 27.5000 86.5000 M
l
 7.5 7.4 IMD

6 1833 10 4 27.0000 85.0000 M
l
 6.5 6.4 IMD

7 1833 10 18 27.0000 84.0000 M
l
 6.0 6.0 IMD

8 1849 2 27 27.0000 88.3000 M
l
 6.0 6.0 IMD

9 1852 5 1 27.0000 88.3000 M
l
 7.0 6.9 OLD

1852 5 1 27.0000 88.0000 M
l
 6.5 6.4 IMD

10 1866 5 23 27.0000 85.0000 M
l
 7.0 6.9 IMD

11 1869 7 7 27.0000 85.0000 M
l
 6.5 6.4 IMD

12 1883 5 30 29.4000 79.6000 M
l
 6.0 6.0 IMD

13 1899 9 25 27.0000 88.3000 M
l
 6.0 6.0 IMD

14 1911 10 14 30.7593 80.2794 20.0 M
S
 6.5 6.6a ISC3

15 1913 3 6 30.2010 81.9290 15.0 M
w
 6.5 6.5 USGS4

16 1916 8 28 29.7300 80.7454 20.0 M
S
 7.0 6.8 ISC

17 1918 11 29 28.5580 81.8830 15.0 M
w
 6.2 6.2 USGS

18 1934 1 15 26.8847 86.5885 15.0 M
S
 8.2 7.6 ISC

19 1935 1 3 30.7366 88.3183 15.0 M
S
 6.5 6.5a ISC

20 1935 3 5 29.8220 80.3710 15.0 M
w
 6.0 6.0 USGS

21 1936 5 27 28.3969 83.3110 15.0 M
S
 6.8 6.9a ISC

22 1945 6 4 30.2180 80.0822 15.0 M
S
 6.4 6.4a ISC

23 1957 4 14 30.5206 84.3482 15.0 M
S
 6.5 6.4a ISC

24 1958 10 28 30.4718 84.5533 15.0 M
S
 6.2 6.3a ISC

25 1958 12 28 29.9260 79.9000 15.0 M
w
 6.1 6.1 USGS

26 1964 9 26 29.8553 80.4520 29.9 M
b
 6.0 6.1 ISC

27 1965 1 12 27.3829 87.8286 22.8 M
b
 6.1 6.2 ISC

28 1966 6 27 29.7075 80.9233 23.8 M
b
 6.0 6.3a ISC

1966 6 27 29.4815 80.8388 27.9 M
b
 6.0 6.0a ISC

1966 12 16 29.5431 80.8488 15.8 M
b
 5.9 6.0 ISC

29 1980 2 22 30.5052 88.6477 4.3 M
b
 5.8 6.0 ISC

30 1980 7 29 29.5800 81.0481 17.5 M
b
 6.1 6.5b ISC

31 1980 11 19 27.3596 88.7832 43.5 M
b
 6.1 6.2b ISC

32 1988 8 20 26.7162 86.6247 58.1 M
b
 6.5 6.8b ISC

33 1993 3 20 29.0840 87.3330 12.2 M
w
 6.2 6.2b USGS

34 1999 3 28 30.3635 79.3354 23.8 M
b
 6.5 6.5b ISC

35 2004 7 11 30.6940 83.6720 13.0 M
w
 6.2 6.2b USGS

36 2005 4 7 30.4877 83.6663 11.9 M
b
 6.0 6.3b ISC

37 2008 8 25 30.9704 83.6411 23.9 M
b
 6.1 6.7b ISC

2008 9 25 30.8360 83.4870 4.0 M
w
 6.0 6.0b USGS

38 2011 9 18 27.8039 88.1536 29.6 M
b
 6.5 6.9b ISC

39 2015 4 25 28.1302 84.7168 13.4 M
b
 6.9 7.8b ISC
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and the time window as

Based on the above space–time window, we mark nine events (~ 19%) as dependent 
events, including one aftershock of the May 1852 event (Mw 6.9), one foreshock and 
one aftershock of the June 1966 Dharchula event (Mw 6.3), one aftershock of the May 
2008 earthquake (Mw 6.7) and five aftershocks of the 2015 Gorkha (Mw 7.8) earthquake. 
Without dependent events, the catalog finally contains 39 large events (Table 1), producing 
38 interevent times for further analysis.

After homogenization and declustering, we employ a magnitude–frequency-based vis-
ual cumulative test to analyze time completeness of the present catalog (Mulargia and Tinti 
1985; Pasari 2015). For this, we first obtain the cumulative number of earthquakes versus 
occurrence times plot, followed by a linear fit to the data through least-squares regression 
(Pasari 2018). We note that a near-perfect linear trend is present with R2 = 0.97 (Fig. 2). 
Therefore, the present catalog (Table  1) is deemed to be time complete, indicating that 
earthquake rates and moment releases in the Nepal Himalaya are consistent over suffi-
ciently longer time period. Employing the maximum curvature (MAXC) technique through 
ZMAP software (Wiemer 2001), the magnitude completeness threshold (Mc) of the pre-
sent catalog turns out to be 6.0, indicating that all earthquakes of magnitude 6.0 and higher 
have been appropriately considered in the study (Figure S4). Moreover, the annual occur-
rence rate of earthquakes in the study region is observed approximately 23.4, 3.6 and 0.2 
for magnitudes 4, 5 and 6, respectively.

3 � Methods and results

The principal task in the present study is to investigate seismic recurrence time statistics 
distribution between successive large earthquakes in the study region. Such interoccurrence 
time analysis is commonly used to characterize long-term earthquake hazard in terms 
of occurrence probability. We assume that the observed interevent times exhibit no 
correlations among them, and they constitute a random sample corresponding to a positive 
continuous random variable (Utsu 1984). Under this setup, the adopted methodology has 

(3)t = exp
(
−2.870 + 1.235MW

)
± 60.

Table 1   (continued)

S. No Year Month Day Latitude (N) Longitude 
(E)

Focal depth 
(km)

Reported Magnitude Data
Magnitude (in Mw) Source

2015 4 25 28.1603 84.8433 14.7 M
b
 6.5 6.7b ISC

2015 4 25 27.6342 85.4762 10.0 M
b
 6.1 6.2 ISC

2015 4 26 27.7365 85.9788 13.4 M
b
 6.6 6.7b ISC

2015 5 12 27.8014 86.1260 12.3 M
b
 6.7 7.2b ISC

2015 5 12 27.5248 86.1418 13.8 M
b
 6.1 6.1b ISC

1 IMD: Indian Meteorological Department, 2OLD: Magnitude estimated by Oldham T (1883), 3ISC: 
International Seismological Centre, 4 USGS: United States Geological Survey
a Conversion to moment magnitude by Ambraseys and Douglas (2004), b moment magnitude values directly 
obtained from GCMT (Global Centroid Moment Tensor) catalog
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three primary steps: choice of reference probability distributions, statistical inference 
involving estimation and model testing, and estimating conditional probability for a future 
earthquake. In the first step, we choose a set of twelve reference probability distributions 
based on previous studies and highlight their important characteristics in data analysis. In 
the second step, we use the maximum likelihood estimation (MLE) method to infer model 
parameters based on the available sample data. We examine the estimated parameters’ 
confidence bounds through Fisher information and Cramer–Rao lower bound, whereas we 
test the performance of the applied distributions using three model selection approaches, 
namely the Akaike information criterion (AIC), Kolmogorov–Smirnov (K–S) goodness-of-
fit test and the Chi-square test. Finally, we use the best-fit probability distribution to derive 
a number of occurrence probability curves for different elapsed times and residual times.

4 � Reference probability distributions

Let T  denote the random variable of interoccurrence times of Mw ≥ 6 events (main 
shocks) in the study region with its probability density function f (t) , cumulative 
distribution function F(t) and hazard function h(t) . Based on previous studies (e.g., 
Utsu 1984; Parvez and Ram 1997, 1999; Yadav et  al. 2008, 2010, 2012; Bantidi 
et  al. 2022; Working group 2013; Pasari 2015, 2018; Pasari and Dikshit 2014a, 
2014b, 2015a, 2015b, 2018; Bajaj and Sharma 2019; Kourouklas et  al. 2022), we 
consider 12 candidate reference probability distributions to model the observed 
sample {t1, t2, t3,⋯ , t38} of size 38. These distributions include the time-independent 
exponential model and time-dependent gamma, lognormal, Weibull, Levy, Maxwell, 
Pareto, Rayleigh, inverse Gaussian, inverse Weibull, exponentiated exponential and 
exponentiated Rayleigh models. Specifically, following the reliability theory, recurrence 
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in the study region during 1800–2022
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statistics of earthquakes has been discussed by several Japanese researchers (e.g., Utsu 
1972, 1984; Hagiwara 1974; Rikitake 1976) in the early stages of implementation. 
Among these Utsu (1984) has formally discussed the recurrence of earthquakes in Japan 
through four renewal models, namely exponential, gamma, lognormal and Weibull. 
Later on, a series of studies (e.g., Utsu 1984; Parvez and Ram 1997, 1999; Yadav et al. 
2008, 2010, 2012, Working group 2013; Pasari 2015, 2018; Pasari and Dikshit 2014a, 
2014b, 2015a, 2015b, 2018; Bajaj and Sharma 2019) have concentrated on these four 
probability distributions for earthquake interoccurrence time analysis. To this end, 
Weibull distribution appears to be the most popular and versatile probability model 
in statistical seismology (Pasari 2015). Abaimov et  al. (2008) also suggested that the 
Weibull distribution is the favored model for describing recurrence times on the San 
Andreas fault. Corral (2003, 2004) employed global catalogs and observed that the 
gamma distribution provides a good fit for intermediate and large values of recurrence 
time. To note, Kagan and Knopoff (1987) introduced the inverse Gaussian distribution, 
which Matthews et al. (2002) adopted as the BPT distribution for their specific regions.

For the studied probability distributions, we mention density functions, their supports 
and a basic explanation of model parameters in Table 2. We note that except Pareto, all 
distributions consider positive real line as their support. Out of these 12 distributions, four 
distributions (exponential, Levy, Maxwell and Rayleigh) have one parameter, whereas the 
rest of them have two parameters. The exponential distribution appears in seismology to 
describe earthquake interevent times under a homogeneous Poisson process, though it pro-
duces a constant hazard function over time. The gamma and Weibull distributions have two 
parameters, one scale parameter (responsible to control the spread of distribution) and one 
shape parameter (responsible to produce various appearances). The shape parameter par-
ticularly brings out a large variety of flexibility. When the shape parameter takes unit value, 
both distributions become identical to an exponential distribution. Moreover, as these dis-
tributions are popular in survival analysis to model residual times (also known as waiting 
time or time to failure), they are commonly used in seismic interoccurrence time analy-
sis (Pasari 2015). Under different conditions, these two distributions enable monotonically 
increasing, decreasing and constant failure rate. The lognormal distribution, like Levy, 
Pareto or inverse Weibull (Frechet), is a commonly used heavy-tailed distribution that puts 
higher probability to large events. While the lognormal distribution has distinctive appli-
cations in modeling maintenance time of a system, the heavy-tailed models are generally 
used in modeling huge insurance losses, income data, wildfire and earthquake sizes (Foss 
et al. 2011). The hazard functions of lognormal and Frechet distributions are non-mono-
tone unimodal upside-down (concave-down ∩ shape) bathtub shape, whereas the hazard 
rate pattern of Pareto is decreasing (Johnson et al. 1995). The Maxwell and Rayleigh dis-
tributions belong to one-parameter family of distributions, with Maxwell having extensive 
applications in particle speed analysis in statistical physics, while Rayleigh with increasing 
hazard rate has found applications in medical statistics and oceanographic studies among 
others. Both distributions have been used in statistical seismology. The inverse Gaussian 
distribution, also known as BPT distribution, is a popular temporal model (e.g., Matthews 
et al. 2002; Pasari and Dikshit, 2015a, 2015b, 2018) for interarrival times and consequent 
long-term seismic forecasting. Unlike many probability models, this distribution with a 
non-monotone hazard pattern asymptotically attaining a nonzero value enables noteworthy 
connection to the earthquake mechanics of stress and strain accumulation (Matthews et al. 
2002). In addition, we consider two distributions from the exponentiated group, namely 
the exponentiated exponential and the exponentiated Rayleigh (Mudholkar and Srivastava 
1993). With an additional shape parameter, these distributions generalize the exponential 
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and Rayleigh distributions, respectively. Both distributions have many characteristics with 
commonly used renewal time distributions, such as exponential, gamma and Weibull distri-
butions (Gupta and Kundu 1999; Pal et al. 2006; Pasari and Dikshit 2015a; Mahmoud and 
Ghazal 2017).

4.1 � Statistical inference

In order to carry out statistical inference based on available earthquake interarrival times, 
we utilize the maximum likelihood estimation (MLE) method for parameter estimation of 
the studied distributions, the Fisher information matrix to compute the variance–covariance 
matrix associated with the MLE estimates and three model selection approaches to arrange 
the distributions’ performance. The MLE method works on the principle that the estimated 
model parameters must maximize the joint likelihood for a given set of sample data points 
(Johnson et  al. 1995). The method often requires to solve a set of linear or nonlinear 
likelihood equations. On the other hand, the Fisher information matrix (FIM), coupled with 
the Cramer–Rao lower bound, provides a measure of uncertainty in terms of asymptotic 
standard deviations and confidence limits of the estimated model parameters (Johnson 
et al. 1995; Hogg et al. 2005; Pasari 2015).

Let � =
(
�1, �2,⋯ , �p

)
 denote the parameters for a reference distribution. Then, the 

symmetric and positive semi-definite FIM Ip×p(�) can be defined (Hogg et  al. 2005) as 
below.

Here, E denotes the expectation, f (t;�) is the density function, and L(T;�) is the log-
likelihood function. After obtaining Fisher information matrix, we compute the asymptotic 
variance–covariance matrix 

∑
𝜃̂ for each distribution through the Cramer–Rao bound 

(Hogg et al. 2005) defined as 
∑

𝜃̂ ≥
�
nI
�
𝜃̂
��−1 , where 𝜃̂ is the maximum likelihood estimate 

of � . Finally, we provide a 95% two-sided confidence limit of the estimated model parame-
ters as 𝜃̂ − 1.96

��∑
ii

�
𝜃̂
��

i=1,2,⋯,p
< 𝜃 < 𝜃̂ + 1.96

��∑
ii

�
𝜃̂
��

i=1,2,⋯,p
. To note, the exact 

(not asymptotic) standard deviations are available for the Pareto distribution (Quandt 1966; 
Pasari 2015), whereas the uncertainty analysis for the exponentiated Rayleigh distribution 
cannot be performed as the explicit formulation of the FIM is unavailable (Pal et al. 2006). 
In Table 3, we list the estimated parameter values along with their associated uncertainties.

The estimated parameter values given in Table  3 suggest the following noteworthy 
characteristics of the underlying earthquake system: (i) as the shape parameter 

(
𝛽
)
 in each 

of gamma, Weibull and exponentiated exponential is less than 1.0, the associated hazard 
function turns out to be monotonically decreasing, indicating that the expected time to the 
next earthquake will increase with an increasing elapsed time (Sornette and Knopoff 1997; 

(4)

Ip×p(�) =
(
Iij(�)

)
i,j=1,2,⋯,p

= E

(
−
�2 ln f (T;�)

��i��j

)

i,j=1,2,⋯,p

= E

[(
� ln f (T;�)

��i

)(
� ln f (T;�)

��j

)]

i,j=1,2,⋯,p

=
1

n
E

(
−
�2L(T;�)

��i��j

)

i,j=1,2,⋯,p
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Pasari 2015); (ii) inverse Gaussian and lognormal distributions exhibit non-monotone 
hazard shapes that gradually reach to a constant asymptotic value �

2�2
≈ 0.0015 and zero, 

respectively (Pasari 2018); (iii) as the estimated shape parameter 
(
𝛽
)
 of the Pareto distribu-

tion is less than 1, it does not allow us to compute mean interevent time or standard devia-
tion (Johnson et al. 1995); (iv) the hazard function associated with the exponentiated Ray-
leigh distribution assumes a “bathtub-type” shape as 𝛽 < 0.5 (Pal et al. 2006; Pasari and 
Dikshit 2018), and (v) for exponentiated exponential distribution with 𝛽 < 1 , we cannot 
evaluate the parametric uncertainty for this distribution as 𝜓 �

(
𝛽 − 1

)
 is not defined (Gupta 

and Kundu 1999).
After parameter estimation and uncertainty treatment, we now rank the reference 

distributions according to their performance against the observed interevent times. 
For this, we use three popular model selection approaches, namely the AIC, K–S and 
the Chi-square criterion. The AIC in general penalizes a model with more parameters 
and it is defined as AIC = 2k − 2L , where k denotes the number of parameters and L 

Table 3   Estimated parameter values with their asymptotic standard deviations and confidence bounds

a For Pareto distribution, exact standard deviations 
(
𝜎𝛼̂ , 𝜎𝛽

)
 of the estimated parameters are calculated 

(Quandt 1966); the upper confidence bound is capped at 0.002740, as 0 < 𝛼 < t
i
 for all i  . Similarly, for 

inverse Gaussian distribution, the lower confidence bound for 𝛽  is capped at 0, as 𝛽 > 0.

b As 𝛽 < 1 in the exponentiated exponential distribution, the tri-gamma function 𝜓 �
(
𝛽 − 1

)
 is not defined. 

Hence, the FIM for the exponentiated exponential distribution was not evaluated
c For the exponentiated Rayleigh distribution, parametric model uncertainties are not calculated, as the FIM 
is not explicitly available (Pal et al. 2006)

Model Parameter values Asymptotic standard 
deviation

Confidence bound (95%)

Lower Upper

Exponential 𝛼̂ 5.432877 𝜎𝛼̂ 0.881329 3.705472 7.160282
Gamma 𝛼̂ 10.059244 𝜎𝛼̂ 2.934683 4.307265 15.811223

𝛽 0.540088 𝜎𝛽 0.103024 0.338161 0.742015
Lognormal 𝛼̂ 0.766694 𝜎𝛼̂ 0.217975 0.339463 1.193925

𝛽 1.900260 𝜎𝛽 0.308263 1.296065 2.504455
Weibull 𝛼̂ 4.844709 𝜎𝛼̂ 1.055370 2.776184 6.913234

𝛽 0.784100 𝜎𝛽 0.099176 0.589715 0.978485
Levy 𝛼̂ 0.088213 𝜎𝛼̂ 0.020237 0.048548 0.127878
Maxwell 𝛼̂ 4.340426 𝜎𝛼̂ 0.287452 3.777020 4.903832
Pareto a 𝛼̂ 0.002740 𝜎𝛼̂ 0.000723 0.001323 0.002740

𝛽 0.150002 𝜎𝛽 0.026764 0.097545 0.202459
Rayleigh 𝛼̂ 5.315914 𝜎𝛼̂ 0.431178 4.470805 6.161023
Inverse Gaussiana 𝛼̂ 5.432877 𝜎𝛼̂ 0.029093 5.375855 5.489899

𝛽 0.089669 𝜎𝛽 6.860116 0 13.535496
Inverse Weibull 𝛼̂ 0.745021 𝜎𝛼̂ 0.299517 0.157968 1.332074

𝛽 0.403980 𝜎𝛽 0.048584 0.308755 0.499205
Exponentiated exponential  b 𝛼̂ 7.251450 –

𝛽 0.647055
Exponentiated Rayleigh c 𝛼̂ 12.017179 –

𝛽 0.276535
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is the log-likelihood value. Therefore, a model with the least AIC value is deemed to 
be the most preferable model for a given dataset. In contrast, the K–S nonparametric 
goodness-of-fit test compares the distance between the cumulative distribution function 
(CDF) of the tested distribution and the empirical distribution function (EDF), under 

Table 4   Model selection results using three goodness-of-fit tests and criteria

a Chi-square values are calculated for six classes (< 1, 1–3, 3–5, 5–8, 8–14, and  > 14)

Distribution Maximum 
Likelihood

K–S Min. Distance Chi-square valuesa Tentative 
ranking of 
models

–lnL AIC K–S distance �2
2

Exponential 102.3138 206.6276 0.1327 21.2607 04
Gamma 100.2035 204.4070 0.1396 21.3531 05
Lognormal 107.4497 218.8993 0.1787 25.3395 06
Weibull 100.5468 205.0937 0.1074 21.2996 03
Levy 143.7532 289.5064 0.5257 90.1315 11
Maxwell 174.6602 351.3204 0.3074 90.6656 08
Pareto 139.2245 282.4490 0.3479 87.6187 10
Rayleigh 135.8392 273.6784 0.3467 24.2794 09
Inverse Gaussian 143.4421 290.8843 0.5368 90.7585 12
Inverse Weibull 117.8654 239.7308 0.2497 35.0982 07
Exponentiated exponential 99.5704 203.1409 0.1068 20.8452 02
Exponentiated Rayleigh 97.7907 199.5814 0.0876 19.7765 01
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Fig. 3   Comparison of the best five CDF (i.e., exponential, gamma, Weibull, exponentiated exponential and 
exponentiated Rayleigh) of the tested distributions against EDF through K–S plots
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the null hypothesis that the data are distributed according to the distribution. Arranging 
the K–S distances in an increasing order, we rank the studied reference distributions 
(Table 4). In addition to the K–S point measures, we also present a number of K–S plots 
in Figs. 3 and 4, and Figure S5 to examine the overall fit of the reference CDFs with the 
EDF. After AIC and K–S tests, we employ the minimum Chi-square criterion that uses 
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Fig. 4   Comparison of the a gamma against Weibull, b exponential against exponentiated exponential, 
c gamma against exponentiated exponential, d gamma against exponentiated Rayleigh, e Weibull against 
exponentiated exponential, f Weibull against exponentiated Rayleigh, g exponential against exponentiated 
Rayleigh and h exponentiated exponential against exponentiated Rayleigh distributions through K–S plots
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observed and expected frequencies to prioritize a group of distributions. For computa-
tion of Chi-square value, here we use six classes (< 1, 1–3, 3–5, 58, 8–14, > 14). The 
detailed results of model selection tests are summarized in Table 4.

Table 4 shows that the exponentiated Rayleigh distribution has the lowest AIC value, 
least K–S distance and the minimum Chi-square value, whereas the exponentiated 
exponential, Weibull, exponential and gamma distributions also reveal a satisfactory fit 
to the observed interarrival times in the study region. Therefore, the best performance 
comes from the exponentiated Rayleigh (rank 1), exponentiated exponential (rank 2), 
Weibull (rank 3), exponential (rank 4) and the gamma distribution (rank 5), (ii) an 
intermediate fit comes from the lognormal (rank 6) and the inverse Weibull distribution 
(rank 7), whereas (iii) the distributions, namely Maxwell (rank 8), Rayleigh (rank 9), 
Pareto (rank 10), Levy (rank 11) and inverse Gaussian (rank 12), show poor fit based on 
the AIC, K–S and Chi-square criteria. For further insights of the model suitability, we 
demonstrate a pairwise comparison (Fig. 4) between the competitive distributions, such as 
(a) gamma–Weibull, (b) exponential–exponentiated exponential, (c) gamma–exponentiated 
exponential, (d) gamma–exponentiated Rayleigh, (e) Weibull–exponentiated exponential, 
(f) Weibull–exponentiated Rayleigh, (g) exponential–exponentiated Rayleigh and (h) 
exponentiated exponential–exponentiated Rayleigh. We observe that Weibull is almost 
inseparable from the exponentiated exponential, though there is a noticeable difference 
between exponentiated exponential and its parent distribution (exponential), exponentiated 
exponential and exponentiated Rayleigh, or any two other distributions. Overall, the 
proximity or farness among these best-fit distributions motivate researchers to further 
investigate model efficacy in domain-specific practical applications (Johnson et al. 1995; 
Gupta and Kundu 1999; Scholz 2019).

4.2 � Large earthquake occurrence probabilities

After analyzing the performance of the reference distributions, our final task is to assess 
long-term earthquake occurrence probabilities in the study region. For this, we utilize 
the best-fit exponentiated Rayleigh distribution to compute cumulative probability and a 
series of conditional probabilities for different elapsed times (time elapsed since the last 
large earthquake) and residual times (time to a future large earthquake). The conditional 
probability values are often represented in terms of hazard function curves of the best 
performed model (Fig.  5) for scientific, public and commercial purposes (Yadav et  al. 
2008; Pasari and Dikshit, 2014a, b). The conditional probability of a future event in the 
time window (�, � + v) for a given elapsed time � and prospective residual time v can be 
mathematically defined (Pasari 2015) as

To note, the cumulative probability describes the occurrence of a future event within a 
certain time from the last earthquake, whereas the conditional probability determines the 
chance of an earthquake in the interval (�, � + v) , knowing that there has been no large 
event in the last � years. Using the most suitable exponentiated Rayleigh distribution, it 
is found that the estimated cumulative probability of a M ≥ 6 event in the Nepal Himalaya 
reaches 0.90–0.95 by 2028–2031, whereas the conditional probability reaches 0.90–0.95 

(5)P(V ≤ 𝜏 + v|V ≥ 𝜏) =
F(𝜏 + v) − F(𝜏)

1 − F(𝜏)
(v > 0)
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by 2034–2037. These probability values are alarmingly high to draw attention of the disas-
ter management authorities in Nepal.

As the last large earthquake in Nepal occurred on April 25, 2015, the elapsed 
time as of today is � = 8 years (i.e., April 25, 2023). Therefore, for � = 8 years and 
v = 1, 4, 7,⋯ , 25 years, we compute conditional probabilities and their 95% confi-
dence bounds (Table 5) using all the four best performed models, namely the gamma, 
Weibull, exponentiated exponential and exponentiated Rayleigh. Results show that the 
conditional probabilities according to all distributions reach 0.95 in about 14–25 years 
from now (2037–2048). Similarly, varying both elapsed time (� = 8, 10, 15,⋯ , 35 years) 
and residual time, we calculate a series of conditional probabilities and graphically dis-
play them in Fig. 5 and Figure S6 to examine hazard for large earthquakes in the study 
region. The curves in Fig. 5 show a consistent pattern for gamma, Weibull and expo-
nentiated exponential distributions, though the exponentiated Rayleigh exhibits a rela-
tively higher conditional probability value. The curves in Figure S6 highlight the short-
term earthquake occurrence behavior corresponding to � = 8 (2023) and � = 10 (2025) 
with future time v = 10 year. To investigate more, we present conditional probabilities 
(Table 6) computed from the best-fit exponentiated Rayleigh distribution corresponding 
to � = 8 (2023), 10 (2025), 15 (2030),⋯ , 35 (2050) and v = 1, 2, 3,⋯ , 15. We note that 
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Fig. 5   Conditional probability curves Hazard function curves for various elapsed times ( � = 8, 10, 15, ..., 35 
years) as computed from a gamma, b Weibull, c exponentiated exponential and d exponentiated Ray-
leigh for M≥6 events in the Nepal Himalaya. The dot line represents the hazard curve corresponding to an 
elapsed time of 8 years (since the last powerful Gorkha earthquake in April 2015)
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unlike the exponential distribution that provides conditional probability independent of 
the elapsed time, the conditional probabilities corresponding to the exponentiated Ray-
leigh increase with increasing elapsed times. In fact, this observation is contrasting to 
the conditional probability calculated from gamma, Weibull or exponentiated exponen-
tial as each of these distributions with 𝛽 < 1 exhibits a decreasing hazard rate for the 
present earthquake catalog.

Table 5   Estimated conditional probabilities for an elapsed time of 8 years (i.e., April 2023) in the Nepal 
Himalaya and its adjoining regions

a absolute conditional probability values are presented, as their parametric model uncertainties are unknown

Residual time Year Gamma Weibull Exponentiated 
exponentiala

Exponentiated 
Rayleigh a

1 2024 0.12 (0.08–0.25) 0.13 (0.08–0.29) 0.14 0.16
4 2027 0.40 (0.27–0.68) 0.43 (0.26–0.75) 0.44 0.52
7 2030 0.59 (0.41–0.86) 0.61 (0.39–0.91) 0.64 0.74
10 2033 0.71 (0.53–0.94) 0.73 (0.49–0.97) 0.76 0.88
13 2036 0.80 (0.62–0.97) 0.81 (0.57–0.99) 0.84 0.95
16 2039 0.86 (0.69–0.99) 0.87 (0.63–0.99) 0.90 0.98
19 2042 0.90 (0.75–0.99) 0.91 (0.68–0.99) 0.93  > 0.99
22 2045 0.93 (0.80–0.99) 0.93 (0.72–0.99) 0.96  > 0.99
25 2048 0.95 (0.84–0.99) 0.95 (0.76–0.99) 0.97  > 0.99

Table 6   Estimated (from exponentiated Rayleigh model) conditional probabilities that an earthquake with 
magnitude M

W
≥ 6  will occur in next v years (residual time), given that no M

W
≥ 6 event has occurred in 

last � years (elapsed time) since the last Gorkha event in April 2015

Residual 
time (v)

Elapsed time (�)

8 (2023) 10 (2025) 15 (2030) 20 (2035) 25 (2040) 30 (2045) 35 (2050)

1 0.16 0.17 0.21 0.25 0.30 0.34 0.39
2 0.29 0.32 0.38 0.45 0.51 0.58 0.63
3 0.41 0.44 0.52 0.60 0.67 0.73 0.78
4 0.52 0.55 0.63 0.71 0.78 0.83 0.87
5 0.61 0.64 0.72 0.79 0.85 0.89 0.93
6 0.68 0.71 0.79 0.86 0.90 0.94 0.96
7 0.74 0.77 0.84 0.90 0.94 0.96 0.98
8 0.80 0.83 0.89 0.93 0.96 0.98 0.99
9 0.84 0.87 0.92 0.95 0.97 0.99 0.99
10 0.88 0.90 0.94 0.97 0.98 0.99  > 0.99
11 0.91 0.92 0.96 0.98 0.99  > 0.99  > 0.99
12 0.93 0.94 0.97 0.99 0.99  > 0.99  > 0.99
13 0.95 0.96 0.98 0.99  > 0.99  > 0.99  > 0.99
14 0.96 0.97 0.99 0.99  > 0.99  > 0.99  > 0.99
15 0.97 0.98 0.99  > 0.99  > 0.99  > 0.99  > 0.99
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5 � Discussion

The Nepal Himalaya lies in the middle of the Himalayan collision boundary between 
India and Eurasia continental plates. Comprising major faults, lineaments and several 
physiographic units, the region regularly experiences large earthquakes at shallow to 
intermediate depths, with dominant thrusting mechanism. The most recent devastation 
in Nepal comes from the Mw 7.8 Gorkha earthquake on April 25, 2015, at a depth of 
around 8.2 km from the surface. This earthquake has reignited the necessity of long-term 
earthquake hazard analysis in the Nepal Himalaya. Among the wide range of techniques, 
such as satellite-based measures of surface deformation, geophysical approaches, 
seismological and geological studies, the present analysis concentrates on deriving 
the recurrence-time statistics of large (M ≥ 6) powerful earthquakes in the study region. 
Based on more than 200 years (1800–2022) of seismicity data that includes hypocentral 
information, the location of initial slip, magnitude and the origin time, we tabulate 
interevent times (between the main shocks) in the specific space–time window and 
implement twelve reference probability distributions to fit the data. These distributions 
include exponential, gamma, lognormal, Weibull, Levy, Maxwell, Pareto, Rayleigh, 
inverse Gaussian, inverse Weibull, exponentiated exponential and exponentiated Rayleigh. 
Identifying the most suitable reference distribution(s), we finally estimate long-term 
earthquake hazards in terms of conditional probabilities for various elapsed times and 
residual times.

There have been many previous studies to identify the most appropriate renewal time 
distributions. For example, Utsu (1984) employed four distributions (i.e., exponential, 
gamma, lognormal and Weibull) in Japan and observed that the lognormal distribution 
provides the best representation in some cases but worst in others, whereas gamma and 
Weibull provide an intermediate fit. Later, Nishenko and Buland (1987) developed 
recurrence time statistics using lognormal and Weibull models, and noted that lognormal 
enables a better fit. In a similar effort, Rikitake (1991) used Weibull and lognormal 
distributions for earthquake hazard analysis in Tokyo, Japan. For different seismotectonic 
provinces of Iran, Yazdani and Kowsari (2011) used five reference distributions, namely 
exponential, Pareto, lognormal, Rayleigh and gamma. They found that exponential and 
Pareto provide a reasonable recurrence time prediction in Iran. This type of interarrival 
time analysis has been performed by Parvez and Ram (1997, 1999) for the Hindu Kush 
and northeast India, and later for the entire India using Weibull, lognormal and gamma 
distributions. It was observed that gamma and Weibull models have better performance 
for the Indian subcontinent. Likewise, Yadav et  al. (2008) carried out probabilistic 
assessment of earthquake hazards in three regions of Gujarat using lognormal, gamma 
and Weibull distributions. It was noted that for two regions, gamma turns out to be the 
best model, whereas for the other region, lognormal has the best fit to the observed data. 
Later, Yadav et  al. (2010) implemented same set of three reference models in northeast 
India and concluded that gamma distribution is the most preferable one for the study 
region. For the northwest India and its adjoining regions, Chingtham et al. (2016) applied 
two stochastic models (lognormal and Weibull) and remarked that lognormal has better 
fit than the Weibull distribution. Recently, Pasari and Dikshit (2015a, 2015b) and Pasari 
(2018) used a versatile set of eleven to thirteen reference probability distribution to 
compute earthquake hazards for large earthquakes in the seismotectonically active regions 
of northeast India, western India (Kachchh, Gujarat) and northwest Himalaya. These 
studies have suggested that for the northeast India, the best representation comes from 
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gamma, exponentiated exponential and Weibull, whereas for the Kachchh region, the time-
independent exponential distribution performs best, and for the northwest Himalaya and its 
adjoining areas, the exponentiated Weibull, exponentiated exponential, Weibull and gamma 
distributions have relatively better suitability than the others. In a distinctive effort, Bajaj 
and Sharma (2019) divided the entire Himalayan arc into four seismogenic source zones 
(northwestern Himalaya, region of central seismic gap, eastern Nepal and Sikkim, and 
eastern Himalaya) and examined long-term earthquake hazards from large events in these 
regions. Based on four stochastic models, namely lognormal, gamma, inverse Gaussian and 
Weibull, their study has shown that the performance of the probability models depends 
on the selected magnitude range. For instance, in the northwestern Himalaya, gamma has 
the best fit for interarrival times corresponding to M ≥ 6 events, whereas inverse Gaussian 
has the best representation for M ≥ 7 events; for the central seismic gap region, inverse 
Gaussian is the best for M ≥ 6 earthquakes and lognormal for M ≥ 7 events; in the eastern 
Nepal and Sikkim, the best-fit distribution turns out to be lognormal for both magnitude 
ranges, and for the eastern Himalaya, the best fit comes from inverse Gaussian (M ≥ 6) 
and gamma (M ≥ 7) models. Recently, Pasari (2019b) studied the the similitude of inverse 
Gaussian and lognormal distributions in earthquake forecasting and they found that the 
heavy-tailed lognormal distribution has better fit to the observed interevent time data for 
all three studied regions. Therefore, above studies suggest that the empirical fitting of a 
reference distribution many a times varies from region to region and catalog to catalog. 
In light of this, here we explore the suitability of twelve competitive distributions and 
develop conditional probability curves through the best-fit models. It was found the best 
representation comes from the exponentiated Rayleigh distribution, though exponential, 
gamma, Weibull and exponentiated exponential provide a similar performance.

The concept presented in this work originally stems from the idea of stochastic 
renewal process of earthquake “cycles” in a large geographic region. The earthquake 
cycle defined here is of course different from the recurring events associated with a single 
fault or a fault section, as such a rigid concept of seismic cycle does not allow researchers 
to examine statistical distribution of seismicity in space, time and size. Throughout the 
literature, on the grounds of familiarity, simplicity and convenience, four members of 
renewal time distributions, namely exponential, gamma, lognormal and Weibull, have 
been extensively used to study recurrence times and associated earthquake forecasting, 
though there are some instances where the underlying model (say, Brownian passage time 
and exponentiated Weibull) is constructed based on theoretical grounds (Matthews et al. 
2002; Pasari and Dikshit 2018). In contrast to earthquake forecasting that looks ahead in 
time, Rundle et  al. (2016) recently formulated the concept of “earthquake nowcasting” 
based on the idea of renewal process of earthquake cycles through a “short-term fault 
memory.” Following the original formulation, Pasari et  al. (2021) developed seismic 
nowcasting in Nepal to quantify the current level of seismic progression at 24 major 
cities through irregular repetitive cycle of regional earthquakes. Using natural times, the 
intersperse event counts of “small” earthquakes (say, M ≥ 4) between a pair of subsequent 
“large” earthquakes (say, M ≥ 6), the authors have developed five reference distributions 
(exponential, gamma, Weibull, exponentiated exponential and exponentiated Weibull) to 
empirically derive earthquake potential score (EPS) of these cities in a 0–100% scale of 
extremity. The nowcasting technique, unlike forecasting, does not require to separate out 
dependent events, such as foreshocks and aftershocks (Rundle et  al. 2016). The analysis 
in Nepal assigns EPS values between 59 and 99% to 24 major cities, with the scores of 
metropolitan areas Kathmandu (95%), Pokhara (93%), Lalitpur (95%), Bharatpur (93%), 
Biratnagar (92%) and Birganj (93%), sub-metropolitan cities Janakpur (95%), Ghorahi 
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(67%), Hetauda (93%), Dhangadhi (94%), Tulsipur (59%), Itahari (93%), Nepalgunj 
(97%), Butwal (96%), Dharan (93%), Kalaiya (93%) and Jitpur Simara (93%), and seven 
municipality areas Birtamod (89%), Damak (92%), Budhanilkantha (95%), Gokarneshwar 
(95%), Bhimdatta (94%), Birendranagar (99%) and Tilotamma (97%) (Pasari et al. 2021). 
Physically, these scores indicate, for example, that the capital city Kathmandu has reached 
the rear end of its earthquake cycle of magnitude 6.0 or higher events, whereas the 
Tulsipur city is near the middle of its earthquake cycle. Therefore, the results of earthquake 
nowcasting, in contrast to the earthquake forecasting, have some theoretical grounds on 
the basis of tectonic stress accumulation and energy release in the study region. Like 
conditional probabilities in forecasting, the EPS values enable a systematic ranking of 
the cities based on their “current” exposure to earthquake risk. In an effort to characterize 
earthquake hazard in Nepal using geodetic data, several researchers (e.g., Bilham et  al. 
2001; Ader et  al. 2012; Lindsey et  al. 2018; Sreejith et  al. 2018; Bilham 2019; Sharma 
et al. 2020) have highlighted high-risk areas in terms of crustal velocity, strain distribution, 
moment deficit rate and earthquake potential. It has been suggested that the 2015 Gorkha 
earthquake has partially released the accumulated strain and the central seismic gap 
region covering the western part of Nepal is the most earthquake prone area to experience 
a great Himalayan earthquake (Mw ≥ 8.0) in the near future (Sreejith et al. 2018; Bilham 
2019; Sharma et  al. 2020). Therefore, with the high volume of observational data and 
sophisticated methodology, we believe that interdisciplinary efforts in future will provide 
more realistic earthquake hazard assessment strategy in the Nepal Himalaya.

6 � Conclusions

The present study leads to the following conclusions:

	 (i)	 The best performed distributions are the exponentiated Rayleigh (rank 1), 
exponentiated exponential (rank 2), Weibull (rank 3), exponential (rank 4) and the 
gamma (rank 5), whereas lognormal (rank 6) and the inverse Weibull distribution 
(rank 7) reveal intermediate suitability, and the rest, namely Maxwell (rank 8), 
Rayleigh (rank 9), Pareto (rank 10), Levy (rank 11) and inverse Gaussian (rank 12), 
have poor suitability to the observed interarrival times of large events in the Nepal 
Himalaya.

	 (ii)	 The best-fit exponentiated Rayleigh model shows that the estimated cumulative and 
conditional probability of a M ≥ 6 event in the study region reach 0.90–0.95 in the 
next 5–8 years (2028–2031) and 11–14 years (2034–2037), respectively.

	 (iii)	 Emanated conditional probability curves (hazard function curves) for different 
elapsed times and residual times reveal long-term seismic hazard in the study 
region. The probability values are alarmingly high to draw attention of the disaster 
management authorities in Nepal.
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