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Abstract
Precipitation is the most important climate element in supplying Iran’s water resources. Its 
regular temporal distribution will guarantee the sustainability of water resources. Estimat-
ing precipitation behavior in near future will improve managing water resources. Therefore, 
the current study aimed to examine precipitation regulation in near future (2021–2040). To 
this end, five models–namely GFDL-ESM4, MPI-ESM1-2-HR, IPSL-CM6A-LR, MRI-
ESM2, and UKESM1-0-LL–along with the data of 95 synoptic stations were used. Upon 
estimating precipitation by the use of these models, the estimated data were ensemble 
using a multi-model ensemble model, which was based on the correlation-weighted aver-
age. Assessing the estimation error indicated the reduction of error rate in the ensemble 
data. Precipitation concentration index (PCI), precipitation concentration period (PCP), 
and precipitation concentration degree (PCD) were used to study precipitation regulation 
in near future. The results suggested more precipitation regulation in the north, northwest, 
and northeast of Iran, while more precipitation concentration was observed in southern 
parts of Iran. The precipitation concentration in southern parts of Iran indicates lower pre-
cipitation regulation in this area.
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1  Introduction

In recent years, studies on predicting and analyzing precipitation have gained momen-
tum due to their importance in managing water resources, agriculture, and environmen-
tal issues. As a vital element of climate and climate change, precipitation has become 
the focus of many researchers’ projects. Spatial and temporal variations in precipitation 
concentration refer to precipitation changes in the particular region over a certain period 
of time. These variations may profoundly affect different environmental elements such as 
drought (Parajka et al. 2010; Chang et al. 2017; Sarricolea et al. 2019; Darand and Khan-
dou 2020; Darand and Pajzhoh 2022), flood (Shi et al. 2015; Huang et al. 2019; Singh et al. 
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2020; Hekmatzadeh et al. 2020), soil erosion, and change in vegetation cover (Zhao et al. 
2012; Vyshkvarkova et al. 2018). These variations can also increase the spatiotemporal dis-
tribution of precipitation in an unusual way, hence boosting the frequency, intensity, and 
length of heavy precipitation events (Zhai et al. 2005).

An important aspect of climate change requiring close inspection is variations associ-
ated with the temporal distribution of precipitation (Adegun 2012). Unbalanced distribu-
tion of precipitation leads to drought, declining soil humidity and eliminating vegetation 
cover. In such a situation, even precipitations less than the average amount of the region 
may cause dangerous floods (Fu et  al. 2023). Variations in precipitation also influence 
water resources, including groundwater, surface water, and snow reserves. It is therefore 
essential to use some indices to study changes in precipitation. Indices of precipitation con-
centration are used as warning instruments in hydrological, water resource, and environ-
ment management programs with the aim of increasing capability of dealing with flood, 
erosion, etc. (Adegun 2012).

The indices which have recently become popular are concentration index (CI), precipi-
tation concentration index (PCI), precipitation concentration period (PCP), and precipita-
tion concentration degree (PCD) (Li et al. 2011; Zhang et al. 2019; Zhao et al. 2019; Sarri-
colea et al. 2019; Kaboli et al. 2021). Owing to its scientific and practical advantages, PCI 
has been extensively used to analyze spatiotemporal patterns in different regions including 
Spain (Martin-Vide 2004; Máyer et al. 2017), New Zealand (Caloiero 2014), Peru (Zubi-
eta et  al. 2017), India (Chatterjee et  al. 2016; Yin et  al. 2016), Algeria (Benhamrouche 
et al. 2015), Chile (Sarricolea et al. 2019; Sarricolea et al. 2019), the United Arab Emir-
ates (Royé & Martin-Vide 2017). In these studies, precipitation intensity and concentra-
tion were explored. Precipitation concentration indices have been used in some studies. 
Alijani et al. (2008), for example, explored precipitation intensity in 90 synoptic stations 
in Iran. The results demonstrated an irregular precipitation distribution in Iran, with the 
coastlines of the Caspian Sea, the areas around the Zagros mountain range, and the north-
east of Iran recording the heaviest precipitations. Cortesi et  al. (2012) studied daily pre-
cipitation concentration in the entire Europe, discovering that the highest density of daily 
precipitation was located on the coasts of Spain and France. They reported that latitude 
and distance from the sea were the main predictors of the distribution of daily precipita-
tion concentration in the studied region. Valli et al. (2013) examined the annual and sea-
sonal precipitation pattern in the state of Anhra Pradesh, India, using PCI. The findings 
showed an irregular precipitation distribution in the region with values varying from 16 to 
35. Mondol et al. (2018) carried out a similar study in Bangeladesh and observed a signifi-
cant rise in the temporal concentration of precipitation after 2000, which was in alignment 
with the increasing spatiotemporal irregularity of precipitation intensity and duration as 
well as temporal concentration of precipitation. Benhamrouche et al. (2022), who exam-
ined daily precipitation concentration in Central Coast Vietnam, reported high values of 
CI, ranging from 0.62 to 0.72. Wang et  al. (2022) studied the spatiotemporal variability 
of CI in Shaanxi Province, China. The results indicated that the values of the precipitation 
correlation index and CI were greater in the south of Shaanxi and smaller in its north. The 
results also showed a falling trend in the annual rainfall of Shaanxi over the recent decades.

Spatiotemporal variability of precipitation is a key factor in managing water resources 
and agricultural products, reducing drought-related hazards, controlling floods, and gain-
ing a better understanding of the impact of climate change (Zamani et al. 2018). Conse-
quently, the ability to forecast spatiotemporal variations in precipitation is critical in man-
aging water resources and soil in a region. Precipitation is of particular importance in a 
water-deficient land like Iran, where water resources depend on rainfall and the population 
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is on the rise. Given the high spatiotemporal variability of precipitation in Iran, there are 
numerous uncertainties associated with rainfall variations. Given the critical condition of 
water resources in the country, it is essential to carry out a comprehensive analysis of water 
resource management. To this end, in the current study, attempts are made to forecast spati-
otemporal variations in precipitation concentration using the data of the sixth report.

2 � The study area

The study area comprised Iran, which is located in southeast Asia with a latitudinal coor-
dinate of 25°–40°  N and a longitudinal coordinate of 44°–64  °E, and covers an area of 
1,648,195 km2 (Fig. 1). Iran borders Armenia and Azerbaijan in the northwest, the Caspian 
Sea in the north, Turkmenistan in the northeast, Afghanistan and Pakistan in the east, the 
Persian Gulf and the Oman Sea in the south, and Iraq and Turkey in the west. In general, 
Iran is located in a mountainous and semi-arid region and its average height is over 1200 m 
above sea level. Since Iran encompasses a vast area, hosts numerous geographical factors, 
and is located at the transition point of different atmospheric circulation systems, it is home 
to a wide range of climates and ecosystems.

Considering the temperature, Iran is divided into a cold mountainous region and a hot 
low altitude part. The average temperature of the country is around 18 °C. The presence 
of various synoptic systems like the Ganges low pressure and Azores high pressure as 
well as the moisture content of the atmosphere play a key role in the formation of dif-
ferent temperature zones in Iran (Masoodian and kavyani 2008). The country experiences 
a more homogeneous temperature situation during the summer than winter. The annual 

Fig. 1   Demonstrates the distribution of the studied ground stations
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precipitation rate in Iran is 250 mm, meaning that the country is categorized as an arid one. 
During cold seasons, the dominance of western winds and proximity to the moisture source 
of the Mediterranean Sea cause heavy rainfalls. During hot seasons, however, the presence 
of Azores high pressure significantly reduces the amount of precipitation. Moreover, the 
spatiotemporal distribution of precipitation in Iran has an irregular pattern. The highest and 
lowest precipitation rates respectively belong to the southern coastlines of the Caspian Sea 
and the central deserts, including the Lut Desert and the Great Salt Desert.

3 � Data

3.1 � Synoptic data

In the current study, the data obtained from 95 synoptic stations, which had been collected 
during a period ranging from 1985 through 2014, were utilized and analyzed as the basis. 
Attempts were made to select stations that were located in various climatic zones, had little 
missing data, and met minimum standards measured through quantitative tests.

3.2 � Coupled model intercomparison project (CMIP) and shared socioeconomic 
pathways scenarios (SSPs)

CMIP is a key activity in research about climate forecasting. This project is a powerful 
source for advancing model development and gaining scientific understanding of the earth’s 
system through systematic comparison of climate models’ output generated in various cli-
mate modeling centers. Compared to the previous versions, CMIP6 has not only improved 
the algorithms and physical processes, but also included new variables in the ocean, ocean 
biogeochemistry, and sea ice sections (Zhu and Yang 2020). Following the Intergovern-
mental Panel on Climate Change (IPCC) Sixth Assessment Report in 2021, new climate 
change scenarios, known as SSPs, were projected. SSPs are climate change scenarios of 
projected socioeconomic global changes up to 2100. They are used to derive greenhouse 
gas emission scenarios with different climate policies. In the present study, the two scenar-
ios of SSP1-2.6 (very low greenhouse gas emission and adaptability) and SSP5-8.5 (very 
high greenhouse gas emission and high adaptability) for the near future (2021–2040).

Table 1 presents the details of the five general circulation models (GMCs) used in the 
current study. Attempts were made to select models that were available, enjoyed enough 
popularity among researchers, and took climate sensitivity into account. As such, the Earth 
System Models (ESMs), which clearly model carbon movement in earth’s systems, were 

Table 1   Models used for ensemble

Variant Country Approximate spatial 
separation power

Name institution Model

r1i1p1 Japan 1.25*1.25 Meteorological research institute (MRI) | MRI-ESM2
r1i1p1 France 2.5*2.5 institut pierre-simon laplace IPSL-CM6A-LR
r1i1p1 England 2.25*2.25 Met office hadley center UKESM1-0-LL
r1i1p1 Germany 0.94*0.94 Max planck institute MPI-ESM1-2-HR
r1i1p1 America 1*1.25 Geophysical fluid dynamics laboratory GFDL-ESM4
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exploited in this research. These models try to simulate all aspects related to the earth’s 
systems including physical, chemical, and biological processes. They are thus more sophis-
ticated in estimating climate in comparison with previous models (i.e., the global climate 
model/GCM), which only forecast atmospheric and oceanic processes. In addition to the 
model’s availability and popular–for example, GFDL-ESM4 was utilized by Sentman et al. 
(2018), IPSL-CM6A-LR was exploited by Boucher et  al. (2020), MPI-ESM1-2-HR was 
used by Müller et  al. (2018), and UKESM1-0-LL was adopted by Sellar et  al. (2020)—
their climate sensitivity was an inclusion criterion. Climate sensitivity is typically defined 
as the global temperature rise following a doubling of CO2 concentration in the atmosphere 
compared to pre-industrial levels. Before industrialization, CO2 was about 260 parts per 
million (ppm), so a doubling would be at around 520 ppm.

3.3 � Data extraction, regridding, and skew correction

First, the data associated with the used models were extracted from the areas which were 
close to the synoptic stations. Then, in order to make pixel dimensions of the models and 
ground data comparable, the gleaned data were gridded. Kriging was used for data regrid-
ding. Examining the data indicated that the spatial resolution of 19 km was found to be 
appropriate for pixel dimensions. Consequently, gridding yielded 19 × 19 km pixels. In the 
next stage, microscaling was performed on the developed pixels through the delta change 
factor (DCF) approach using the temperature data of the utilized models. More precisely, 
DCF approach was adopted to conduct skew correction on the decadal prediction models. 
DCF was calculated using Eq. (1):

where T is the target variable, conter refers to the number of simulated CMIP6-DCCP mod-
els during the control period, obs is the period of observation, f is the projected future time 
series whose skewness must be corrected, BC is the projected future time series whose 
skewness has been corrected, t is the time step, and �m is the long-term monthly aver-
age (Mendez 2020). Upon microscaling, the models’ errors were assessed using numerous 
methods such as RMSE, MAE, MBE, and R2. All the abovementioned steps were coded in 
MATLAB and the data are retrievable from https://​github.​com/​poyan​2021/​ensem​ble2.​git.

3.4 � Ensemble method

To minimize the uncertainty of the used models, a multi-model ensemble model, which 
was based on the correlation-weighted average, was used for forecasting. Equation 2 was 
used in this ensemble method.

where wk is the weight of the data in each model and xk is the data estimated based on the 
model (Bai et al. 2020). Pearson correlation was used to estimate the weight of the data 
obtained from each model. Pearson correlation coefficient was calculated using Eq. 3:

(1)TBC

frc
(t) = Pobs(t),

[

�mPfrc(t)

�mPconter(t)

]

(2)wTxj =

K
∑

k=1

wkx
i
k

https://github.com/poyan2021/ensemble2.git
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Finally, the models whose data had stronger correlations with the real data received 
higher weights.

3.5 � Validation of the ensemble system output and system member models

The Taylor diagram was used to validate the direct output of the models. It is a suitable 
instrument to validate the output of the set of climate models and is growing in popularity 
in climatology studies (Wehner 2013). The Taylor diagram is based on the geometric rela-
tionship between correlation coefficient, standard deviation, and root mean square devia-
tion (RMSD). This diagram is displayed in the form of a semicircle showing negative and 
positive correlations, or a quarter circle indicating only positive correlations. In both forms, 
the correlation coefficients are displayed as the radius of the circle on its arc, standard devi-
ations are presented as concentric circles relative to the reference point, and RMSDs are 
shown as concentric circles relative to the center of the circle. The hallow circle on the 
horizontal axis of the reference point indicates the position of the ground station in light of 
the standard deviation of the time series. Accordingly, the models that are located closer to 
the reference point enjoy higher accuracy (Azizi et al. 2016) (Fig. 2).

(3)rxy =

N
∑

i=1

(Xi−X)(Yi − Y)

�

N
∑

i=1

(Xi − X)2
N
∑

i=1

(Yi − Y)2

Fig. 2   Standard deviation error of the used ensemble model
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Given the large number of synoptic stations used in this study, 10 stations which rep-
resented various climatic zones were selected for the validation process. Validation of the 
model data and the ensemble model were carried out using these stations. Each of these 10 
stations represented a climatic zone of the country. Figure 3 displays the precipitation Tay-
lor diagram for the selected stations. Examining the diagram shows that, in all the stations, 
the ensemble data had the highest similarity with the real data. Low error and standard 
deviation values and high correlation coefficients support this claim. It is therefore argued 
that the ensemble system was able to significantly reduce the error of the estimated data.

3.6 � PCI

PCI indicates the concentration and distribution of rainfall. The seasonal scale of this index 
is calculated using Eq. 4:

where PI is the amount of rainfall in the ith month. According to the suggested formula, 
the minimum value for PCI is 8.3, which indicates complete regularity in precipitation 
distribution. In other words, this value implies that the same amount of precipitation has 
been recorded in each region during each month. If PCI is equal to 16.7, it indicates that 
the whole precipitation has concentrated on 1.2 of the time interval. According to this 
categorization, Oliver (1980) suggests that PCI values smaller than 10 indicate regular 

(4)PCIseasonal =

∑3

i=1
Pi2

(
∑3

0=1
Pi)

2
∗ 25

Fig. 3   Validation of model and ensemble data based on Taylor diagram
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precipitation distribution, values between 11 and 15 show moderate precipitation distribu-
tion, values ranging from 16 to 20 display irregular distribution, and values greater than 20 
demonstrate high irregularity in precipitation distribution (Table 2) (Luis et al. 2011).

3.7 � PCD and PCP

PCP shows the cumulative amount of annual precipitation in a particular region. PCP is 
calculated through adding up the monthly rainfall vector. In other words, PCP represents 
the cumulative amount of annual precipitation in a region. PCD, on the other hand, indi-
cates the annual degree of precipitation concentration in a particular region. It is estimated 
through calculating the direction (angle) of the monthly rainfall vector during a year. To 
assess PCD, monthly rainfall vector can be regarded as a 360-degree vector and its direc-
tion during a year can be examined. The direction can be regarded as the PCD index. Using 
this procedure, annual precipitation concentration and distribution can be estimated for a 
particular region to discover the degree of precipitation distribution during a year. The pro-
cedure for calculating PCD and PCP was proposed by Zhang and Qian (2003). PCD has 
recently become an important index to gauge the regularity of regional precipitation distri-
bution. Also, PCP is able to shed light on the irregularity of precipitation over the course of 
time using quantitative measures. It is calculated through Eqs. 5 and 6:

Where n is the overall number of days in the ith year, j is the ordinal number of a par-
ticular day in the ith year, rij is the degree of precipitation in the station on the jth day 
of the ith year, Ri is the total precipitation degree of the station in the ith year, which is 
equally divided into [− π,,   π,] intervals based on the number of days in the ith year, and θj 
is the angle of the jth day. PCD ranges from 0 to 1. PCD values that are closer to 1 indicate 
more cumulative annual precipitation. Conversely, PCD values that are closer to 0 repre-
sent more regular annual precipitation distribution (Table 3).

Table 2   Classification of the 
precipitation concentration index 
(PCI) (Oliver 1980)

Value Distribution

Less than 10 Uniform
11–15 Moderate rainfall concentration
16–20 Irregular distribution
More than 20 High irregularity

Table 3   Classification of PCD 
values

Classification Type PCD values

1 High concentration PCD > 0.8
2 Medium concentration 0.721 < PCD < 0.8
3 Low concentration 0.647 < PCD < 0.721
4 Normal 0.476 < PCD < 0.647
5 Low distribution 0.384 < PCD < 0.476
6 Medium distribution 0.27 < PCD < 0.384
7 High distribution PCD < 0.27
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4 � Results and discussion

4.1 � Analyzing PCI

Figure 4 demonstrates PCI for the near future (2021–2040). The results of analyzing PCI 
indicate irregular precipitation distribution along the coastlines of the Gulf of Oman and 
the Persian Gulf. The maximum value of PCI (over 50%) was recorded for areas around 
the Gulf of Oman. The lowest PCI (less than 20%) was observed on the coastlines of the 
Caspian Sea. These coastlines also registered the highest number of rainy days across the 
country, which were regularly distributed in different seasons. Thus, there is an inverse 
relationship between PCI, on the one hand, and number of rainy days and latitude, on the 
other hand. The largest PCI values were recorded in the southeastern parts of Iran. In other 
words, the southern part of the country experienced more precipitation irregularity. In con-
trast, northern, northwestern, and northeastern parts of Iran had relatively regular precipi-
tation distribution. It appears that air masses and the presence of heights play a significant 
role in the regularity of PCI. Examining the association between longitude and PCI showed 
that the largest PCI values were observed in arid regions, which have little precipitation and 
low altitude. Our findings are similar to the ones reported by Darand and Pajouh (2022), 
who studied PCI using field data. Estimating PCI indicated that precipitation irregularity 
will go up during the period ranging from 2021 through 2040. Maity and Maity (2022) also 
demonstrated that, based on the CMIP6 data, precipitation intensity will increase during 
the coming century. Zarrin and Dadashi-Roudbari (2022) further showed that, according to 
the CMIP6 data, future years will witness more intense precipitations across the country. 
Heightened precipitation intensity will lead to more flooding rains and consequently more 
floods. Previous studies confirm the results obtained in the current research.

Fig. 4   PCI index in near future (2021–2040)
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4.2 � Analyzing PCD and PCP

Figure 5 displays the CMIP6 data for PCI. Accordingly, the highest PCI coefficients (over 
0.72) were recorded on the coastlines of the Persian Gulf, indicating the occurrence of 
precipitation days in a short period during the year (mainly winter) and lack of rainfall in 
the rest of the year. The smallest PCD coefficients (less than 0.22) were recorded in the 
northern parts of Iran including the coastlines of the Caspian Sea and northwestern Iran. 
This indicates the high distribution of precipitation days during each year in these areas. 
Overall, the PCD coefficients recorded for the southern parts of Iran were bigger than 0.59. 
Another large PCD coefficient was observed in the east of Iran around Hamun Lake. Com-
pared to Darand and Pajouh’s (2022) findings, PCD estimation in the current study showed 
that, during 2021–2040, precipitation irregularity will cover larger areas in the southern 
parts of Iran, with PCD coefficients exceeding 0.59 for most regions in this area.

Figure 6 provides information about PCP in near future (2021–2040). Accordingly, tem-
poral irregularity in precipitation is observed during this period. The features of spatial dis-
tribution of PCP are totally different from those of PCD. Based on Fig. 5, the largest PCD 
values were registered in two areas of Iran. The maximum amount (over 2020 degrees) was 
observed on the coastlines of the Caspian Sea, and the value recorded for the coastlines 
of the Persian Gulf (200 degrees) came next. This indicates that the highest annual PCD 
in these regions are observed from June through September. The minimum PCP values 
were observed in northeastern and northwestern Iran. In other words, the largest number 
of precipitations in these regions will occur during winter. The lowest PCP coefficient (less 
than 60) was recorded for northeastern Iran. The PCP values recorded for the coastlines 

Fig. 5   PCD index in near future (2021–2040)
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of the Caspian Sea and the Persian Gulf indicate the role of topography, distance from 
the sea, and differences in synoptic systems. Heights have a significant role in PCP for the 
period ranging from 2021 to 2040. Regular spatial distribution of precipitation means that 
the likelihood of mountainous floods declines due to the appropriate distribution of annual 
precipitation. This in turn mitigates the challenge of using resources, hence its positive 
impacts on human activities. On the other hand, if the degree of precipitation declines con-
siderably in places where major water resources are located, it will result in more economic 
damages. Moreover, irregular precipitation distribution will cause anomaly in temporal 
precipitation distribution and increases precipitation distribution during a limited number 
of days, a phenomenon that leads to more severe floods. Compared to Darand and Pajouh’s 
(2022) findings, estimating PCP in the present study showed that this index will rise on the 
coastlines of both the Caspian Sea and the Persian Gulf.

5 � Conclusion

PCI shows that, in future, the coastlines of the Gulf of Oman and the Persian Gulf will 
experience irregular precipitation distributions. PCI estimation indicates precipitation 
irregularity in the southern parts of Iran, which is likely to rise in future. The results of 
PCD also showed that precipitation irregularity will probably go up in the southern parts of 
Iran during the period varying from 2021 to 2040. In fact, most of the areas located in the 
southern part of the country recorded PCD coefficients greater than 0.59. Analyzing PCP 
also indicated higher values on the coastlines of the Caspian Sea from June to September 
in near future. The smallest PCP coefficients were recorded in the northeast and northwest, 

Fig. 6   PCP in near future (2021–2040)
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suggesting that these areas will have the largest precipitation degrees in winter. Moreover, 
the regularity of precipitation temporal distribution is likely to rise in the northern, north-
western, and northeastern parts of Iran. This will increase sustainable water resources in 
these regions. Nonetheless, the overall evaluation of the obtained results suggests that Iran 
will experience irregular precipitation distribution in near future (2021–2040), with this 
irregularity being more notable in the southern part of the country. This is attributed to 
higher precipitation concentration in the southern regions of Iran. Precipitation distribu-
tion is relatively more regular in the northern part of Iran, which is attributed to reduced 
precipitation concentration in this area. PCD will considerably increase in the northern part 
of Iran, which is due to more precipitation during summer in this area. These variations in 
precipitation distribution will have critical consequences for the country. For example, the 
risk of the occurrence of severe floods and the challenges of water management are likely 
to go up in the southern parts of Iran. As for further research, it is suggested that hidden 
patterns in precipitation data be identified using reinforcement learning (RL). Because of 
its ability to learn flexible strategies in complicated environments, RL can be a powerful 
instrument for further studies on variations in complex time series like precipitation. It can 
estimate the consequences of such variations more accurately.
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