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Abstract

Effective volcanic impact and risk assessment underpins effective volcanic disaster risk
management. Yet contemporary volcanic risk assessments face a number of challenges,
including delineating hazard and impact sequences, and identifying and quantifying sys-
temic risks. A more holistic approach to impact assessment is required, which incorpo-
rates the complex, multi-hazard nature of volcanic eruptions and the dynamic nature of
vulnerability before, during and after a volcanic event. Addressing this need requires a
multidisciplinary, integrated approach, involving scientists and stakeholders to co-develop
decision-support tools that are scientifically credible and operationally relevant to pro-
vide a foundation for robust, evidence-based risk reduction decisions. This study presents
a dynamic, longitudinal impact assessment framework for multi-phase, multi-hazard vol-
canic events and applies the framework to interdependent critical infrastructure networks
in the Taranaki region of Aotearoa New Zealand, where Taranaki Mounga volcano has a
high likelihood of producing a multi-phase explosive eruption within the next 50 years.
In the framework, multi-phase scenarios temporally alternate multi-hazard footprints with
risk reduction opportunities. Thus, direct and cascading impacts and any risk management
actions carry through to the next phase of activity. The framework forms a testbed for more
targeted mitigation and response planning and allows the investigation of optimal interven-
tion timing for mitigation strategies during an evolving eruption. Using ‘risk management’
scenarios, we find the timing of mitigation intervention to be crucial in reducing disaster
losses associated with volcanic activity. This is particularly apparent in indirect, systemic
losses that cascade from direct damage to infrastructure assets. This novel, dynamic impact
assessment approach addresses the increasing end-user need for impact-based decision-
support tools that inform robust response and resilience planning.

Keywords Volcanic risk assessment - Disaster impact assessment - Co-creation - Dynamic
risk - Disaster risk reduction - Aotearoa New Zealand

Extended author information available on the last page of the article

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11069-023-06386-z&domain=pdf
http://orcid.org/0000-0001-7449-016X
http://orcid.org/0000-0002-8816-0708
http://orcid.org/0000-0003-3504-7418
https://orcid.org/0000-0001-7325-6013
https://orcid.org/0000-0003-3135-439X
https://orcid.org/0000-0002-7564-0032

9328 Natural Hazards (2024) 120:9327-9360

1 Introduction

Effective volcanic impact and risk assessment underpins effective volcanic disaster risk
management (DRM) (UNISDR 2015; Ministry of Civil Defence & Emergency Manage-
ment (MCDEM) 2019; UNDRR 2019). The drivers of disaster risk can be influenced by
practitioners, policy makers, society and individuals, but accurate assessment and reevalu-
ation of risk is required to enable effective disaster risk management decisions (Spence
2004; Coppola 2011; World Bank 2014). Scientific advances in volcanic hazard assessment
have increased the capacity for scientists and science agencies to provide more reliable
advice to inform decision-making about future volcanic eruptions (Marzocchi et al. 2008,
2010; Lindsay et al. 2010; Sandri et al. 2014; Hayes et al. 2020; Wild et al. 2020). How-
ever, when developing appropriate risk management actions for those exposed to volcanic
risk, evidence strongly suggests that impact and risk information is substantially more use-
ful, useable and used than hazard information alone (Hicks et al. 2014; Hudson-Doyle et al.
2014b; Armijos et al. 2017; Thompson et al. 2017b; Hicks and Barclay 2018).

Impact assessment requires detailed information regarding hazard potential, exposure
and the vulnerability characteristics of the exposed assets and communities (UNISDR
2015). Volcanic eruptions are recognised to be multi-phase events that have the potential
to produce multiple hazards throughout an eruptive episode (Jenkins et al. 2007; Marzoc-
chi and Bebbington 2012; Bebbington and Jenkins 2019, 2022). These hazards can have
differing physical and chemical characteristics and are subject to different constraints in
their spatial and temporal extent. Society is also dynamic, with various drivers influencing
exposure and vulnerability in space and time, prior, during and following volcanic activity
(Hicks and Few 2015; Few et al. 2017). Yet to date, impact and risk assessment frame-
works are typically limited to producing static, single-phase estimations of impact and risk,
despite global recognition of the systemic and dynamic nature of disaster risk (Jenkins
et al. 2014b; World Bank 2014; Loughlin et al. 2015; UNDRR 2019).

Cascading hazards and vulnerabilities exacerbate the impacts observed from disasters
and exhibit strong spatio-temporal dependencies (Zuccaro and De Gregorio 2013; Pescaroli
and Alexander 2018; Zuccaro et al. 2018; Dunant et al. 2021a), particularly in a volcanic
risk context (Biass et al. 2014, 2016; Hicks and Few 2015; Phillips et al. 2019). Indirect
losses during and following disasters are well documented (Galderisi et al. 2011; Cherry
et al. 2015; Armijos et al. 2017; Few et al. 2017; National 2017; Thacker et al. 2017a;
Phillips et al. 2019; Schweizer and Renn 2019; UNDRR 2019) and are often witnessed far
beyond the spatial and temporal extent of the hazard. Critical infrastructure networks are
recognised to be essential for the well-being of communities and socio-economic activi-
ties and can be highly interdependent (Rinaldi et al. 2001). Despite global recognition of
the contribution of indirect infrastructure loss of service to the total observed impact dur-
ing disaster events (Zorn and Shamseldin 2015; Zorn 2017b; UNDRR 2019), there is little
to no incorporation of this dimension in volcanic impact and risk assessment frameworks
to date. Yet the inclusion of indirect impacts in volcanic impact assessment frameworks
would likely enhance their quality and thus better inform resilience-building initiatives and
inform critical infrastructure network management during volcanic crises.

Increasingly, these complex challenges are being addressed by multi-disciplinary teams
of scientists and practitioners, that partner in the production of disaster risk reduction
(DRR) knowledge and disaster risk management (DRM) strategies (Davies et al. 2015;
Barton et al. 2020; Hayes et al. 2020; Weir et al. 2022). Effective disaster risk manage-
ment (DRM) can be strengthened by partnerships between practitioners and scientists to
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develop an understanding of what is legitimate, relevant and credible for the local risk con-
text (Cash et al. 2003; Davies et al. 2015; Fearnley and Beaven 2018; Barton et al. 2020). It
follows that collaboration with stakeholders with the relevant expertise and knowledge can
greatly increase the effectiveness of impact assessments (Whybark 2015; Thompson et al.
2017b; Orchiston et al. 2018; Barton et al. 2020; Mach et al. 2020).

This study develops and presents a framework for impact assessment under multi-phase,
multi-hazard volcanic events and tests the effectiveness of the framework for mitigation
planning and risk management interventions. The framework incorporates direct and indi-
rect impacts to interdependent infrastructure networks and was developed in partnership
with local end-user agencies. The framework addresses the growing demand for impact-
based decision-support tools to facilitate more targeted, considered response and mitigation
planning, ultimately contributing to reducing losses associated with multi-hazard volcanic
eruptions. We apply the framework to interdependent critical infrastructure sectors in the
Taranaki region of Aotearoa New Zealand, where Taranaki Mounga' volcano is estimated
to have a 33—42% likelihood of erupting within the next 50 years (Damaschke et al. 2018).

1.1 Multi-hazard impact and risk assessment: approaches

Multi-hazard impact and risk assessment has been identified as an important requirement
for disaster risk assessment (AghaKouchak et al. 2018; Ordaz et al. 2019; UNDRR 2019),
but is a research area in need of further development. Previous studies have generally been
focused on hazard, particularly the quantification of cascading and interacting hazard rela-
tionships and their contribution to potential exposure and impacts (Zuccaro et al. 2008;
Deligne et al. 2017a, b; Bathrellos et al. 2017; Yousefi et al. 2020; Dunant et al. 2021a,
b; Skilodimou and Bathrellos 2021). There has been comparatively less attention given to
integrating exposure, vulnerability and resilience elements of impact and risk within these
frameworks (Ordaz et al. 2019; Phillips et al. 2019; Wang et al. 2020; Dominguez et al.
2021; Kc et al. 2021). Various studies have attempted and noted the difficulty in integrating
the physical and spatio-temporal characteristics of different hazards to produce an appro-
priate common metric which can be used within multi-hazard impact and risk assessment
frameworks (Kappes et al. 2012; Tilloy et al. 2019; Wang et al. 2020). Attempts to address
this have led to contributions in quantifying multi-hazard potential, generally either quali-
tatively or semi-quantitatively as hazard classifications or indices, where multi-hazards
are typically related by intensity, duration and/or recurrence interval to deduce the ‘hazard
level’ at a given location (e.g. “high ashfall and high lahar hazard”) (Tilloy et al. 2019;
Wang et al. 2020). There has also been the strong appreciation that such frameworks and
their resultant outputs can be highly technical, so a key consideration is also to ensure the
resultant impact and risk metrics are suitable for end-user purposes (Wachinger et al. 2013;
Hicks et al. 2014; Hudson-Doyle et al. 2014b, a; Davies and Davies 2018).

Few studies have considered the relative contribution from multi-hazards to observed or
potential impact (e.g. damage and disruption) and how this manifests throughout a multi-
hazard cascading initiation sequence. Notable exceptions include Zuccaro et al. (2008) and
Zuccaro et al. (2018). Additionally, due to the uncertainty and complexity of probabilistic
approaches, they have proven to be difficult for many DRM users to adopt, with the notable

! The term Mounga is the te reo Maori language term for mountain, mount or peak and is a local variation
of the more commonly used Maunga.
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exception of insurance, building code regulation and construction, and some land use plan-
ning applications (Haynes et al. 2008; Global Facility for Disaster Reduction and Recovery
2014; Hudson-Doyle et al. 2014b; World Bank 2014; Davies and Davies 2018). Hybrid
impact-led approaches that enhance the value of both deterministic (scenario) and prob-
abilistic outputs are finding increasing favour (Thompson et al. 2017b; Ang et al. 2020;
Hayes et al. 2020), especially in settings where scientists and users have attempted to col-
laboratively partner in DRR activities that distil the complexity of potential impacts in a
credible, yet useable way (Haynes et al. 2008; Barclay et al. 2008; Hudson-Doyle et al.
2015; Ang et al. 2020; Hayes et al. 2020).

Volcanic multi-hazard impact and risk assessment is in the early developmental stages,
with recent advances in multi-hazard assessment (Tierz et al. 2017; Hayes et al. 2020),
single-phase multi-hazard impact assessment (Zuccaro et al. 2008; Jenkins et al. 2014a),
and co-development of impact-based decision-support tools (Hicks et al. 2014; Wild et al.
2019, 2021) providing valuable insight into best-practice approaches and research develop-
ment required.

2 Longitudinal multi-hazard volcanic impact assessment: design
and requirements

2.1 Partnering with DRR knowledge end-users: needs and requirements

The collaborative development and management of impact assessment frameworks with
information end-users can facilitate knowledge sharing and increase the relevance and
uptake of scientific information (Davies 2015, Barton 2020). Well-managed collaborations
between science, practice and policy have been found to result in enduring, partnerships
that contribute to scientifically robust knowledge that meets the requirements of the deci-
sion-makers (Wyborn et al. 2017; Fearnley and Beaven 2018; Barton et al. 2020; Mach
et al. 2020). This study was conducted alongside Weir et al. (2022) and shares the collabo-
rative, co-production approach with stakeholders and research partners (refer to Weir et al.
(2022) for more detail). As in Weir et al. (2022), ‘co-production of [knowledge in] this
study [was achieved via three main mechanisms]: embedding the lead science author of
this study (Weir) in the most appropriate policy and practice agency (the local emergency
management authority) for several weeks (1), regular semi-structured meetings between
actors either side of the SPPI (2), and iterative ongoing validation of the outcomes with the
emergency management agency’s wider stakeholder networks (3). These mechanisms were
used to establish the key objectives of this study (1), clearly identify the scope (1, 2), and
ensure that the format and content of the study was relevant and applicable (1, 2, 3)’ (p. 4,
Weir et al. 2022).

During and after the embedding period, the lead author coordinated and facilitated
monthly semi-structured meetings between volcanic hazard and risk scientists and emer-
gency management practitioners involved in this study to identify and develop solutions
for a series of key issues surrounding volcanic risk assessment and management for future
Taranaki Mounga volcanism. This decision-making process had two main stages of meth-
odological development: a knowledge stock take (Stage 1) and evaluation of the suitability
of available volcanic impact assessment frameworks (Stage 2) (Table 1). Both the scien-
tists and the practitioners were motivated to identify problems and develop solutions; how-
ever, some aspects were more strongly motivated by scientists (e.g. the development of
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novel, sophisticated volcanic hazard and risk assessment tools), and some by practitioners
(e.g. tools to support decision-making for volcanic risk management and volcanic crisis
response). Balancing the scientific credibility and operational relevance of the resultant
volcanic impact assessment framework enhanced the legitimacy of the research outcomes,
as it well reflects the knowledge requirements of both scientists and practitioners.

2.2 Longitudinal multi-hazard volcanic impact assessment for interdependent
infrastructure: framework design

This study presents a multi-phase, multi-hazard impact assessment framework that car-
ries previously incurred component damage through to the next volcanic activity phase,
assesses downstream, systemic outages associated with the physical damage of infrastruc-
ture assets, and allows the evaluation of mitigation or decision-making efficacy during an
evolving multi-phase event sequence (Fig. 1). By alternating volcanic activity phases with
decision-making opportunities, the framework allows testing of the timing of risk manage-
ment actions and considers how different elements of systemic risk cascade to provoke
losses in the event of a disaster. The study utilises pre-existing hazard, exposure and vul-
nerability tools and information as building blocks (or modules) in the framework, and
applies the resultant framework to conduct a longitudinal impact assessment for distributed
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interdependent infrastructure networks surrounding Taranaki Mounga volcano, in the
Taranaki region of Aotearoa New Zealand.

2.2.1 Framework modules

The impact assessment framework is comprised of five key modules, detailed in the fol-
lowing sections. The modules are: (1) volcanic activity events (VAEs) (2) risk management
interventions (RMlIs), (3) exposed interdependent infrastructure assets, (4) volcanic multi-
hazard direct impact and (5) indirect impact. The framework and its five constituent mod-
ules are illustrated in Fig. 1. The proposed dynamic volcanic impact assessment framework
requires volcanic hazard footprints for a multi-phase eruption. The VAEs (E,, E;, Es...E,)
are interspersed with potential opportunities for mitigation (RMlIs; I, I, I;...I,) (Fig. 1).
VAE:s can consist of multiple volcanic hazards, such as ashfall concurrent with pyroclastic
density currents (PDC) or lava flows. Spatial determination of hazard footprints is required
in order to deduce the assets directly exposed to the volcanic hazards.

In this framework, accumulated direct impact to an infrastructure asset from volcanic
hazards is carried through to the next event in the framework. For each VAE, relevant vul-
nerability models are applied to calculate the direct impact to exposed assets. As differ-
ent volcanic hazards possess differing physical behaviours and properties, the best hazard
intensity metric (HIM) to evaluate impact for one hazard may not be appropriate for use
when assessing impact from a different hazard. An Impact State (IS) metric accounts for
differing physical parameters and is used in this multi-hazard framework. Volcanic impacts
can be expressed using different IS metrics, such as physical damage, service disruption or
economic loss (Marzocchi and Woo 2009; Wilson 2015; Mcdonald et al. 2017).

Following the determination of direct impact, indirect impact through an interdependent
network graph of critical infrastructure is then calculated. For the next VAE, the expo-
sure inventory is comprised of the direct and indirect impact dataset from the previous
VAE, thus carrying previously incurred damage and disruption throughout to the subse-
quent phases. RMIs exist between each VAE. If the RMI following a VAE is populated
with a risk management action or decision, the exposure inventory is modified and carried
through to the next event (e.g. if the RMI is roof cleaning before further ash deposition, the
ashfall thickness at the start of the next VAE is O mm, rather than accumulating the thick-
ness between phases).

2.3 Direct impact: accounting for multi-hazards

Volcanic ash physical vulnerability models have been derived from post-event observa-
tions, laboratory experimentation and expert elicitation (Spence et al. 2005; Stewart et al.
2006; Wilson et al. 2011, 2012, 2017; Jenkins et al. 2014b; Craig 2015; Thompson et al.
2017a), resulting in a suite of vulnerability models that typically assess vulnerability to
ashfall using mathematical functions, e.g. fragility functions (Wilson et al. 2014, 2017;
Blake et al. 2017). Vulnerability models regarding impacts from volcanic surface flows,
such as lahars, are generally derived from post-event surveying (Baxter et al. 2005; Kiin-
zler et al. 2012; Jenkins et al. 2013, 2014a, 2015) and tend to determine threshold values
that lead to gradational or absolute impact of the exposed asset, therefore generating a suite
of binary or threshold vulnerability model types (Spence et al. 2004; Baxter et al. 2005;
Wilson et al. 2014; Deligne et al. 2017b), though some fragility functions are available for
building responses to flow hazards (Zuccaro and De Gregorio 2013; Jenkins et al. 2015).
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Despite recognition that volcanic eruptions are inherently multi-phase events that often
produce multiple hazards (Jenkins et al. 2007; Bebbington and Jenkins 2019; Lerner et al.
2019), there are few, if any, vulnerability models that account for the compounding and
cascading nature of volcanic multi-hazard impacts (Zuccaro et al. 2008; Deligne et al.
2017b). In this framework, we applied a simplistic approach to account for multi-hazard
interactions in volcanic contexts. As available vulnerability models for volcanic surface
flows and critical infrastructure assets (excluding buildings) assume maximum impact
upon contact (Wilson et al. 2014, 2017; Wilson 2015), we follow this approach in this
framework. Surface flow vulnerability models can therefore be simply coupled with ashfall
vulnerability models, by considering the accumulated impact, which is maximal if a lahar
is involved. For multiple instances of ashfall, the HIM (in many cases, deposit thickness)
is accumulated and the total HIM related to IS using an available physical vulnerability
model. Remobilisation and cleaning of ashfall deposits can be applied in this framework,
during the risk management intervention phases, and the resultant phases can be modified
accordingly.

2.4 Indirect (cascading) impact to interdependent infrastructure networks

The proposed dynamic volcanic impact assessment framework requires an understanding
of the critical infrastructure downstream dependencies and interdependencies between
infrastructure sectors and asses in the exposed networks. Direct damage to assets reduces
the functionality of dependent assets (Rinaldi et al. 2001; Setola et al. 2009; Zorn 2017a;
Hempel et al. 2018). Recent advances in systems and network analysis quantify system
dependencies for electricity, water supply and telecommunications in particular (Zorn and
Shamseldin 2015, 2016, 2017; Thacker et al. 2017b; Zorn 2017b; He and Cha 2018) and
allow the incorporation of these tools in impact assessment frameworks.

The cascading (indirect) infrastructural impacts following direct impacts to assets can
be estimated, by propagating infrastructure disruption downstream in an interdependent
network graph (Weir 2021). Here we apply that method to the multi-hazard multi-phase
eruption suite developed by Weir et al. (2022) and use it to quantify the systemic vulner-
ability of the region to volcano events. Then, by introducing the opportunity for dynamic
risk management intervention in the framework, we explore the degree to which this vul-
nerability can realistically be mitigated.

3 Case study risk context: Taranaki Mounga volcano, Aotearoa New
Zealand

Taranaki Mounga (Mount Taranaki) is an active stratovolcano, located in the Taranaki
region on the west coast of Te Ika-a-Maui the North Island of Aotearoa New Zealand
(Fig. 2B). Volcanism at Taranaki Mounga is characterised by cycles of edifice growth and
collapse (Zernack et al. 2011; Lerner et al. 2019; Cronin et al. 2021). The cone growth peri-
ods are characterised by effusive and lava dome-forming activity, interspersed with explo-
sive sub-Plinian to Plinian eruptions (Platz et al. 2007; Turner et al. 2011; Lerner et al.
2019; Cronin et al. 2021). Typical far-reaching volcanic hazards include column-collapse
and block-and-ash flow pyroclastic density currents (PDCs), ashfall, debris avalanches
caused by edifice collapse, and frequent remobilisation of volcanic debris in the form of
lahars (Fig. 2D). Proximal hazards, such as volcanic ballistic projectiles (VBPs) and lava
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Fig.2 A The location of Aotearoa-New Zealand; B the location of the Taranaki region and volcanic cen-
tres of Aotearoa New Zealand; C urban centres and selected critical infrastructure of the region; D simpli-
fied geology of the Taranaki volcanic complex; E land use of the Taranaki region. Modified from Weir
et al. (2022). The geographic extent of C, D and E is —38.713711, 173.252031 (top left) to —39.929024,
175.071420 (bottom right)

flows, are relatively infrequent in Taranaki Mounga’s eruptive history (Turner et al. 2011)
and are typically constrained to the current extent of the Te Papakura o Taranaki National
Park. Lerner et al. (2019) dated the most recent eruptive activity at Taranaki Mounga to
1780-1800 AD. This activity produced many small effusive and explosive eruptions, and
a final dome-building event built the current summit topography (Neall 1972; Platz et al.
2012). Damaschke et al. (2018) estimates there to be a 33-42% probability of an eruption
within the next 50 years.

The Taranaki region has the second highest Gross Domestic Product (GDP) per capita
in Aotearoa New Zealand (NZD $68,427 in 2018; NZD $58,778 was the national average)
(Stats NZ 2018). Dairy, together with oil and gas production and processing, are the two
key economic activities in the Taranaki region (Venture Taranaki 2017). State highways
circumnavigate Taranaki Mounga, providing vital transport links along the western part of
the North Island (Fig. 2C). Other critical networks include freight-only railway lines, elec-
tricity transmission lines and oil and gas pipelines. The majority of local infrastructure is
located in the three main population centres [New Plymouth (pop: 74,184), Stratford (pop:
9474) and Hawera (pop: 9810)] (Fig. 2C), with collection and transmission infrastructure
ensuring continued supply to processing plants, and municipal supply of critical infrastruc-
ture to rural consumers.

The Taranaki region has 530 named rivers, most of which extend radially from Taranaki
Mounga. Critical infrastructure such as telecommunications lines, water pipes, and oil and
gas pipelines are often bound beneath road bridges or cross rivers as pipe bridges, mean-
ing they are highly exposed to volcanic surface flows such as lahars and PDCs. Further,
subaerial infrastructure such as electricity transmission and distribution lines are often
co-located parallel to road transportation. Taranaki Mounga is within the Te Papakura o
Taranaki National Park, which is managed by Te Papa Atawhai the Department of Con-
servation (DoC). The national park extends~10km radially from the volcanic summit
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(Fig. 2E), which limits urban development close to the volcanic edifice, thus ensuring min-
imal exposure of the built environment to volcanic hazards.

Regional Civil Defence and Emergency Management (CDEM) groups in Aotearoa
New Zealand are entrusted with developing plans and strategies for the management of
hazards relevant to their geographic region. Further, they are tasked with facilitating rela-
tionships, discussion and knowledge transfer between regional agencies, stakeholders and
groups (MCDEM 2005, 2010, 2015). The Taranaki CDEM group is therefore responsible
for volcanic risk reduction, response and resilience planning in the Taranaki region. The
Taranaki CDEM group recognises that strong partnerships with researchers is a key ele-
ment of producing actionable science for disaster risk assessment and management (New
Zealand Government 2015).

Direct economic losses associated with a volcanic event at Taranaki only comprise a
fraction of total expected loss: McDonald et al. (2017) calculates an ‘initial shock’ change
in gross domestic product (GDP) of —66% (—$4106 million NZD) in the Taranaki region
alone for a high-intensity volcanic eruption scenario. Indirect impacts, such as supply chain
distribution, staffing shortage, air travel disruption, electricity/water outages, and business
non-continuity, could cause substantial economic losses and are highly variable both spa-
tially and temporally (Mcdonald et al. 2017).

4 Case study application: direct impact assessment data and models

Weir et al. (2022) developed a suite of multi-phase, multi-hazard volcanic eruption scenar-
ios for Taranaki Mounga, using a modular scenario development framework. The scenario
suite consists of nine hypothetical eruption scenarios (comprised of ‘small’ (S1, S2 and
S3), ‘medium’ (M1, M2 and M3) and ‘large’ (L1, L2 and L3) sub-suites), each with six
potential phases of volcanic activity [named phases 1d, 2p, 3d, 4p, 5d and 6p; where d is
discrete (occurring over 1 day) and p is prolonged (occurring over weeks to months)] (Weir
et al. 2022). The scenarios cover a credible range of volcanic magnitudes, styles, durations
and hazards and were co-produced with end-users and decision-makers. Weir et al. 2022)
includes many volcanic hazards as part of the scenario suite, but only provides spatial foot-
prints for ashfall and lahar hazards. This is in part due to limited asset exposure within
10km of the summit (i.e. within Te Papakura o Taranaki National Park), which also con-
strains other hazards, such as pyroclastic density currents (PDCs) (Procter et al. 2010). We
therefore consider direct impact from only ashfall and lahars in this initial impact assess-
ment application.

Critical infrastructure exposure data were collected and compiled for six sectors: elec-
tricity, water supply, road transportation, wastewater, energy (oil and gas) and telecom-
munications. These six sectors are recognised to be of vital importance for national secu-
rity and public welfare (Taranaki Civil Defence and Emergency Management Group 2018;
Ministry of Civil Defence & Emergency Management (MCDEM) 2019; New Zealand Life-
lines Council 2020; New Zealand Infrastructure Commission 2022). Membership of the
Taranaki Civil Defence and Emergency Management (CDEM) Lifelines Advisory Group
(LAG) is principally comprised of representatives from these six sectors, and the scope of
critical infrastructure considered in this study was validated by end-users (Taranaki CDEM
and the Taranaki CDEM LAG).

Spatial and asset characteristic data for these six sectors were acquired from a variety of
sources, some from open-source data repositories (Land Information New Zealand (LINZ);
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Table2 Logic treatment of sequential ashfall and surface flow hazards in vulnerability model

Hazard 1 Hazard 2
Ashfall Surface flow
Ashfall Accumulate HIM (e.g. deposit thickness; ash loading) and apply ~ Assume IS ,,; no
in vulnerability model change with suc-
cessive ashfall or
lahars
Surface flow Assume IS, .,; no change with successive ashfall or lahars Assume IS, ; no

change with suc-
cessive ashfall or
lahars

Koordinates) and others were shared by the data owner(s). Data sharing by infrastructure
providers was facilitated by Taranaki CDEM, the LAG, and their wider stakeholder net-
work. Where appropriate, data sharing agreements were entered into, and where possible,
any inconsistencies across data sources were addressed through consultation with data pro-
viders. This process of data collection, unification and quality checking was undertaken
during the aforementioned embedding and engagement process with Taranaki CDEM. In
several instances, asset data were created or edited by the first author by referring to offi-
cial open-source documentation and validated using satellite imagery (such as water supply
inlets, inferred from the district council Water Asset Management Plans) (Table 3). Asset
classes are broadly distinguished as either nodes (e.g. electricity substations or water treat-
ment plants) or lines (e.g. electricity lines and water supply pipes) (Table 3). Line-type
infrastructure was broken into 100m spans for the purpose of analysis, consistent with haz-
ard data resolution (Weir et al. 2022).

Several review studies compile global accounts and records of volcanic impacts to
infrastructure and present an overview of the current global knowledge base (Wilson et al.
2014, 2017; Wilson 2015). Most vulnerability models used in the present application to
Taranaki Mounga are to be found in these studies, supplemented by targeted studies on
roads (Blake et al. 2017) and energy (Juniper 2018) sector vulnerability to volcanic haz-
ards (Table 4). The vulnerability models used are either fragility functions (Blake et al.
2017; Wilson et al. 2017) or damage matrices (Juniper 2018; Wilson et al. 2014). When
applying fragility functions, a randomly generated number was used to generate one impact
outcome, consistent with other recent fragility function application approaches (Williams
et al. 2020, 2022).

In Weir et al. (2022), the hazard intensity metrics (HIMs) presented in the eruptions
scenarios are deposit thickness (mm) for ashfall, and presence/absence for lahars, consist-
ent with lahar vulnerability models for critical infrastructure assets in Wilson et al. (2014).
Lahar vulnerability models available in Juniper (2018) use dynamic pressure (kPa) as the
HIM, which is absent from the Weir et al. (2022) scenario suite. Therefore, in this study we
assume energy assets exposed to lahars incur total damage, consistent with Wilson et al.
(2014), where across all critical infrastructure sectors studied, lahar flow velocities >0 m/s
and lahar flow depth >0 m result in the asset reaching the maximum impact state (in Wil-
son et al. (2014), Damage Level 3: Replacement or financially expensive repair).

When assets are exposed to multiple hazards, we apply the coupled physical vulner-
ability approach for ashfall and lahars (Table 2). Typically, when an asset is exposed to a
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lahar, total asset damage is incurred (Wilson et al. 2014), and thus in this study, we assume
the maximum impact state until the end of the scenario, regardless of further exposure to
ashfall and lahar hazards. For multiple instances of ashfall, the thickness is accumulated
and the total thickness is related to an impact state using the vulnerability models listed in
Table 3. The impact metrics used in the physical vulnerability models applied in this study
are shown in Table 4. For this application, we adopt the four-tiered ‘Impact State’ (IS) met-
ric used by (Wilson et al. 2017) and Wilson et al. (2014) and make necessary conversions
from Blake et al. (2017) and Juniper (2018) (Table 4).

To quantify indirect impact on infrastructure sectors, we use the graphical approach and
tools developed for the Taranaki region in Weir (2021). The graphical approach for interde-
pendent infrastructure determines the reach of source to sink resource flow following direct
impact to assets. In this application, we assume assets are functional under ISO and IS1
(no damage and cleaning required, respectively) and complete loss of functionality under
IS2 and IS3 (repair required and replacement required (or financially expensive repair),
respectively). Assets determined to be at IS2 or IS3 following direct impact from volcanic
hazards are therefore absent in the resultant network graph configuration, and the source to
sink disruption is recorded and carried through to the next event in the framework. Indirect
impact (i.e. loss of service due to physical damage upstream of resource flow) is assumed
to be binary, and assets indirectly impacted are recorded as being ‘indirectly disrupted’
(D).

5 Longitudinal volcanic multi-hazard impact assessment results
5.1 Directimpact assessment: results across sectors

The direct, physical impact to assets for six infrastructure sectors (electricity, water supply,
waste water, oil and gas, transportation and telecommunications) were calculated for all
nine eruption scenarios in the scenario suite. An IS is given for each asset in the inventory
for each phase of volcanic activity (1d, 2p, 3d, 4p, 5d and 6p; where d is ‘discrete’ (phase
duration 1 day), and p is ‘prolonged’ [phase duration is user specified) (Weir et al. 2022)],
providing a longitudinal direct impact analysis under variable, credible volcanic regimes.
Direct impact data is available for each sector (n=6), at each phase (n=06) of each scenario
(n=9), resulting in 324 data frames (though 30 of these data frames show no change in
direct impact due to volcanic inactivity). The direct impact to the electricity sector (trans-
mission and distribution) is shown in Fig. 3, and the direct impact to water supply in Fig. 4.
Figure 5 shows the direct impact to electricity infrastructure at each volcanic activity phase
during the scenario (phases 1d, 2p, 3d and 4p), using scenario M2 as a representative mid-
range scenario.

Across all sectors, 58% of nodes achieve IS3 in at least one scenario (Table 5), with
40% of nodes at IS3 for at least two of the eruption scenarios. One water supply inlet in
South Taranaki district, upstream of a large municipal supply catchment, reaches 1S3 in 8
of the 9 eruption scenarios. Of the 21 nodes that reach IS3 for 5 or more scenarios, 11 of
these nodes are water supply nodes (9 surface water inlets, 1 water treatment plant and 1
reservoir), 5 are oil and gas production or transmission sites, 2 are electricity distribution
substations, 2 are cell towers and 1 is a waste water treatment plant.

There are 563 occurrences of a node asset reaching IS3 across all sectors, for all scenarios.
Of these, 63% are due to exposure to lahars (Table 6). There are 167 node assets that reach
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Fig.3 The direct impact to electricity transmission and distribution infrastructure in the Taranaki region of
Aotearoa New Zealand. The impact is shown at volcanic activity phase 6p (i.e. at the end of the eruption
sequence) for each of the nine scenarios (S1-L3)

IS2, corresponding to ‘requires repair’, at least once throughout the scenario suite from expo-
sure to ashfall. Of these nodes 28% are water supply nodes, 19% are waste water, 19% are
telecommunications, 17% are electricity, and 17% are oil and gas. For infrastructure lines, the
total length in different ISs was determined for the subaerial electricity and transportation sec-
tors. For other sectors with buried line infrastructure (water supply, waste water and oil and
gas), the total number of breakage points were summed, as impact was assumed only in topo-
graphic depressions upon contact with a lahar, where buried infrastructure is generally carried
by road or pipe bridges. The total length and number of breakage points for each scenario are
shown in Table 7.
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Fig.4 The direct impact to water supply infrastructure in the Taranaki region of Aotearoa New Zealand.
The impact is shown at volcanic activity phase 6p (i.e. at the end of the eruption sequence) for each of the
nine scenarios (S1-L3)

5.2 Indirect impact assessment for interdependent infrastructure

The indirect impact is quantified in terms of number of assets (nodes) indirectly disrupted
(ID) and the number of private dwellings without service (PDWS), as in Weir (2021).
The indirect impact was calculated for each phase (n=6) of each scenario (n=9), across
all sectors, resulting in 54 data frames. Figure 6 shows the direct impact to all infrastruc-
ture sectors across the phases of volcanic activity, and Fig. 7 shows the direct and indirect
impact for the same phases. Inter-sector indirect impact occurs to all infrastructure sec-
tors during Scenario M2, with the exception of the transportation sector, as transportation
is not dependent on any other sectors included in the infrastructure systems tool. During
Scenario M2 the greatest indirect impact is to the oil and gas sector. Due to the sector’s
strong dependence on electricity, and the pinchpoints present in the network, supply is dis-
rupted from the first phase of volcanic activity (M2_1d) (Fig. 7). Electricity supply across
west and south Taranaki is disrupted due to structural damage of high voltage transmission
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Fig.5 The direct impact to electricity transmission and distribution infrastructure for phases 1d, 2p, 3d and
4p of eruption scenario M2. Scenario M2 has no volcanic activity (including post-eruptive lahars) during
phases 5d and 6p, therefore map M2_4p is the final phase for direct impact in scenario M2

Table 5 The number of node assets per sector in IS2 (requires repair) or IS3 (requires replacement) at end

of each eruption scenario

Taranaki Mounga volcanic eruption scenario (Weir et al. 2022)

Critical infrastructure sector S1 S2 S3 Ml M2 M3 L1 L2 L3
Electricity (n=>50) 0 0 0 7 18 14 28 21 14
Water supply (n=96) 1 3 6 18 33 33 49 57 24
Waste water (n=80) 0 0 0 7 31 9 32 37 5

Oil and gas (n=61) 0 7 4 4 20 21 26 26 23
Transportation (n=16) 0 0 1 2 5 3 12 10 10
Telecommunications (n=111) 0 1 4 6 19 19 41 36 20
Total 1 11 14 42 121 96 176 177 85
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Table 6 The number of node assets per sector that achieve IS3 (requires replacement) as a result of lahars
for each eruption scenario

Taranaki Mounga volcanic eruption scenario (Weir et al. 2022)

Critical infrastructure sector S1 S2 S3 M1 M2 M3 L1 L2 L3
Electricity (n=>50) 0 0 0 2 2 13 13 15 3
Water supply (n=96) 1 2 6 7 8 32 29 37 16
Waste water (n=80) 0 0 0 1 1 8 19 4

Oil and gas (n=61) 0 4 4 1 4 20 16 19
Transportation (n=16) 0 0 1 2 5 3 12 10 10
Telecommunications (n=111) 0 1 0 0 0 14 20 20 7
Total 1 7 10 9 15 87 97 95 36

Table 7 Infrastructure lines for each sector in IS2 (requires repair) or IS3 (requires replacement) at the end
of each scenario. For electricity lines and transportation, the length in IS2 or IS3 is given. For water sup-
ply, wastewater and oil and gas, the total number of breakage points is given, as impact by lahar to buried
infrastructure was assumed in topographic depressions (where the lines are generally carried by road or
pipe bridges)

Taranaki Mounga volcanic eruption scenario (Weir et al. 2022)

Critical infrastructure sector S1 S2 S3 M1 M2 M3 L1 L2 L3
Length (km)

Electricity (915 km) Okm 18km Okm 98km 277km 176km 406km 450km 214 km
Road (390 km) Okm Okm 4km 12km 23km 19km 58km 47km 56 km
Breakage point count

Water supply (176 km) 1 6 9 8 13 19 28 35 15
Waste water (154 km) 0 2 5 8 10 17 23 27 11

Oil and gas (531 km) 0 4 7 3 6 12 12 15 8

Telecommunications (n/a)

infrastructure on the southern side of Taranaki Mounga, coupled with disruption of a
transmission substation in Hawera. Dependent assets across all sectors in south and west
Taranaki are therefore indirectly impacted.

Inter-sector indirect impact is observed for all sectors besides transportation (Fig. 7),
due to lack of transportation interdependence with other sectors. Intra-sector indirect
impact is observed across all sectors, but particularly in electricity, water supply, waste
water, and oil and gas, due to their heavy reliance on resource flow from a limited number
of nodes. Physical impact to the electricity sector is the most common cause of inter-sector
indirect impact, due to the strong interdependencies within the network.

Generally, low-intensity scenarios (S1-S3) result in minimal indirect impact and are
largely restricted to the water supply and oil and gas sectors. Scenario S2, however, causes
IS2 physical impact to transmission and distribution lines supplying New Plymouth and
hence encompasses high indirect impact relative to the other scenarios in the ‘S’ (small)
suite. For the larger scenarios (M1 — L3), total network disruption is often observed, with
near-complete disruption of the electricity and oil and gas sector observed for Scenarios
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Fig.6 The direct impact to all six infrastructure sectors for phases 1d, 2p, 3d and 4p of scenario M2. Sce-
nario M2 has no volcanic activity (including post-eruptive lahars) during phases 5d and 6p, therefore map
M2_4p is the final phase for direct impact in scenario M2

M2, M3, L1 and L2, with near-complete disruption of oil and gas (but not electricity)
observed in Scenario L3. Physical impact to Stratford grid exit point (GXP), a transmission
substation located in Stratford, which services nearly the entire region with electricity, is
the cause of the most substantial indirect impact and is observed in scenarios M2, M3, L1
and L2.

A summary of the total nodes directly or indirectly impacted by each scenario is shown
in Table 8. The highest count of nodes directly or indirectly impacted occurs in scenario
L2, where both Stratford GXP and Hawera electricity transmission substation are both at
IS3. This is also the case for scenario M2, the scenario with the second highest count of
disrupted and damaged nodes. Generally, the most extensive indirect impact is seen during
volcanic activity phases 1d and 2p across the entire scenario suite, with ashfall provoking
direct and indirect impact during phase 1d and lahars provoking direct and indirect impact
in phase 2p. Across all scenarios, the indirect impact in phases 3d, 4p, 5d and 6p is mini-
mal relative to phases 1d and 2p. Of all nodes that reach IS2 or IS3 during the analysis, the
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Fig.7 The direct and indirect impact to all six infrastructure sectors for phases 1d, 2p, 3d and 4p of sce-
nario M2. Scenario M2 has no volcanic activity (including post-eruptive lahars) during phases 5d and 6p,
therefore map M2_4p is the final phase for direct and indirect impact in scenario M2

Table 8 The number of nodes in Impact State 2 (IS2; requires repair), Impact State 3 (IS3; requires replace-
ment) or indirectly disrupted (ID) in the last phase of volcanic activity (6p) for each scenario

Taranaki Mounga volcanic eruption scenario (Weir et al. 2022)

Critical infrastructure sector S1 S2 S3 M1 M2 M3 L1 L2 L3

19 4 23 48 33 48 50 40
27 11 19 93 55 86 95 71
22 7 24 70 53 71 73 69
34 56 56 56 49 55 58 37
0 1 2 5 3 12 10 10
31 5 7 101 46 89 109 68
133 85 129 368 236 349 385 285

Electricity (n=>50)

Water supply (n=96)

‘Waste water (n=80)

Oil and gas (n=61)
Transportation (n=16)
Telecommunications (n=111)
Total

—_ o O O O = O
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T = BB NN

Risk Risk . Risk
EVENT TYPE Volcanic management Vatcanic management Volcanic management
’5/ r?f
VOLCANIC HAZARD SCENARIO A R £
Ashfall Ashfall Surface Flow
ASSET1
RISK MANAQEMENT SCENARIO A 181 1$2
No mitigation
RISK MANAGEMENT SCENARIO B 181 151
Mitigation at [2
RISK MANAGEMENT SCENARIO C 1 1S2 1S2
Mitigation at /4
i
VOLCANIC HAZARD SCENARIO N A N
Ashfall Ashfall Ashiall

ASSET2

RISK MANAGEMENT SCENARIO A

No mitigation 51 52 153

RISK MANAGEMENT SCENARIO B

Mitigation at 12 81 B L

RISK MANAGEMENT SCENARIO C 181 152 152

Mitigation at 4

Fig.8 An illustration of the testing of mitigation strategies. For Assets 1 and 2 (both subject to multi-haz-
ards), the timing of the ‘mitigation strategy’ (black exclamation icon) affects the resultant impact state of
the asset

five single nodes which result in the most considerable indirect impact are Stratford trans-
mission GXP, Hawera electricity transmission substation, Opunake electricity transmission
substation, the gas transmission pipe bridge in Hangatahua (Stony) river catchment (SW of
volcanic edifice), and Kapuni water treatment plant (WTP). Infrastructure lines servicing
these nodes are also frequently reaching IS2 and IS3, resulting in extensive indirect impact.

5.3 Risk management scenarios: testing efficacy

The timing and nature of risk management action(s) is/are crucial in reducing the adverse
impact of hazardous events. The decision-making phases of the framework (12, 14 ... 1)
allow the testing of mitigation strategies. Figure 8 uses a hypothetical volcanic eruption
scenario to illustrate the potential reduction in the impact state of assets given different tim-
ing of intervention strategies. We include risk management interventions in Scenario M2 to
demonstrate the full extent of the dynamic impact assessment framework. These risk man-
agement interventions were identified through end-user consultation and were determined
to be feasible measures to implement during an ongoing volcanic sequence at Taranaki
Mounga. Here, we test two hypothetical risk management decisions: cleaning of electric-
ity substations and lines in IS1 (‘cleaning required’) and ISO (‘no damage’) during 12, and
the physical covering of Stratford grid exit point (GXP) transmission substation, therefore

@ Springer



9350 Natural Hazards (2024) 120:9327-9360

Table 9 Framework nomenclature for the application of risk management interventions to volcanic eruption
scenario M2. Volcanic activity phases are renamed and two risk management interventions are included in
the framework (I2 and I4). No risk management intervention occurs during 16

El 12 E3 14 ES 16 E7

Volcanic activity events in scenario M2

Phase name M2_1d - M2 2p - M2_3d - M2.4p
(Weir et al.
2022)
Risk management interventions in scenario M2
Description - Cleaning of electricity - Mitigation of ash-  — - -
infrastructure in ISO fall at Stratford
and IS1 GXP

mitigating ashfall impacts to this site, during I4 (Table 9). The volcanic activity phases are
renamed in Table 9 to suit the inclusion of risk management interventions.

Figure 9 shows the direct and indirect impact of volcanic eruption scenario M2 with
the addition of risk management phases outlines in Table 9. When comparing Fig. 7 with
Fig. 9, we see that the cleaning of electricity lines and substations (during 12) and the phys-
ical mitigation of Stratford GXP (during I4) results in a large reduction in the potential
direct and indirect impact. This is particularly apparent in the difference between the indi-
rect impact for both figures, due to the high system dependency on Stratford GXP.

6 Discussion

This study integrates the growing knowledge base surrounding the co-production of dis-
aster knowledge (Hicks et al. 2014; Davies et al. 2015; Whybark 2015; Fearnley and Bea-
ven 2018; Hayes et al. 2020; Mach et al. 2020), spatio-temporal dependencies in volcanic
systems (Jenkins et al. 2007; Zuccaro and De Gregorio 2013; Elissondo et al. 2016; Tierz
et al. 2017; Bebbington and Jenkins 2019; Ang et al. 2020), and infrastructure vulnerabil-
ity to volcanic hazards (Wilson et al. 2012, 2014; Dominguez et al. 2021), to conduct a
longitudinal volcanic multi-hazard impact assessment for distributed infrastructure sectors
surrounding Taranaki Mounga. This approach for volcanic impact assessment allows the
investigation of multi-phase, multi-hazard volcanic activity, and the relative contribution of
these components to impact or risk. The framework presented in this study meets the grow-
ing end-user need for impact-based decision-support tools and allows the testing of mitiga-
tion strategies under different volcanic regimes and can be customised for applications to
other volcanic risk contexts.

6.1 Longitudinal modular impact assessment

Designing flexibility and modularity into impact assessment frameworks enhances the rel-
evance of the outputs in practice and policy, but also in science, where the ever-chang-
ing state of knowledge necessitates the continual refinement and modification of previous
work. Given volcanic uncertainty, there is a need for rapid volcanic response tools that are
dependent on the current (or immediate previous) state of the volcano, in appreciation of
the temporal dependencies of activity (Bebbington and Jenkins 2019; Jenkins et al. 2007).
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0 5 10 15 20
—— K

Fig.9 The direct and indirect impact to all six infrastructure sectors for scenario M2 with the implementa-
tion of mitigation measures. Phase E1 shows volcanic activity phase M2_1d, phase 12 involves the cleaning
of electricity lines and substations in ISO and IS1, phase E3 shows volcanic activity phase M2_2p, phase
14 involves the physical mitigation of Stratford GXP to volcanic ashfall, phase ES show volcanic activity
phase M2_3d, phase 16 involves no risk management decisions, and phase E7 shows volcanic activity phase
M2_4p. Scenario M2 has no volcanic activity (including post-eruptive lahars) during phases M2_5d and
M2_6p, therefore map M2_4p is the final phase for direct and indirect impact in scenario M2

Furthermore, given the potential long-duration of volcanic activity and resultant impacts,
there is a need for quick-to-implement testing tools for decision-making, response and miti-
gation planning. The frameworks presented here have the potential for rapid modification
and re-design to suit different operational and research contexts, and support decision-mak-
ers in the dynamic highly charged emergency planning and response environment.

The inclusion of risk management interventions in this framework was spurred from
recent advances in the science field, which recognise the utility of iterative mitigation test-
ing and planning (Dominguez et al. 2021; UNDRR 2019; UNISDR 2015; Zuccaro et al.
2018). Disruption of critical infrastructure service has implications for emergency manage-
ment, particularly for welfare and building habitability, and implications for national-scale
disruption of resource supply. Direct damage of assets introduces higher repair costs and
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requires labour, access and time to restore operations, which may not be possible during
periods of volcanic uncertainty. This framework provides a platform for this exploration
and enables and empowers risk managers to take a more active role in science production.

The modularity of the framework facilitates application in other volcanic risk contexts.
Volcanic hazard footprints, risk management interventions, exposure inventories, direct
impact and indirect impact modules can be substituted in the impact assessment frame-
work. These modifications can be made at various times during the disaster planning,
response and recovery life cycle (i.e. pre-event, syn-event and post-event).

6.2 Implications for risk management at Taranaki Mounga

The results of this study illustrate that the indirect impact to infrastructure networks from
volcanic hazards is potentially far more extensive and pervasive than direct impact to
infrastructure assets during the majority of modelled scenarios. Generally, the majority of
nodes in the interdependent network graph without supply are due to indirect supply out-
ages, rather than due to physical impact of infrastructure, and the number of nodes sys-
temically disrupted, and the spatial reach of the disruption, remains fairly consistent across
many of the volcanic eruption scenarios. The commonalities in provoking widespread indi-
rect impact seem to be direct damage (IS2 or IS3) to Stratford GXP, coupled with direct
damage to Hawera electricity transmission substation, or a combination of neighbouring
electricity distribution substations. This highlights the strong dependency of the distributed
infrastructure network on the electricity sector in particular.

We find the oil and gas sector to be highly systemically vulnerable to volcanic haz-
ards due to several factors: the strong dependence on electricity supply, the exposure of
resource-carrying pipes in known lahar channels, and the lack of redundancy in resource
transport. The oil and gas sector is of great national significance (New Zealand Lifelines
Council 2020; New Zealand Lifelines Council 2017), and further exploration of the down-
stream impacts of oil and gas disruption is required.

The water supply sector is found to be most vulnerable in the South Taranaki District,
where spatially extensive municipal supply schemes regularly traverse topographic depres-
sions. The propensity for municipal supply schemes in Taranaki to be fed by surface water
inlets introduces high systemic vulnerability, which cascades through interdependent sec-
tors, such as waste water and the oil and gas sector.

In consideration of these issues, the merit of the risk management modules of the sce-
nario framework becomes apparent. The study shows that for potential eruptive activity
at Taranaki Mounga, mitigation measures see the most potential benefit after the initial
phases of volcanic activity (before phase 3d); however, the study also shows that this is a
sensitive, uncertain environment that requires further investigation and thorough explora-
tion of possible risk treatment strategies, and optimal intervention opportunities.

6.3 Recommendations for future volcanic multi-hazard impact assessment

There is considerable scope for the framework to be adopted and tested in other volcanic
risk contexts, nationally and globally. Future studies could pair the impact assessment
framework with information regarding periods of volcanic unrest (and associated deci-
sions regarding emergency management and infrastructure management), and response
and recovery decisions. However, applications and iterations of this work will need to take
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similar care to mitigate the risks associated with engaging practitioners, carefully manag-
ing response capacity due to limited access, staffing and resources.

In future work, it must be acknowledged that periods of quiescence can vary hugely,
and this should be incorporated in future iterations of this work, through the mechanisms
employed in Weir et al. (2022) to develop the eruption scenario suite. In tandem, the dura-
tion and timing of risk management interventions and of mitigation measure implemen-
tation should be carefully considered in partnership with stakeholders and users. Further
facets of vulnerability could be included in the framework. Here, physical and systemic
vulnerability were considered with regards to distributed infrastructure, but in the future,
social and economic vulnerability could be incorporated. We also encourage the investi-
gation of habitability following lifeline disruption due to volcanic activity, and how life-
safety and wellbeing concerns (due to volcanic hazard and critical infrastructure disrup-
tion, respectively) will inform evacuations and emergency supply distribution.

Further interdependencies could be considered as part of this work, such as fuel supply,
supply chains, landline telecommunications, storm water and rail, port and airports. In par-
ticular, we suggest the more granular analysis of road network disruption, as road function-
ality is such as crucial component of emergency response.

7 Conclusions

The framework presented and applied in this study shows the benefit of longitudinal vol-
canic multi-hazard impact assessment. Volcanic eruptions can be, and often are, multi-
phase, multi-hazard, complex events that necessitate a similarly multi-phase societal
response. Allowing for risk management interventions between periods of volcanic activity
allows more targeted, informed mitigation planning and meets the identified end-user need
for impact-based metrics and tools when planning for disasters.

This study utilised the growing knowledge base surrounding co-production of disaster
knowledge, spatio-temporal dependencies in volcanic systems, and infrastructure vulner-
ability to volcanic hazards to conduct a dynamic impact assessment for distributed infra-
structure surrounding Taranaki Mounga. This study applied a suite of multi-phase volcanic
multi-hazard eruption scenarios to estimate the direct and indirect impact of these sce-
narios for infrastructure. The dynamic, modular, flexible nature of these impact scenarios
allows for investigation of the spatio-temporal linkages inherent in volcanic systems, and
how they manifest in impacts to the built environment and surrounding communities.

The volcanic impact assessment outputs in this study could be paired with other tools to
investigate the national-level disruption from Taranaki volcanism, which aligns well with
Aotearoa New Zealand’s risk profile (Willis 2014). Of particular note is the independence
and recovery model developed for national-scale critical infrastructure network disruption
(Zorn 2017a, 2017b). The frameworks could feasibly include other dimensions of systemic
risk besides cascading infrastructure failure. The could align well with the identified need
for more targeted analysis of social, economic and environment aspects of vulnerability
(Few et al. 2017; Hicks and Few 2015; Kappes et al. 2012). The feasibility of applica-
tion of these frameworks to other geological hazards is unknown, but has the potential to
offer great reward to practitioners that manage large risk profiles in an evolving hazard
landscape.

For the Taranaki region, these tools provide a test bed for mitigation strategies. These
hazard and impact scenarios should be viewed as demonstrative of the diversity of impacts
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expected from future activity at Taranaki Maunga, and as such, should be used to test and
plan for the best response and resilience-building strategies. Costing of different risk man-
agement actions can and should be considered in order to make an evidence-based case for
infrastructure investment.
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