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Abstract
A novel and robust slope stability evaluation method based on energy method and radial 
slices method (RSM) is proposed and validated in terms of strength parameter sensitivity 
and determination of the critical sliding surface. The sensitivity analysis shows that the 
deviation from the limit equilibrium method (LEM) does not exceed 1.5%, demonstrat‑
ing the feasibility of the proposed method. Different from LEM, the proposed framework 
gets functional enhancements: (1) This method considers the failure mode of the slope as 
a combination of translation and rotation, which is more in line with the actual monitor‑
ing results; (2) if the virtual displacement is regarded as a variable, the effect of accumu‑
lated displacement on slope stability can be studied; (3) if the factor of safety (FOS) for 
the slope is less than 1, this method can be extended to analyze movement of landslide 
mass after instability using the energy balance. Then, the proposed framework is applied 
to the 1963 Vajont event and Xinhua event to analyze the slope stability at the changes of 
reservoir water level and the dynamics after instability. Comparing slopes with different 
deformation patterns in calculating stability, the paper finds that permeability is the key to 
understanding the deformation response and summarizes the failure mechanism. For 1963 
Vajont landslide, the proposed framework calculates the maximum velocity of the interme‑
diate section to be 21.51 m/s, which is in general agreement with the inference by Hendron 
and Patton (Eng Geol 24:475–491, 1987), and superior to Zaniboni and Tinti (Nat Hazards 
70:567–592, 2014)’s calculation of less than 20 m/s. Through research and application, the 
superiority of the proposed framework in analyzing slope hazards is shown.
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1 Introduction

The prediction/failure criterion of landslide is a frontier topic in international engineering 
geology discipline. The establishment of instability criteria with high prediction success 
rate is the basis for precise mitigation and emergency avoidance. The most used method to 
identify landslide instability in engineering practice is threshold warning. As an indicator 
of slope stability, rain‑induced landslides generally use rainfall thresholds for early warn‑
ing (Guzzetti et al. 2007; 2008), while gravity landslides mainly use deformation thresholds 
(contain displacement, deformation rate, tangential angle, etc.) for early warning (Fan et al. 
2019; Xu et  al. 2020). Thanks to the rapid development of computer technology and the 
increasing maturity of related numerical simulation software, the factor of safety (FOS) is 
also one of the important bases for determining whether landslide disasters occur. Due to 
the simple operation and rich engineering application practice, the limit equilibrium method 
(LEM) is the most used numerical method in calculating slope stability (Fredlund and Krahn 
1977; Fredlund et al. 1981). Most of the LEMs consider the static equilibrium conditions 
and Mohr–Coulomb criterion, and the probability of shear failure is calculated by divid‑
ing the geotechnical mass on the sliding surface into a certain number of slices. The finite 
element method (FEM) can be used to improve the accuracy of the LEM in evaluating the 
stability of slopes with complex changes in material properties (Liu et al. 2015; Ozbay and 
Cabalar 2015) by prompting the accuracy of stress state analysis. This way differs from the 
strength reduction method (SRM) with elasto‑plastic analysis and only the FEM. The FEM 
determines whether the landslide is unstable mainly by determining whether the numerical 
calculations converge, whether the plastic zone is penetrated, and whether the displacement 
accumulation curve of the characteristic points changes abruptly. Nowadays, the material 
point method and the smooth particle dynamics method have become the frontier methods 
to study the slope stability. The material point method is used by discretizing the contin‑
uum and then focusing the mass, velocity and stress properties of each sub‑mass on the 
Lagrangian point (Bandara et  al. 2016; Wang et  al. 2018). The smooth particle hydrody‑
namics method is a network‑free technique that uses the Lagrangian method to replace the 
interacting masses with a continuous flow mass (Girardi et al. 2022; Ma et al. 2022). Infinite 
slope theory is often used to evaluate the probability of rainfall‑induced landslides in a large 
area. Because of the large aspect ratio, infinite slope theory simplifies slope stability analy‑
sis by assuming that shear failure occurs along a sliding surface parallel to the slope direc‑
tion. Building on the concept of effective stress in unsaturated soils by Lu and Likos (2006), 
Lu and Godt (2008) developed a general analytical framework for assessing the stability of 
infinite slopes with sliding surfaces above the water table. Qi and Vanapalli (2015; 2016) 
further discussed the strain softening behavior of unsaturated soils for the effect of shallow 
slope failure. At present, with the emergence of artificial intelligence technology, how to 
apply new methods to improve the effectiveness of slope stability evaluation has become a 
hot spot (Lin et al. 2022; Wang et al. 2023).

In summary, although researchers have been developing new methods in landslide 
instability criterion/prediction forecasting research, the breakthrough of research results in 
engineering application practice is still very slow. This is because landslide hazards are 
not induced by a single factor, but are the result of the joint action of many unfavorable 
factors. Landslides with different material compositions (clay, rock, gravelly soil, etc.), 
different scales (from  m3 level to  109   m3  level), and different genesis types vary greatly 
in their deformation characteristics (including the cumulative threshold of displacement 
before destabilization) as shown in Fig.  1. For deformation threshold warning, the most 
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appropriate indicator is the tangential angle of the displacement accumulation curve. It 
reflects the transition of landslides from slow creep to high velocity motion. However, this 
course is usually very short, and how to develop an emergency response plan based on 
the trend of the tangential angle becomes the top priority of this research direction. When 
numerical simulations are used to determine landslide occurrence, the traditional methods 
have their own shortcomings: (1) The infinite slope theory simplifies the slope morphology 

Fig. 1  Deformation accumulation characteristics of typical landslide events: a the 2017 June 24 Maoxian 
event (Intrieri et al. 2018; Carlà et al. 2019); b the 2019 February 17 Longjing event (Fan et al. 2019); c the 
1963 Vajont event (Paronuzzi et al. 2016); and d the Xinhua event (Chen et al. 2018)
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and is not applicable to the evaluation of single site; (2) the LEM suffers from an imper‑
fect theoretical basis and the assumption that landslides are regarded as rigid masses; and 
(3) the FEM deals with large deformations of slopes in such a way that the model mesh 
can be severely deformed or even fail. In addition, although the material point method and 
the smooth particle dynamics method have their own strong advantages and broad appli‑
cation prospects, they are very expensive to handle in the computational process and far 
from commercial application, and still need to be developed by scholars in related fields. 
In addition, the extensive experience gained in practical applications of the LEM over the 
past century has made it the most popular, acceptable and reliable technique. Many off‑
the‑shelf commercial codes are based on various two‑dimensional (2D) LEMs, such as 
slope/W (GeoSlope International Ltd., 2007) and SVSlope (Fredlund 2009).

However, the monitoring results of some case slopes show the limitations of traditional 
LEM. First, when using the LEM, the movement of landslide mass is characterized by the 
set of translational movements of slices along the sliding surface. Li et  al. (2020) found 
by terrestrial laser scanning that the development of landslide hazards is characterized by 
a composite failure pattern for a slope, including translation and rotation. Second, in fact, 
a slope that is considered stable by both external morphological observation and moni‑
toring results is not absolute stationary, as shown in Fig. 2a. The rising‑drawdown cycles 
of water level produce minor disturbances on the deposits of the Mogangling slope. The 
same hydrodynamic conditions produced large deformations on the deposits of another 
Xinhua slope of the reservoir as shown in Fig.  2b. Usually, the deformation of Xinhua 

Fig. 1  (continued)
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slope deposits usually occurs when the water level drops. When the water level returns to 
the normal water level, the deformation rate caused by the water‑level drawdown gradually 
becomes smaller and the accumulated displacement tends to be constant. From the analysis 
of these monitoring results a new understanding of slope failure mechanisms can be devel‑
oped: (1) For a slope, the action of external loading can make the landslide mass on the 
potential sliding surface produce a very small displacement, and the level of slope stability 
determines the mechanism by which the small displacement evolves into a large deforma‑
tion; (2) for a slope with potential landslides, transient loads cause local displacement of 
the slope, but the stability of the slope is improved with the accumulation of displacement.

For this reason, Kou (1988) firstly proposed the radial slices method (RSM) and applied 
it to LEM. Then, Yi et al. (2017) combined the RSM with the energy method to propose a 
new evaluation method. Based on the previous work, this paper gives improvements in the 
method formulation to apply to a wide range of slope morphologies and gives more suf‑
ficient validation by parameter sensitivity and determination of the critical sliding surface 
than Yi et al. (2017). Secondly, we consider adequately a frame extension under hydrody‑
namic action. Finally, we apply the proposed method to the 1963 Vajont landslide and the 
Xinhua landslide to show its superiority.

2  General framework

2.1  Definition for the FOS

For a slope with landslide potential, the landslide mass has gravitational potential energy 
Ep. Based on the principle of energy conservation, when the landslide mass moves along 
the sliding surface, the gravitational potential energy will be reduced by ΔEp and converted 

Fig. 2  Examples of slope deformation monitoring under the same hydrodynamic external load: a location; 
b topographic features with distribution of monitored slopes; c geology of Mogangling slope; d monitoring 
results of Mogangling slope; e geology of Xinhua slope; and d monitoring results of Xinhua slope



3594 Natural Hazards (2024) 120:3589–3621

1 3

to internal energy ΔU by overcoming the work of friction without accounting for other 
energy conversions, as shown in Eq. (1) (Yi et al. 2017).

Based on the above description, the stability of the slope can be evaluated as follows. 
The premise is that the landslide mass produces a small displacement ds along the sliding 
surface under external loading or self‑weight action, and it belongs to the virtual displace‑
ment. Then, the FOS of the slope can be defined by the following equation (Yi et al. 2017):

According to Eq. (2), the stability of a slope can be determined by the ratio of the change 
in gravitational potential energy and the internal energy consumption after a small dis‑
placement has been generated. This relationship means that if ∆Ep < ∆U, then the FOS > 1, 
and the slope is in a stable state; if ∆Ep = ∆U, then the FOS = 1, and the slope is in a criti‑
cally stable state; and if ∆Ep > ∆U, then the FOS < 1, and the slope is in an unstable state. 
This implies that the kinematic mechanism considered by the proposed framework is the 
generation of a small disturbance (small enough to be approximated as a slope in a stable 
state) under external load or self‑weight action, which can convert into a large deformation 
(instability). This conversion process depends on the stability of the slope.

2.2  RSM

Before the stability analysis, the landslide mass must be divided radially. As shown in 
Fig. 3, the radial slices method decomposes the landslide mass by drawing a series of rays 
from the center of the sliding surface and dividing it into n 2D slices by equating the angle 
between the start and end of the landslide surface and the center of the sliding surface. This 
method therefore assumes that the sliding surface is circular or subcircular in shape. Com‑
monly fitted shapes of sliding surfaces are a (1) circular arc; (2) elliptical arc; and (3) loga‑
rithmic spiral (the polar equation is � = aek(�−�0) , where k, a and θ0 are constants). Here, 
the sliding surface is assumed to be a circular surface, as an example. If enough slices are 
divided, the arc length at the base of each slice on the sliding surface can be approximated 
as the distance between the start and end points at the base of the slice, denoted by li. As 

(1)ΔEp = ΔU + ΔEk

(2)FOS =
ΔU

ΔEp

Fig. 3  Conceptual model of 
RSM. Keys: A is the left vertex 
of the slope; Bi and li are the left 
end point and the length of the 
bottom of the ith slice, respec‑
tively; C, O, and R are the right 
intersection with the landslide 
surface, the circle center, and the 
radius of the sliding surface; and 
γ and α are the angle of the line 
 OB1 with the line OA and the 
line OC, respectively
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the slices are divided here by equal angles, the length of the sliding surface at the base of 
each slice is the same and is therefore denoted together by l.

2.3  Module of stability calculation

2.3.1  Change in gravitational potential energy

The slices of a landslide are numbered sequentially from top to bottom. The weight of the 
ith slice is denoted by Wi (i = 1, 2, 3…, n), and the center of gravity is denoted by Oi. As 
the landslide mass produces a displacement ds along the sliding surface, the displacement 
of the center of gravity Oi of the ith slice is dsi, and the displacement component in the ver‑
tical direction is dsyi, as shown in Fig. 4. Then, the change in gravitational potential energy 
∆Ep can be calculated using Eq. (3).

The vertical displacement component is easier to calculate with an illustration, as shown 
in Fig. 4b. The change in gravitational potential energy of each slice is solved through the 

(3)ΔEp = W1dsy1 +W2dsy2 +…+Widsyi +…+Wndsyn =

n
∑

i=1

Widsyi

Fig. 4  Calculation of the change 
in gravitational potential energy: 
a schematic diagram and b cal‑
culation of the geometric decom‑
position. Keys: ds is the preset 
virtual displacement; Gi and Gi’ 
are the center of gravity of the ith 
slice before and after the motion, 
respectively; C and C’ are the 
location of the bottom point of 
the landslide body before and 
after the motion, respectively; Di 
is the auxiliary point; and other 
variables are defined in Fig. 3
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change in position of the slice’s center of gravity. The distance from the center of gravity 
of the ith slice to the center of the circular sliding surface is denoted by ri. If the landslide 
mass produces a displacement ds along the sliding surface, the displacement produced by 
the center of gravity of the ith slice can be calculated as GiG

�
i
= 2ri sin (ds∕2R).

Then, the vertical displacement component of the center of gravity of the ith slice can 
be obtained through Eq. (4).

Substituting into Eq. (3) gives:

where A1 =
n
∑

i=1

Wiri cos (� + i�∕n) , and A2 =
n
∑

i=1

Wiri sin (� + i�∕n).

2.3.2  Internal energy consumption

The shearing of the base of each slice along the sliding surface is described by a 
Mohr–Coulomb strength criterion ( � = c + � tan� ) and interpreted as the angle of inter‑
nal friction φ versus the cohesive force c. If it is supposed that the direction of the force 
between the slices is parallel to the tangential direction of the sliding surface, that is, no 
work is performed to consume internal energy. Both Vardoulakis (2002) and Alonso et al. 
(2016) pointed out that the landslide mass generates heat by friction during shear motion, 
but in the concept of the proposed framework, the heat generated by this small disturbance 
is almost negligible. Then, only the work done by friction and cohesion along the sliding 
surface is considered in the proposed framework, and their calculation process is described 
separately.

The work done by friction is calculated using the following equation.

where ∆Uf is the internal energy consumed to overcome friction, f is the sliding friction 
force, and μ is the coefficient of friction, obtained from � = tan�.

The work done by the cohesive force is calculated using the following equation.

where ∆Uc is the internal energy consumed to overcome the cohesive force.
As shown in Fig. 5a, the black presentation indicates the pre‑sliding state, and the red 

presentation indicates the post‑sliding state. If the displacement of the sliding body along 
the sliding surface is ds, the angle of lines from the center of gravity of the ith slice of the 
pre‑sliding state and post‑sliding state to the center of the circular sliding surface is ds/R. 
Again, an illustration is needed here, as shown in Fig.  5b. Because the displacement of 
the sliding body along the sliding surface is very small, it can be approximated as a linear 
motion. By extending lines OA,  OB1 and  OBi to intersect the vertical line of the sliding 
surface at point  OBi’ at A‑, B1‑ and Bi‑, the angle between line BiB

′
i
 and the vertical direc‑

tion yields �i = � + (i − 1)�∕R + ds∕R.

(4)dsyi = 2ri sin
ds

2R
cos

(

� +
i�

n
+

ds

2R

)

(5)ΔEp = A1 sin
ds

R
+ A2 cos

ds

R
− A2

(6)ΔUf = fds = �W cos �ds

(7)ΔUc = clds
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The internal energy consumed by the work done by the ith slice to overcome friction is 
shown as follows.

Then, the work done by the landslide mass to overcome friction after it has produced a dis‑
placement ds along the sliding surface can be calculated as follows.

where A3 =
n
∑

i=1

Wi cos
�

� + (i − 1)�∕n
�

 , and A4 =
n
∑

i=1

Wi sin
�

� + (i − 1)�∕n
�

.

2.3.3  Calculation of FOS

The gravitational potential energy change and the internal energy consumption can be cal‑
culated according to Eq. (5) and Eq. (9), respectively, and can be substituted into Eq. (2) to 
calculate the FOS of the slope, as follows.

(8)ΔUi = ΔUfi + ΔUci = fids + cΔsds = Wi� sin

(

� +
(i − 1)�

R
+

ds

R

)

ds + clds

(9)ΔU =

n
∑

i=1

ΔUi = �ds
(

A3 sin
ds

R
+ A4 cos

ds

R

)

+ nclds

(10)FOS =
�ds

(

A3 sin
ds

R
+ A4 cos

ds

R

)

+ nclds

A1 sin
ds

R
+ A2 cos

ds

R
− A2

Fig. 5  Calculation of the internal 
energy consumption: a schematic 
diagram and b calculation of 
the geometric decomposition. 
Keys: Bi and Bi’ are the left end 
point of the bottom of the ith 
slice before and after the motion, 
respectively; A‑, B1‑, and Bi‑ are 
auxiliary points; and other vari‑
ables are defined in Fig. 3
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2.4  Module of instability dynamics analysis

In this conceptual model, as shown in Eqs. (1) and (2), external conditions resulting in 
a safety factor of less than 1 indicate that the change in gravitational potential energy 
is greater than the internal energy consumption. Then, the excess of the gravitational 
potential energy change will be converted into kinetic energy, and the landslide mass 
will be activated. During the movement, the landslide mass will dissipate internal 
energy due to the work done to overcome friction and cohesion. Therefore, the landslide 
mass always moves from a high energy state to a low energy state, and its gravitational 
potential energy, internal energy and kinetic energy are interconverted. The framework 
can be extended to allow the analysis of the energy state and the kinetic properties of a 
landslide during its movement. Except for the similar LEM that considers the landslide 
mass as a rigid mass for overall motion, this method considers the lateral side of each 
slice to remain perpendicular to the tangent direction of the intersection point of the 
sliding surface during the movement of the landslide mass from the arc surface to the 
flat surface, as shown in Fig. 6a.

Fig. 6  Calculation of landslide 
dynamics: a diagram before 
and after a certain distance of 
landslide movement; b geometric 
decomposition of gravitational 
potential energy change and c 
geometric decomposition of 
internal energy consumption. 
Keys: Gi’ is the center of gravity 
of the ith slice when it is on a 
circular sliding surface; Gi’’ is 
the center of gravity of the ith 
slice when it is on a flat sliding 
surface; and other variables are 
as shown above the figures
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2.4.1  Change in gravitational potential energy

The motion of the ith slice is divided into two stages: on an arc surface and on a flat 
surface, and the change in the position of the center of gravity is resolved, as shown 
in Fig.  6b. The center of gravity changes from the initial point Gi to point Gi′ when 
sliding on an arc surface and from point Gi′ to point Gi″ when sliding on a flat sur‑
face. As known from Eq.  (4), the ith slice generates a vertical displacement of 
2ri sin

[

(n − i)�∕2n
]

cos
[

� + i�∕n + (n − i)�∕2n
]

 after it moves from point Gi to point 
Gi′, and the collated expression is given as 2ri sin

[

(n − 1)�∕2n
]

cos
[

� + (n + i)�∕2n
]

 . 
When the slice moved onto a flat surface, the center of gravity changed from point 
Gi′ to point Gi″ with a vertical displacement of the center of gravity expressed by 
[ds − (n − i)l] sin � + Di[sin (� + �) − cos �]∕2 . In the above expression, Di is the average 
thickness in the radial direction, and β is the angle between the flat sliding surface and 
vertical direction.

To sum up, the vertical displacement of the center of gravity of the landslide when it 
undergoes movement with a displacement of ds can be obtained.

When the slice moves from an arc surface to a flat surface, the law of change of 
the center of gravity of the block is inconsistent in the two stages. Then, the change in 
gravitational potential energy can be calculated in segments according to the relation‑
ship between different sliding displacements and the base of the bottom of the slices at 
different times as follows.

where A5 =
n−k+1
∑

i=1

Wiri cos (� + i�∕n) ; A6 =
n−k+1
∑

i=1

Wiri sin (� + i�∕n) ; A7 =
n
∑

i=n−k+2

Gi sin � ; 

and 

A8 =
n
∑

i=n−k+2
Wi

{

2ri sin
[

(n − i)�∕2n
]

cos
[

� + (n + i)�∕2n
]

−(n − i)Δs sin � + hi[sin (� + �) − cos �]∕2
}.

2.4.2  Change in kinetic energy

The sum of the total kinetic energy change of the individual bars of the landslide, ∆Ek, 
is calculated as follows.

where A9 =
n
∑

i=1

mi

�

ri∕R
�2
∕2.

(11)

dSyi = 2ri sin
(n − i)�

2n
cos

[

� +
(n + i)�

2n

]

+ [ds − (n − i)l] sin � +
Di

2
sin [(� + �) − cos �]

(12)

ΔEp = A5 sin
ds

R
+ A6 cos

ds

R
− A6 + A7ds + A8, (k − 1)l ≤ ds < kl, k = 1, 2,… , n

(13)ΔEk =
1

2

n
∑

i=1

miv
2

i
= A9v

2

i
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2.4.3  Internal energy consumption

In the arc sliding surface section, the mode of work done by the frictional force of a 
slice is that of a variable force doing work on a curved trajectory, calculated using the 
infinitesimal method. As shown in Fig. 6c, the displacement ds is divided into m equal 
parts (where the magnitude of m tends to infinity), and the arc sliding surface length 
of each slice is ds/m. Assuming that the angle of slope within each part is constant and 
viewing the sliding surface as nearly straight, the movement of the slices is character‑
ized by a constant force doing work in each small, equal part, with the central angle ds/
(mR) in each small, equal part.

The central angle at the jth equation of the 1st slice is γ + jds/(mR); then, the work done by 
the frictional force on the jth equation of the 1st slice is shown as follows.

Next, the work done by the frictional force on the 1st slice over a displacement of ds is 
found to be as follows.

Integrating Eq. (15), the following equation is obtained.

The formula for calculating the ith slice is obtained by mathematical induction.

The internal energy consumed to overcome the work of friction on the arc sliding surface 
when the 1st slice undergoes displacement ds is ΔEf1 , calculated as follows.

where A10 =
n−k+1
∑

i=1

Wi cos
�

� + (i − 1)�∕n
�

 , A11 =
n−k+1
∑

i=1

Wi sin
�

� + (i − 1)�∕n
�

 , and 

A12 = ncl.
The internal energy consumed to overcome the work of friction on the flat sliding surface 

when the ith slice undergoes displacement ds is ΔEf2 , calculated using the following formula:

where A13 =
n
∑

i=n−k+2

Wi cos �.

(14)ΔEf11j =

[

W1� sin

(

� +
jds

mR

)

+ cl

]

ds

m
, j = 1, 2, 3,… ,m

(15)ΔjEf11 = W1� lim
j→∞

sin

(

� +
jds

mR

)

ds

m
+ clds

(16)ΔEf11 = W1�R
[

cos � − cos

(

� +
ds

R

)]

+ clds

(17)

ΔEf1i = Wi�R

{

cos

[

� +
(i − 1)�

n

]

− cos

[

� +
(i − 1)�

n
+

ds

R

]}

+ clds, i = 1, 2, 3,… , n

(18)

ΔEf1 =

n
∑

i=1

ΔEf1i = 𝜇R
[

A10 − A10 cos
ds

R
+ A11 sin

ds

R

]

+ A12ds, (k − 1)l ≤ ds < kl, k = 1, 2, 3,… , n

(19)ΔEf2 = A13

ds

R
, (k − 1)l ≤ ds < kl, k = 1, 2, 3,… , n
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2.4.4  Equations of motion

By bringing in Eqs. (12), (13), (18) and (19) to Eq.  (1), the movement characteristics 
of the landslide mass after the slope instability can be calculated. The distance of the 
landslide mass movement is denoted by y, the velocity of movement by v and the accel‑
eration of movement by a.

If (k‑1)l ≤ y < kl(k = 1,2,…,n), then the specific motion equation is shown as follows.

The final equation of motion is obtained by differentiating Eq. (20) by y.

where tan�1 = A6∕A5 and tan�2 = −A10∕A11.
If y > nl, then the final motion equation is shown as follows.

where A14 =
n
∑

i=1

Gi sin � and A15 =
n
∑

i=1

Gi cos �.

3  Validation

The GEOSTUDIO commercial code is a mature and widely used tool for slope stability 
calculation based on the LEM and is well accepted in the technical and applied com‑
munities (GeoSlope International Ltd., 2007). In this paper, the proposed framework 
is validated by calculating cases from parameter sensitivity and automatic search slid‑
ing surface and comparing with GEOSTUDIO. The entire calculation process is imple‑
mented via MATLAB software.
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Fig. 7.  2D geometric profile of 
Case 1
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Fig. 8  Process of calculating 
the slope stability using the 
proposed method for Example 
1: a input the coordinate points 
of the landslide surface; b fit the 
landslide surface; c radially strip 
the landslide mass; and d extract 
the information of the slices and 
calculate the FOS
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3.1  Parameter sensitivity

Case 1 is used for parameter sensitivity analysis. Figure 7 shows the geometric section of 
Case 1, and Fig.  8 demonstrates the process of using the proposed framework to calcu‑
late the FOS. The morphological characteristics of the slices obtained after using RSM to 
divide the landslide mass are shown in Table 1. There are three parameters for sensitivity 

Fig. 8  (continued)

Table 1  Morphological characteristics of slices in the 2D profile using the RSM for Case 1

No Area  (m2) X‑coordinate of the 
center of gravity (m)

Y‑coordinate of the 
center of gravity (m)

Distance from the center of gravity to the 
center of the circular sliding surface (m)

1 8.85 3.21 78.95 99.05
2 30.41 6.04 73.38 97.66
3 52.26 9.54 67.62 96.08
4 71.39 13.37 62.02 94.59
5 86.43 17.33 56.60 93.37
6 100.46 21.56 51.54 92.20
7 113.52 26.00 46.85 91.11
8 122.49 30.52 42.29 90.32
9 129.15 35.16 37.97 89.73
10 134.69 40.01 33.95 89.23
11 140.04 45.08 30.29 88.74
12 144.48 50.32 26.97 88.33
13 146.72 55.67 23.84 88.12
14 147.90 61.15 21.03 88.01
15 147.39 66.74 18.46 88.06
16 142.85 72.38 15.95 88.47
17 132.73 78.07 13.37 89.36
18 115.17 83.85 10.57 90.88
19 87.14 89.70 7.47 93.11
20 38.04 95.57 3.68 96.42
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calculations here: (1) number of slices, (2) preset displacement and (3) shear strength. For 
the proposed framework, the number of slices and the preset virtual displacement affect the 
accuracy of the calculation results and not be compared with GEOSTUDIO. As shown in 
Fig. 9, as the number of slices increases or the virtual displacement decreases, the calcu‑
lated value of the FOS gradually becomes smaller and converges. In order to ensure the cal‑
culation accuracy and reduce the calculation time as much as possible, the recommended 
number of slices for evaluating the stability of a slope is 20 and the preset displacement 
is 0.001 m. The calculated FOS in this case implies the possibility of a small disturbance 
in the slope under a specific load developing to a large deformation. If the stability of the 

Fig. 9  Sensitivity analysis results of the proposed framework versus: a number of slices and b predeter‑
mined imaginary displacement
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Fig. 10  Comparison between the sensitivity analysis results of the proposed framework and GEOSTUDIO: 
a cohesion and b internal friction angle



3606 Natural Hazards (2024) 120:3589–3621

1 3

Fig. 10  (continued)
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slope after a certain displacement is generated is to be evaluated, the observed displace‑
ment value can be substituted for the previously set virtual displacement.

Shear strength (including cohesion and internal friction angle) is the determinant of 
slope stability and has been performed calculations by the proposed framework and GEO‑
STUDIO. The results of the sensitivity analysis of the shear strength are shown in Fig. 10, 
where the results of the two methods overlap very well and the sensitivity law remains 
consistent. Therefore, the results reflect the feasibility of the method proposed in this paper. 
Figure  10a shows the calculated FOSs of the Case 1 slope are for the general range of 
values of cohesion of geotechnical materials, for three different levels of internal friction 
angle, respectively. At the low cohesion level, the proposed framework analyzes the pos‑
sibility of landslide on the slope is greater than that of the LEM. At high cohesion level, 
the conclusion is the opposite. There is a critical value of cohesion between the two phe‑
nomena that increases with the increase in the internal friction angle. Figure 10b shows 
the calculated FOSs of the Case 1 slope are for the general range of values of internal 
friction angle of geotechnical materials, for three different levels of cohesion, respectively. 
The results further validate the conclusions obtained in Fig. 10a. For the slope of Case 1, 
the cohesion is equal to 20kpa, and the FOSs calculated by the two methods are very close, 
and equal when the internal friction angle is equal to 23°.

3.2  Determination of the critical sliding surface

The determination of the critical sliding surface is another key issue in the analysis of slope 
stability. Determination of the critical sliding surface is essentially a process of repeated 
attempts to build a collection of possible sliding surfaces and calculate the corresponding 
FOS in turn, where the sliding surface with the lowest FOS is identified as the critical slid‑
ing surface. This trial procedure has several ways in define the shape of the sliding surface 
and to determine the location of the set of possible sliding surfaces. In the case where 
the sliding surface is considered to be circular, the commonly used methods are Grid and 
Radius method and Entry and Exit method. The innovation of the method to determine the 
critical sliding surface is not the focus of this paper, and this section is presented mainly to 
verify the feasibility of the method. Therefore, the combination of Grid and Radius method 
is chosen to combine the proposed framework and do the comparison calculation with 
GEOSTUDIO.

Fig. 11  Comparison between the determination results of critical sliding surface for Case 2: a the proposed 
framework and b GEOSTUDIO
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Case 2 is derived from Yamin and Liang et  al. (2010), which is presented mainly to 
show the refinement of the technical details of the presented framework. The slope of Case 
1 is in only 1 quadrant on the coordinate axis distribution (Fig. 7), and the slope of Case 
2 spans 2 quadrants (Fig. 11a). The tangent value of 90° is not present, giving trouble to 
the RSM, but is solved in the framework presented in this paper and is not described in 
detail. For the slope material of Case 2, cohesion, internal friction angle and unit weight 
are 20 kPa, 8° and 16 kN/m3, respectively. Yamin and Liang et al. (2010) preset a sliding 
surface characterized by a circle center coordinate of (35.1, 55 m) and a radius of 38.12 m, 
and its FOS was calculated to be 0.95 by their method. In this section, the proposed frame‑
work and GEOSTUDIO are used to determine the critical sliding surface by the Grid and 
Radius method and calculate the minimum FOS for the Case 2 slope. As shown in Fig. 11, 
the critical sliding surface obtained by the two methods is identical and is characterized by 
a circle center with coordinates of (33.67, 52.67 m) and a radius of 35.44 m. The minimum 
FOS calculated by the proposed framework is 0.889, which is slightly larger than the 0.883 
calculated by GEOSTUDIO. The feasibility of the proposed framework was verified from 
the sensitivity analysis of the shear strength and the comparison of the calculations in both 
aspects of determining the critical sliding surface.

4  Application to the reservoir landslide

The stability of reservoir slopes has been an enduring hot topic due to the special hydrolog‑
ical environment and the unpredictable catastrophic consequences once a landslide occurs. 
For example, the 1963 Vajont event is a tragic memory for the public because of the large 
economic and social losses. Compared to other landslide events, the data continue to be 
collected and the papers on the event continue to be published (Müller 1964, 1968; Selli 
and Trevisan 1964; Alonso and Pinyol 2010; Paronuzzi et  al. 2013, 2016). Secondly in 
China, along with the commissioning of the Three Gorges Reservoir and the continuous 
development of hydropower in Southwest China, numerous cases of reservoir landslides 
or related research results have been reported (Zhou et al. 2017; Chen et al. 2018). As a 
typical case of a reservoir landslide, this paper uses the proposed framework for stability 
evaluation and destabilization dynamics analysis of the 1963 Vajont event. In analyzing the 
deformation patterns of the 1963 Vajont event, it is found that there are some landslides in 
the Chinese reservoir area with different deformation patterns. Therefore, when doing the 
slope stability evaluation, the slopes of the two deformation modes are calculated and com‑
pared, and the failure mechanism is summarized.

4.1  Stability analysis and failure mechanism

The 1963 Vajont landslide is characterized by limestone masses and belongs to rock land‑
slide and reactivation of an ancient landslide. Alonso and Pinyol (2010) and Paronuzzi 
et  al. (2013) described the characteristics and behavior of groundwater, specifically the 
high permeability of the slope material above the sliding surface, influenced by the contin‑
uous fracture of the rock mass and karstic phenomena. Therefore, in the filling‑drawdown 
cycles of reservoir water level, the pore water pressure inside the slope can be dissipated in 
time, and the groundwater level can be approximated as always maintaining the same level 
with the reservoir water level. The Xinhua landslide is characterized by ancient landside 
deposits, and a preliminary study has presented previously by Chen et  al. (2018). Chen 
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Fig. 12  Deformation performance of landslides and correlation with water‑level changes: a the 1963 Vajont 
landslide (Paronuzzi et al. 2013); b since the start of impoundment for the Xinhua deposit landslide (Chen 
et al. 2018) and c in the operation period for the Xinhua deposit landslide (Chen et al. 2018)
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et  al. (2018) found that the slope deposits are low‑permeability materials, and the pore 
water pressure inside the slope fails to dissipate in time when the reservoir water level has a 
drawdown during the rainy season, and the drawdown of the groundwater level lags behind 
the reservoir water level (Fig. 12). Zhang et al. (2020) found a similar phenomenon in the 
Majiagou landslide in the Three Gorges Reservoir area.

Usually, the slope stability with groundwater variations is analyzed by uncoupled anal‑
ysis, and the hydraulic results obtained by the finite element method are imported into 
the stability analysis framework and calculated. In the absence of an effective means of 
importing the results of the finite element method to the proposed framework, reasonable 
assumptions regarding patterns of groundwater changes are feasible based on the monitor‑
ing results of landslides with different permeabilities referring to the approach of Alonso 
and Pinyol (2010) and Segui et al. (2020), as shown in Fig. 13. This assumption is mainly 
for the operation period, i.e., after a stable seepage field has been formed inside the slope 
for the normal water level, agreeing with change characteristics revealed by hydrological 
monitoring of slope feature points and the simulation of Tang et al. (2019).

When the water‑level changes, the possible presence of internal pore water pressure, 
hydrostatic pressure on the toe of the slope, and seepage force due to water‑level differ‑
ences can lead to a new limit equilibrium. The changes in the mechanical behavior of indi‑
vidual slice are analyzed for the case of possible water‑level changes inside the slope, as 
shown in Fig. 14. The shearing of the base of each slice along the sliding surface under 
fluctuation of water level is described by a combination of Mohr–Coulomb strength crite‑
rion and Terzaghi’s effective stress principle ( � = c + �� tan� = c + (� − p) tan� ) (Lade 
and De Boer 1997; Jiang and Xie 2011). When applied to the proposed framework, for the 
ith slice, take the midpoint Pi at the base of the slice and make an isopotential line inter‑
secting the water‑level line at Pi’. The vertical height Hci of line PiP

′
i
 is considered the aver‑

age pressure head on the base of the ith slice. Then, the equation for calculating the internal 
energy consumption becomes as shown below.

where γw indicates the water capacity.
For low‑permeability materials, there is a situation in which the equipotential line of 

flow is not vertical, and thus, it needs to be corrected for pore water pressure. The follow‑
ing equation is used for correction:

where Hw is the vertical distance from the base center of the slice to the piezometric line; 
Hc is the pore pressure at the base center of the slice; and � is the angle between the piezo‑
metric line and the horizontal direction.

Bear (1972) explained that the seepage force can be calculated by

where �w is the unit weight of water, Asat is the area of the saturated zone, and ΔH is the 
difference in the water level within the side slope. In the proposed framework, the work 
done by seepage force is incorporated into internal energy consumption.

For the determination of strength parameters, for the 1963 Vajont landslide, Paronuzzi 
et al. (2013) suggested a cohesion of 0 kPa and a range of values for the internal friction 
angle in [17.5°, 27°], so in this calculation the cohesion was determined to be 0 kPa and 

(23)ΔUf = fds =
[

�
(

W cos � − �wHcl
)

+ cl
]

ds

(24)Hc = Hw cos
2 �

(25)S = �wAsatΔH
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Fig. 13  Reasonable assumptions on the variation patterns of groundwater levels in landslides with different 
materials: a the 1963 Vajont landslide and b the Xinhua landslide in the Dagangshan reservoir
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Fig. 14  Treatment of the slices in 
different water‑level situations: a 
horizontal groundwater level, b 
groundwater level at an angle to 
the horizontal; and c the slice is 
inundated by reservoir water
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Fig. 15  Results of slope stability 
calculations: a correlation with 
the water level for the 1963 
Vajont landslide, b correlation 
with the displacement for the 
1963 Vajont landslide, c correla‑
tion with the water level for the 
Xinhua deposit landslide, and d 
correlation with the displacement 
for the Xinhua deposit landslide
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the internal friction angle to be 26°. For the Xinhua deposit landslide, the cohesion is taken 
as 12 kPa and the internal friction angle is taken as 35.8° according to Chen et al. (2018; 
2021). The location of the sliding surface was determined based on available geological 
data. As shown in Fig. 15, FOSs of two landslides can be obtained based on the water‑
related force conditions that precede the failure occurrence and the displacement of the 
landslide mass.

In terms of the influence by reservoir‑level changes, the calculation result of 1963 
Vajont landslide shows the reduction of the FOS with the rising of reservoir water level, 
which is consistent with the monitoring results, i.e., the response pattern of increasing 
deformation rate as the reservoir level rises. The high permeability of the slope material 
determines that the groundwater level can keep changing simultaneously with the reser‑
voir water level. In this case, the rise in reservoir level leads to an increase in pore water 
pressure on the sliding surface, a decrease in effective stress as well as a decrease in shear 
resistance. Therefore, the pore pressure effect leads to a positive correlation between reser‑
voir water level and deformation rate (Fig. 16a). The calculation of Xinhua landslide shows 
the decrease in the FOS with the decrease in reservoir water level and is in line with the 
accelerated deformation rate due to the drawdown of reservoir water level as shown by 
deformation monitoring. The low permeability of the slope materials results in a delayed 
response of the groundwater level as the reservoir level decreases. This is the result of the 
combined effect of the permeability properties of the material and the rate of reservoir‑
level change, so this delay only occurs when the water level is falling rapidly or when there 
is continuous heavy rainfall at the same time (Fig. 16b, c). The delayed response of the 
groundwater level leads to transient seepage within the slope and a seepage force in the 
same direction, which favors the shear forces on the sliding surface and therefore leads to a 
decrease in slope stability. In terms of the influence by deformation accumulation, for both 
landslides, the FOSs gradually increase with the accumulation of displacements. Reflected 
in the deformation monitoring data is that the rate of movement will gradually become 
smaller with the accumulation of displacement when the hydrodynamic load that causes 
the rate of movement disappears. This result verifies the cumulative deformation to failure 
mechanism of reservoir landslides; that is, the occurrence of landslides is not caused by 
one‑phase deformation, but is the result of multi‑phase deformation accumulation. Exter‑
nal load per cycle occurrence causes a decrease in slope stability. However, the landslide is 
self‑stabilized by cumulative deformation until it reaches the critical point of creep to high‑
speed motion. Therefore, it leads to the step‑type characteristics of the displacement–time 
curve for reservoir landslide, as shown in Fig. 1c, d.

4.2  Instability dynamic analysis

Hendron and Patton (1987) stated that the 1963 Vajont landslide reaches a maximum 
velocity of 20–25 m/s during its movement. The normal value internal friction angle of 
clay is taken to be unable to support the transition from slow creep to fast movement, so 
strength degradation must have occurred during the movement. Therefore, the determi‑
nation of the internal friction angle/friction coefficient and the strength degradation have 
been a major research focus of the 1963 Vajont event. Ciabatti (1964) gave a value of 
0.236 for the coefficient of friction based on simple mechanical considerations. In addi‑
tion, Ghirotti (1994) gave values for the internal friction angle of 8°–12° (corresponding to 
a friction coefficient of 0.14–0.21). Hendron and Patton (1985) reported direct shear tests 
on remolded specimens with measured residual friction angles of 8°–10° and concluded 
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Fig. 16  Failure mechanism 
of reservoir landslide during 
filling‑drawdown cycles: a high‑
permeability landslide with the 
rising of reservoir water level, 
b low‑permeability landslide 
by rapid drawdown of reservoir 
water level in the annual‑regula‑
tion reservoir, and c by the com‑
bination drawdown of reservoir 
water level and continued heavy 
rainfall in the daily‑regulation 
reservoir
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that the friction coefficient decreased by about 50% during the actual movement. Tika and 
Hutchinson (1999) used a ring shear to find the residual strength on remolded specimens 
and learned that when the relative shear displacement exceeded 200 mm, the residual fric‑
tion angle was 10°; at a shear rate of 0.1 m/s, the residual friction angle decreased further 
and reached a lower value of 5°.

To reenact the movement process, Zaniboni and Tinti (2014) performed a sensitivity 
analysis based on the UBO‑BLOCK1 code. The code UBO‑BLOCK1 was developed and is 
currently maintained by a team of researchers at the University of Bologna and can be used 
to analyze landslide dynamics based on a one‑dimensional numerical Lagrangian model. 
The numerical simulation is between friction coefficients of 0.08–0.46 and finally deter‑
mined a constant friction coefficient of 0.20 to be used in the calculation. In this paper, the 
proposed framework is adopted with the friction coefficient setting equally constant and 
0.2, and the calculated results are compared with Zaniboni and Tinti (2014). Zaniboni and 
Tinti (2014) presented calculation results for a total of six profiles, but the presentation of 
the geomorphology of profile 1 was not available for modeling, so only profiles 2–6 were 
selected for comparison as shown in Fig. 17.

Figure 18 shows the comparison between the proposed framework and the method of 
Zaniboni and Tinti (2014) for the calculation of the movement process of the 1963 Vajont 
landslide. In the middle section, the calculation results of the two methods have good 
agreement. However, since the proposed framework belongs to a 2D method, while the 
method of Zaniboni and Tinti (2014) belongs to a 3D method, the computational results 
of this paper have a large dispersion. This dispersion is acceptable if the morphology and 
slope angle of the sliding surface of the non‑intermediate section are observed. The pro‑
posed framework calculates the average value of the maximum velocity as 28.59 m/s, and 
the maximum velocity of the middle section is 21.51 m/s, which is basically in accordance 
with the statement of Hendron and Patton (1987) for the maximum velocity of 20–25 m/s. 
In contrast, the calculation of Zaniboni and Tinti (2014) is conservative and the average 
value of the maximum velocity is less than 20 m/s.

5  Discussions

For the framework proposed in this paper, we have done some validation studies and func‑
tional extensions and applications to further discuss some meaningful issues as follows.

(1) The sensitivity analysis of strength ensures the accuracy of the proposed framework 
in the evaluation of slope stability. The proposed framework is implemented based 
on RSM and LEM is implemented based on VSM. The analysis results show that 
the landslide potential of the composite damage mode of rotation plus translation is 
greater than that of translation only at low cohesion levels; the landslide potential of 
the translation‑only failure mode is greater than that of the composite mode at high 
cohesion levels. For the case 1 used in this paper, this boundary value to distinguish 
between high and low viscous cohesion levels is 23 kPa.

(2) The sensitivity analysis of the strength is based on a known sliding surface. In specific 
cases where there are in situ measurements with instruments such as inclinometers, the 
sliding surface is known, but there is usually uncertainty in the location of the sliding 
surface in more cases. Therefore, the validation is sufficient to illustrate the feasibility 
of the proposed framework while ensuring reliable results for determining the criti‑
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Fig. 17  Geological profiles of 
the 1963 Vajont landslide and the 
results of their division by RSM: 
a profile 2, b profile 3, c profile 
4, d profile 5, and e profile 6
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cal sliding surface. From the calculation principle, the LEM, taking Janbu method as 
an example, it calculates slope stability from the relationship of forces, i.e., the ratio 
of shear resistance force to shear force. The proposed framework assumes of virtual 
displacement, which is solved from the perspective of energy change. The increment 
of internal energy consumption is solved by the shear resistance force along the slid‑
ing surface, and the increment of gravitational potential energy is solved by the shear 
force along the sliding surface. Therefore, the similarity in principle is the basis for 
the feasibility of this method. To a certain extent, the present method belongs to the 
extension of LEM, which in turn enables more functions including evaluation of slope 
stability on cumulative displacement and analysis of landslide dynamics after instabil‑
ity.

(3) The proposed framework can evaluate slope stability under water‑level changes by 
considering the Terzaghi’s effective stress principle, interpretation of seepage force 
by Bear (1972), and the correction of pore water pressure. The proposed framework 
is applied to the 1963 Vajont event and a deposit landslide with a different deforma‑
tion pattern, in the absence of the importing means of the seepage analysis results (for 
example, through FEM) and reasonable assumptions of water‑level change patterns 
referring to Alonso and Pinyol (2010) and Segui et al. (2020). This hypothesis can well 
explain the change of groundwater within the slope when the reservoir level changes, 
which is consistent with the characteristic point monitoring of the real slope and the 
simulation of Tang et al. (2019). Based on this, the stability analyses of two landslides 
at different water levels were carried out, and the results of the calculations conformed 
to the actual deformation pattern. In addition, the study of the effect of cumulative dis‑
placement well explains the step‑type characteristics of the displacement–time curve 
for the reservoir landslide. However, how to go about identifying the critical point of 
creep to high‑speed motion is the future work that needs to be done.

(4) By considering the strength degradation, the proposed framework can well simulate 
the motion process after the instability of 1963 Vajont landslide. Due to the limitations 
of the 2D method, the dispersion of the calculated results for different cross sections 
is large if the morphology of the sliding surface varies greatly at different locations. In 
this case, the calculation results of the intermediate section are representative. Based 
on the geological profile given by Zaniboni and Tinti (2014), the average value of the 

Fig. 18  Calculation results of instability dynamic analysis for 1963 Vajont landslide
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maximum velocity during motion was calculated to be 28.59 m/s and the maximum 
velocity of the middle section is 21.51 m/s, in accordance with Hendron and Patton 
(1987).

6  Conclusions

A novel and robust slope stability evaluation method based on RSM and energy method is 
proposed in this paper. In the course of research and application, a number of advantages 
and features of this method were found compared to traditional and commonly used LEM: 
(1) this method considers the failure mode of the slope as a combination of translation and 
rotation, instead of the general belief of only translation along the sliding surface, which is 
more in line with the actual monitoring results; (2) if the virtual displacement is regarded 
as a variable, the effect of accumulated displacement on slope stability can be studied; and 
(3) if the FOS for the slope is less than 1, this method can be extended to analyze move‑
ment of landslide mass after instability using the energy balance. The proposed framework 
has a broader application prospect compared to LEM and has been applied to 1963 Vajont 
event and Xinhua event. The calculations show that permeability of slope materials is the 
key to understanding landslide hazards in reservoir areas. The 1963 Vajont landslide is 
characterized by highly permeable material, and the groundwater level can maintain the 
same height as the reservoir level when it changes. Therefore, the failure mechanism is the 
reduction of effective stress caused by the increased pore water pressure when the water 
level rises. The Xinhua deposits landslide is a low‑permeability material. Its failure mecha‑
nism is seepage force by that the groundwater level fails to react in time to form a water‑
level difference when the reservoir water level drops rapidly or water‑level drop occurs 
simultaneously with continuous heavy rainfall.
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