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Abstract
This study evaluates the performance of random forest (RF) for predicting flood levels 
in the Lower Ogun Basin, Southwest Nigeria. Daily flood levels for a period of 36 years 
(1981 to 2016), recorded at Mokoloki weir, were obtained from the Ogun–Oshun River 
Basin Development Authority (OORBDA). Descriptive statistics were employed to pro-
vide concise information on the flood levels, and trend and autocorrelation assessments 
were performed using the Mann–Kendall test and the Ljung–Box test, respectively, at 95% 
confidence level. Antecedent daily flood levels of up to 7 days were selected as input fea-
tures for the RF model to predict daily flood levels. To develop the RF model, the dataset 
was divided into train (70%), validation (15%), and test (15%). The performance of the 
RF model was evaluated using Mean Absolute Error (MAE), coefficient of determination 
(R2), Nash–Sutcliffe Efficiency Coefficient (NSEC), and  Kling-Gupta efficiency (KGE). 
The study reveals that the highest flood level was 9.5 m, while 75% of the records were less 
or equal to 7.04 m. The flood level had a significant positive trend (tau = 0.19, 2-sided p 
value < 0.05) and a significant autocorrelation (X-squared = 13,059, df = 1, p value < 0.05). 
Based on the evaluation criteria, RF is reliable in predicting daily flood levels, hav-
ing performed well at both the validation (MAE = 0.0484, R2 = 0.9924, NSCE = 0.9924, 
KGE = 0.9930) and test (MAE = 0.0519, R2 = 0.9943, NSCE = 0.9943, KGE = 0.9948) 
phases. A high predictive functioning of RF makes it an efficient complementary tool for 
the development of early warning systems for vulnerable communities in the Lower Ogun 
Basin.
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1 Introduction

Floods have been deemed to have the highest potential for destruction compared to 
other natural catastrophes (Agbde and Aiyelokun 2016). Climate change has signifi-
cantly expanded the scope of economic losses and the number of individuals impacted 
by flooding worldwide. A widespread absence of early warning systems and pre-flood 
information has contributed to flood-induced losses of both life and property (Turner 
et  al. 2014; Agbede et  al. 2019). In recent years, the downstream communities of the 
Ogun River Basin, such as Ibafo, Magoro, Opic, Isheri, and some northern parts of 
Lagos State, have been ravaged by various flooding events, leading to the loss of life 
and property. These downstream communities are affected by the increasing severity 
of annual floods. For instance, major parts of Isheri, Magoro, Opic, Kara, and north-
ern Lagos were inundated by floods between September and October of 2019. Similar 
occurrences of varying magnitudes were experienced in the following years, up until 
2022. It is, therefore, apparent to develop early warning systems to support these com-
munities’ preparedness plans and actions before flooding occurs.

Flooding is the temporary state of partial or total deluge of normally dry places by extra 
water or the unexpected and quick buildup of runoff. Flood occurrences and consequences 
in recent years have undoubtedly been extraordinary, impacting the lives of hundreds of 
millions of people worldwide (Nkwunonwo et al. 2016). Worldwide, more people live in 
cities than in rural areas; it is estimated that about 30% of the world’s population lived in 
cities in 1950, 54% of the world’s population lived in cities in 2014, and 66% of the world’s 
population will live in cities by 2050 (United Nations 2014), implying that the urban popu-
lation is growing. The majority of the once rural areas in the Lower Ogun Basin are rapidly 
becoming urbanized due to their proximity to Lagos State. As a result of haphazard devel-
opment in the area, many estates and residential units are being built very close to flood 
plains and waterways, which increases flood risks. This study seeks to characterize and 
predict flood levels at Mokoloki weir station, which is about 20 km upstream of the major 
urban settlements in the study area.

Flood estimations are subject to a variety of sources of uncertainty, such as those 
induced by climate change, which might have significant effects on the cost and design of 
hydraulic structures in downstream areas (Aiyelokun et al. 2021a). It is therefore important 
to develop robust models that can deal with uncertainties and outliers when generalizing a 
complex phenomenon such as flooding. Artificial Intelligence (AI) and Machine Learning 
(ML) models are now utilized in flood predictions and early warning systems due to their 
robustness and their remarkable ability to fit and reproduce complex processes (responses) 
from many inputs (Mosavi et  al. 2018; Yonaba et  al. 2021). One of such models is the 
random forest model (RF). Numerous benefits of RF include its great tolerance for outliers 
and noise, its difficulties in producing over-fitting phenomena, its capacity to get over the 
black box concept’s restrictions, and its advantages in assessing key qualities (Wu et  al. 
2020).

Various efforts have been made to incorporate ML algorithms in flood early warning 
systems and related studies globally. For instance, Felix and Sasipraba (2019) utilized Gra-
dient Boost ML to develop a flood warning system. Their system uses the amount of rain-
fall and the flood level of nearby water bodies based on satellites and ground applications 
to predict floods for timely decision-making. Ding et al. (2019) proposed the Spatio–Tem-
poral Attention Long Short-Term Memory (STA-LSTM) for flood forecasting and con-
firmed that it outperformed the support vector machine (SVM), fully connected network 
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(FCN), and the original LSTM. Wu et al. (2019) developed a novel SMOTEBoost algo-
rithm to perform flood forecasting in the Changhua River, China. Other works have applied 
Gaussian Naïve Bayes, hybrid Deep Learning (DL), Fuzzy Logic (FL), Artificial Neural 
Networks (ANN), Linear Regression, and Convolutional Neural Network (CNN) across the 
world and in Nigeria (LeCun et al. 2015; Albawi et al. 2017; Karyotis et al. 2019; Aiye-
lokun et al. 2021b; Rani et al. 2020; Li et al. 2020; Atashi et al. 2022; and Adetunji et al. 
2023).

With respect to the applications of RF in flood prediction, Li et al. (2019) posited that 
RF was able to capture a more realistic characteristic of streamflow and show higher 
capabilities for streamflow reconstruction in comparison with bagged regression trees 
(BRT), support vector machines (SVM), and simple linear regression (SLM). In their 
2020 study, Li et  al. further established the robustness of RF over elastic net regres-
sion (ENR) and support vector regression (SVR) in streamflow forecasting for the Three 
Gorges Reservoir in the Yangtze River Basin, China. Khosravi et al. (2021) evaluated 
the efficiency of three standalone data-mining algorithms, including RF, M5 Prime 
(M5P), M5 Rule (M5R), and six hybrid algorithms for daily streamflow prediction. The 
study revealed that although all the selected models had satisfactory results, the BA-
M5P was more efficient in streamflow prediction. More recently, Talukdar et al. (2022) 
utilized RF for predicting streamflow in the Punarbhaba River basin, Indo–Bangladesh. 
The contribution of the present study is to expand the existing knowledge on the utiliza-
tion of RF in flood risk reduction, particularly in the area of flood level predictions at a 
weir station.

Flood level and discharge simulation are some of the many fields of water resources 
study where the RF model has been used. Random forest might serve as an alternate strat-
egy to physical and conceptual hydrological models for large-scale hazard assessment in 
several catchments because of its inexpensive setup and operating costs (Schoppa et  al. 
2020). The gap in knowledge in the applications of RF for flood simulation in Southwest 
Nigeria and the strong need to explore simulation tools that can represent complex sys-
tems such as water resources systems in a realistic way (Agbede et  al. 2019) motivated 
this study. The specific objectives of the study are to characterize flood levels at Mokoloki 
weir station, which is located upstream of the urban settlements in Lower Ogun Basin, and 
to evaluate the performance of RF in the prediction of flood levels, which could serve as a 
complementary tool in the development of flood early warning systems.

2  Description of the study area

The Lower Ogun Basin is the drainage area of the Ogun River Basin, starting from the con-
fluence between the Oyan and Ogun rivers to the south of Abeokuta, as shown in Fig. 1. 
Geographically, the study area is situated between latitudes 6° 31′ N and 6° 39′ N and lon-
gitudes 3° 22′ E to 3° 39′ E, with an approximate catchment area of 361.02  km2 (Odunuga 
and Raji 2014). The area has a low-lying topography with some evidence of undulating ter-
rain ranging from 0 to 221 m above sea level and two air masses—the tropical maritime air 
mass and the tropical continental air mass—that influence its climate.
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3  Materials and methods

3.1  Data acquisition

The daily time series of flood level data recorded at the Mokoloki weir, which spans a 
period of 36 years (1981–2016), was obtained from the Ogun–Oshun River Basin Develop-
ment Authority (OORBDA).

3.2  Statistical analysis

Descriptive statistical methods were used to derive concise information about the his-
torical flood levels in the study area. The descriptive statistical methods utilized include 
mean, median, maximum, minimum, 1st quartile, 3rd quartile, interquartile range, stand-
ard deviation, coefficient of variation, skewness, and kurtosis. A violin plot was used to 
represent the distribution of the flood levels as well as to assess outliers in the records. 
While trend and autocorrelation assessments were conducted using the Mann–Kendall 
and Ljung–Box tests, respectively, at a 0.05 significant level. Both trend and autocor-
relation assessments are important in hydrologic studies and model development. The 
trend assessment provides an understanding of quantitative long-term changes in the 
patterns of the flood levels, while autocorrelation gives an impression of temporal 
dependencies or patterns within the time series of the flood level. The mathematical 
description of the Mann–Kendall test can be found in Blain (2013), while the descrip-
tion of Ljung–Box test can be found in Ljung and Box (1978).

Fig. 1  Location map of the study area
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3.3  Random forest (RF)

The Classification and Regression Trees (CART) model is the foundation of RF. The 
bootstrap resampling approach was used to create a fresh set of training samples from 
the repeated random K samples that are extracted from a single training sample set N. K 
decision trees were then constructed, and a random forest was included in the bootstrap 
sample collection.

With respect to a classification problem, the number of votes a classification tree 
receives determines how accurate the data is classified, and for a regression problem, 
all averages of the predictive value of decision trees are taken into consideration as final 
prediction results (Fig. 2). The works of Boulesteix et al. (2012), Scornet (2017), and 
Wu et al. (2020) may be consulted for a better understanding of the variation, param-
eters, and feature-important capabilities of RF and its working process.

Since the flood levels to be predicted are continuous values, a supervised regression 
framework was adopted in this study. The input combination of flood levels of up to 
7 days was considered suitable because antecedent runoff or rainfall of up to 4 days (lag 
(t − 4)) has been reported to be effective for runoff prediction (Sharifi et al. 2017).

This relationship can be represented as shown below:

where FL is the flood level, and t is the day.
The "random forest" package from the R statistical package, available at http:// 

www.R- proje ct. org in version 3.6, was used to create the model. 70% of the dataset was 
used to calibrate the random forest, and the remaining 30% was split into 15% valida-
tion and test sets, respectively. There is widespread speculation that key parameters for 
calibrating RF models include "ntree," which stands for the number of trees in the for-
est, and "mtry," which stands for the number of separate descriptors confirmed based on 
corresponding partitions (Li et al. 2016; Scornet 2017; Rakhee et al. 2020; Aiyelokun 
and Agebde 2021). It was determined that a ntree of 320 and a mtry of 4 were sufficient 
for developing the model employed in this research.

3.4  Evaluation of model performance

The performance of the model was assessed using Mean Absolute Error (MAE), coef-
ficient of determination (R2), Nash–Sutcliffe efficiency coefficient (NSEC) and Kling-
Gupta efficiency (KGE). A MAE value close to 0, and R2, NSCE and KGE values close 
to 1, are evidence of a good model. Performance evolution methods such as MAE, R2 

(1)FL(t) = f
{
FL(t−1) + FL(t−2) + …FL(t−7)

}

Fig. 2  Workflow diagram of a Random Forest. (adapted from Wu et al. 2020)

http://www.R-project.org
http://www.R-project.org
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and NSEC were selected because of their wildspread applications in similar studies, 
while KGE was selected for its robustness in the evaluation of model performance and 
ability to combine multiple evaluation methods (Yonaba et al. 2020). The mathematical 
descriptions for MEA, R2, NSCE, and KGE are listed as follows:

where for MAE, R2, NSCE yi is the observed flood level, and ỹi is the predicted flood level, 
while y and ỹi indicate the average observed and predicted flood level, respectively. For 
KGE, R is Person’s product-moment correlation coefficient between yi and ỹi , � = yi∕ỹi , 
and � = CVs∕CV0

 the ratio of coefficients of variation of predicted and observed flood 
levels. The terms ‘training’ ‘validation’ and ‘testing’ phases used for the data intelligent 
model also means calibration, validation and testing of physically based on hydrodynamic 
model (Li et al. 2016).

3.5  Important feature assessment

The ability of a random forest to handle data with outliers and noise makes it effective as 
a tool for feature evaluation (Jaiswal and Samikannu 2017). The ability of RF’s signifi-
cant feature section places it in the lead when compared to the many algorithms used to 
provide insights during the building of data-driven models. The research incorporated two 
crucial RF’s feature selection techniques: minimum depth (Ishwaran et  al. 2010; Zhang 
et al. 2018) and percentage increase in mean square error (%IncMSE).

3.6  Evaluation of RF uncertainty

The RF model’s uncertainty was propagated using the Monte Carlo approach. This is due 
to the fact that the Monte Carlo technique has been shown to be effective for assessing the 
level of uncertainty in complicated models like RF and artificial neural networks (Khosravi 
et al. 2011). The Coulston et al. (2016) Monte Carlo method was modified in this work to 
approximate prediction uncertainty for random forest regression models. Although predic-
tion intervals were either too large or too tight in sparse areas of the prediction distribution, 
this technique offered appropriate estimates of prediction uncertainty. The research used 

(2)
MAE =

n∑

i=1

��yi − ỹi
��

n

(3)R2 =

n∑

i=1

[(
yi − yi

)(
ỹi − ỹi

)]2
∕

[
n∑

i=1

(
yi − y

) n∑

i=1

(
ỹi − ỹi

)
]2

(4)NSCE = 1 −

n∑

i=1

(yi − ỹi)
2
∕

n∑

i=1

(yi − y)
2

(5)KGE = 1 −

√
(R − 1)2 + (� − 1)2 + (� − 1)2
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five major phases, which are similar to Coulston et  al.’s technique for measuring uncer-
tainty in random forest regression. These phases include:

1. Fitting a random forest model on the training data;
2. Using a bootstrap resampling (sampling with replacement) to generate multiple boot-

strap samples from the test data;
3. Making predictions on each bootstrap test sample based on the trained RF model (200 

iterations were performed),
4. Aggregating the predictions from all bootstrap samples to obtain a distribution of the 

predictions, and
5. Calculating statistics such as mean, minimum, maximum and percentiles from the dis-

tribution to estimate the uncertainty.
6. Plotting the uncertainty of RF using the error plot.

4  Results

4.1  Statistical description of flood level in Lower Ogun Basin

The characterization of historical hydrologic data using statistical tools is an important step 
in water resources and flood management. Table 1 shows the descriptive statistics of flood 
levels at Mokoloki weir station for the period of 36  years (1981–2016) based on daily, 
seasonal and annual time scales. It can be observed from the table that, unlike the annual 
time scale, the flood level record is slightly negatively skewed for daily and seasonal time 
scales, while the mean values of 5.83 m and 5.82 m were slightly greater than the median 
values of 5.64 m and 5.63 m for daily and seasonal time series, respectively. This implies 
that flood level data at Mokoloki weir violate the textbook rule that the mean is usually 
right of the median under a positive skew (Von Hippel 2005) for all time scales except for 
annual. The low values of kurtosis of 0.16 and 0.12 for the daily and seasonal time series, 
respectively, are indications that the tail of the flood level distribution does not extend far-
ther than that of a normal distribution, while a negative kurtosis of − 0.35 is an indication 
that the annual series has lighter tails and is less peaked compared to the daily and seasonal 

Table 1  Statistics summary of 
flood levels at the Mokoloki weir

Statistic Daily Seasonal Annual

Minimum (m) 0.2 0.2 4.71
1st Quartile (m) 4.6 4.62 5.36
Median (m) 5.64 5.63 5.88
Mean (m) 5.829 5.821 5.83
3rd Quartile (m) 7.04 7.05 6.14
Maximum (m) 9.5 9.06 7.21
Interquartile range (m) 2.44 2.43 0.77
Standard deviation 1.62 1.58 0.60
Coefficient of variation 0.28 0.27 0.10
Skewness  − 0.067  − 0.092 0.399
Kurtosis 0.1615 0.1161  − 0.350
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series. The standard deviation values of 1.62, 1.58 and 0.62 and the coefficient of variation 
of 0.28, 0.27 and 0.10 are indications that the flood levels do not disperse largely from the 
mean of at least 5.82 m for all time series. The table further shows that 25% of the flood 
level was below 4.6 m (1st Quartile), while 75% of the flood level was below 7.04 m (3rd 
Quartile), implying that the majority of the flood level ranged between 4.6 and 7.04  m, 
with an interquartile range of 2.44 m for the daily time series.

The distribution of the flood level data is further presented in the form of a violin plot 
(Fig. 3). Other information that could be derived from the violin plot is that 25% of flood 
levels were above 7.04 m, which could have been responsible for the majority of the flood-
ing events in downstream residential areas located in Ibafo, Magboro and Isheri North in 
Lagos State. The box plot further reveals that outliers in the flood level data were below 
1.1 m. The outliers were retained for the modeling experimentation because RF is not sen-
sitive to outliers during model calibrations.

4.2  Trend and autocorrelation of flood level

The trend analysis and the autocorrelation test for daily, seasonal, and annual time scales 
are presented in Table  2. The Mann–Kendall tau values of 0.19, 0.194, and 0.47 were 
obtained for the daily, seasonal, and annual time scales, respectively, which reveal positive 

Fig. 3  Combined violin plot and boxplot of daily flood levels. The plot provides a visual summary of the 
distribution of the flood level data, which includes maximum or upper whisker (9.5 m), minimum (0.2 m), 
interquartile range (thick gray bar), median (5.64  m), 3rd quartile (7.04  m), 1st quartile (4.6  m), lower 
whisker (9.5  m), and outliers represented by circles (0.2  m being the lowest outliers). The blue portion 
represents the kernel density estimations; the wilder blue portion represents flood levels with a higher prob-
ability of occurrence

Table 2  Summary of trends and autocorrelation of flood levels at the Mokoloki Weir

Time Scale Mann Kendall test Ljung–Box test

Daily tau = 0.19 (p < 0.001) X-squared = 13,059 (p < 0.001, df = 1)
Seasonal tau = 0.194 (p < 0.001) X-squared = 283.42 (p < 0.001, df = 1)
Annual tau = 0.47 (p < 0.001) X-squared = 15.821 (p < 0.001, df = 1)
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trends in flood level time series based on the different time scales. The p value of the trend 
tests was < 0.001, implying that flood levels are significantly increasing in the study area. 
While the Ljung–Box test’s X-squared values obtained for the daily, seasonal, and annual 
time scales are greater than the tabulated Chi-Square of 3.841 at df of 1, the p value is 
less than 0.05, implying that autocorrelation exists in the time series. Generally, a p value 
of less than 0.05 is an indication of a significant trend and autocorrelation in flood level 
records. Figure 4 further depicts the increasing positive trend and presence of outliers in 
the series.

Figure 5 shows that there is a significantly higher autocorrelation of flood levels up to at 
least the 30th lag for different periods of investigation ((a) 2007–2016, (b) 2002–2016, (c) 
1997–2016, (d) 1992–2016, (e) 1987–2016, (f) 1981–2016), which is an indication that the 
autocorrelation of the flood level is not dependent on the period of investigation.

From Fig. 5, ACF dropped below 0.97 for the observed flood levels after the seventh 
day (Lag 7). As a result, antecedent flood levels of one to 7 days were considered appropri-
ate and adopted as the predictors, while the present day’s flood level served as the response 
variable.

4.3  Performance of RF in flood level prediction

Table 3 shows that RF was very efficient in generalizing flood levels. Since it was able to 
achieve a very low prediction error and more than 99% prediction accuracy based on  R2, 
NSCE, and KGE for the three data sets.

Furthermore, using a mix of scatter plots and time series plots (Fig. 6), the degree of 
agreement between the observed and anticipated flood level values was examined. Fig-
ure 6 shows that during the training, validation, and testing phases, RF was not only able to 
achieve a high level of closeness between the observed and anticipated flood level values 
but also performed well in predicting the outliers.

Fig. 4  Trend of Variation of Flood Levels
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Fig. 5  Autocorrelation plot of flood levels at Mokoloki weir for (a) 2007–2016, (b) 2002–2016, c) 1997–
2016, (d) 1992–2016, (e) 1987–2016, and (f) 1981–2016: AFC represents the strength of the correlation 
between flood levels on a particular day and their lagged days. The dashed blue lines on the plot represent 
the 95% confidence interval. Autocorrelation values outside the blue lines are considered statistically sig-
nificant

Table 3  Performance of RF in 
predicting flood level

Training Validation Testing

MAE 0.0292 0.0484 0.0519
R2 0.9966 0.9943 0.9924
NSCE 0.996 0.9943 0.9924
KGE 0.9950 0.9948 0.9930
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4.4  Importance of input features for predicting flood level

The important input features  for predicting flood levels were assessed using the mini-
mum depth plot (Fig.  7) and the  %IncMSE  with their significance  at 95% confidence 
level (Table 4). Based on Fig. 7, FL(t−1) , FL(t−2) and FL(t−3) have the lowest mean mini-
mum depth of 1.16, 1.42 and 1.55, respectively, with less than 100 trees. The FL(t−4) and 
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Fig. 6  Scatter and time series plot between the predicted and observed values of flood levels for (a) training 
(b) validation (c) testing
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FL(t−5) have a mean minimum depth of tress of 1.93 and 2.4, respectively, while FL(t−6) 
and FL(t−7) had the highest mean minimum depth of trees of 3.06 and 4.21, respectively. 
This is further established in Table 4, which shows that the selected input features were 
important for the prediction of flood levels in the order of FL(t−1) > FL(t−2) > FL(t−3) 
FL(t−4) > FL(t−5)  > FL(t−6)> FL(t−7) based on their IncMSE%. Implying that FL(t−1) and 
FL(t−2) are the most important independent variables for predicting the daily flood levels 
in the study area. Since the p value of FL(t−1) and FL(t−2) are lesser than 0.05, then, it can 
be concluded that antecedent flood levels of up to 2 days are significant input variables 
for predicting daily flood levels (Table 4). 

Fig. 7  Distribution of minimum depth and mean of daily antecedent flood levels

Table 4  Statistical evaluation of 
important climate parameters in 
predicting flood levels

Features %IncMSE p value

FL(t − 1) 0.03 0.01
FL(t − 2) 0.94 0.01
FL(t − 3) 0.99 1.00
FL(t − 4) 0.97 1.00
FL(t − 5) 0.95 1.00
FL(t − 6) 0.99 1.00
FL(t − 7) 0.98 1.00
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4.5  Uncertainty of RF model

Figure  8 shows the uncertainty around the mean prediction of the test dataset by RF 
based on the Monte Carlo simulation. It could be observed that there are cases of wide 
and narrow error bars, which, respectively, represent uncertain and more confident pre-
dictions. The figure further shows that the RF model is uncertain with the prediction 
of flood levels higher than 9.0 m and those that are lower than 3.15 m at a 95% confi-
dence level, since at these records, most of the flood levels were outside the lower and 
upper bounds. Figure  9 further emphasized that uncertainty in flood level prediction 
increased for lower flood levels and higher flood levels greater than 9 m, since the blue 
line crossed the gray line (97.50% confidence level) at 9.0 m. 

Fig. 8  Error bar plot of uncertainty associated with model prediction

Fig. 9  Line plot of daily flood 
level prediction with uncertainty 
indications based on Monte 
Carlo simulations
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4.6  Discussion of findings

Researchers have recently campaigned for the implementation of integrated flood risk man-
agement strategies, which combine the wide deployment of structural and non-structural 
interventions (Pitt 2008; Kazmierczak and Carter 2010; Sayers et  al. 2013; Nkwunonwo 
et al. 2016). The structural measures work to reduce flood hazards by ensuring that flood 
water flow is regulated in the urban built-up region. They employ technically sound pro-
cesses to reduce the likelihood of flood threats and entail channelization as well as the 
use of both natural and artificial structures to hold back water in rivers and oceans. On 
the other hand, non-structural interventions use interdisciplinary techniques to reduce flood 
risks and increase the ability of environmental systems to withstand floods (Sayers et al. 
2013). Examples of non-structural measures include low-impact development (LID), land 
use zoning and planning, flood risk mapping, flood proofing, flood modeling, institutionali-
zation of policies, flood awareness campaigns, resettlement of the human population, flood 
insurance, flood vulnerability assessment, flood forecasting, relocation of properties, and 
green infrastructure planning (Jha et al. 2012; Smith 2013; Nkwunonwo et al. 2016). The 
implementation of the ML technique is also an example of non-structural interventions for 
flood risk management.

This study assessed the performance of RF in modeling and predicting flood levels in 
the Lower Ogun Basin, Southwest Nigeria. The statistical description of the flood levels 
revealed that the annual series of the flood level has a different characteristic from the daily 
and seasonal series. For instance, a negative kurtosis of − 0.35 for the annual series indi-
cated that the annual series had lighter tails and was less peaked, implying that compared to 
the daily and seasonal series, the annual series significantly disregards the extreme values of 
the flood level, which are important for the development of efficient early warning systems. 
The scope of the study is limited to the prediction of daily flood levels, even though a sig-
nificant (p < 0.001) trend and autocorrelation were found on other time scales.

This study further investigates the performance of the RF model as a complementary 
tool in flood early warning systems for the Lower Ogun Basin. Based on three evaluation 
criteria, which include MAE,  R2, NSCE, and KGE, the performance of RF in predicting 
flood levels is satisfactory and can be used for developing flood early warning systems. For 
instance, in a similar study by Albawi et al. (2017), lesser accuracy was recorded for the 
linear regression algorithms SVM and ANN, with MAEs of 40.25%, 90.61%, and 21.81%, 
respectively, compared to the MAEs of 3% to 5% obtained by RF in the present study. In 
addition, Kunverji et al. (2021) recently established that the Decision Tree Algorithm, with 
an accuracy of 94.4%, outperformed the Gradient Boost Algorithm with an accuracy of 
87.9% and the RF with an accuracy of 92.4% for the development of flood early warning 
systems. This implies the RF model is adequate for serving as a complementary tool in 
flood early warning systems, which could be adopted as a non-structural measure for flood 
management in the Lower Ogun Basin.

Furthermore, the assessment of important input features for the prediction of flood lev-
els revealed that FL(t−1) and FL(t−2) are the most important input features for daily flood 
level prediction, while the model uncertainty assessment based on Monte Carlo simulation 
emphasized that uncertainty in flood level prediction by RF increased for lower flood levels 
and higher flood levels greater than 9.0 m, since the blue line crossed the gray line (97.50% 
confidence level) at 9.0 m (Fig. 9). Implying that the developed RF model is uncertain at 
95% confidence interval in predicting extreme floods of greater than 9.0 and lesser than 
3.15 m.
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5  Conclusion

This study has expounded on the efficiency and usefulness of the RF model as a predictive 
tool for the development of flood early warning systems in the Lower Ogun Basin. The 
study established that the majority of the flood level ranged between 4.6 and 7.04 m, with 
an interquartile range of 2.44 m. Flood levels have a significant increasing trend, and 25% 
of flood levels were above 7.04 m, which could have been responsible for the majority of 
the flooding events in downstream residential areas located in Ibafo, Magboro, and Isheri 
North in Lagos State. A RF model was developed to model and predict flood levels based 
on antecedent records. Based on the evaluation criteria, RF is reliable in predicting daily 
flood levels, having performed well at both the validation (MAE = 0.0484, R2 = 0.9924, 
NSCE = 0.9924, KGE = 0.9930) and test (MAE = 0.0519, R2 = 0.9943, NSCE = 0.99943, 
KGE = 0.99948) phases. Furthermore, antecedent flood levels of up to 2 days are the most 
important input features for the RF model, while based on Monte Carlo simulation, the RF 
model is limited in that it is less certain in the prediction of extreme low and high flood 
levels. The present study is limited to the use of 7-day antecedent flood levels as input fea-
tures of the RF model; however, future studies should focus on the application of different 
input combinations. The high predictive functioning of RF makes it an efficient comple-
mentary tool for the development of early warning systems for vulnerable communities in 
the Lower Ogun Basin.
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