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Abstract
A natural disaster like an earthquake has the capability of damaging critical infrastruc-
ture systems, and valuable assets, limiting products or services movements, and in extreme 
conditions may cause injuries and even mortalities. The unavailability of a workforce 
as a response to an earthquake can directly affect the regional sector’s productivity, as 
most business operations are labor dependent. In addition, the inherent interdependency 
of regional economic sectors can further delay the recovery process, This paper presents 
the dynamic inoperability input–output (DIIM) model and sector resilience to formulate a 
recovery analysis model by incorporating both the deterministic and stochastic modeling 
for workforce-interdependent sectors in the aftermath of an earthquake. The developed 
model is capable of evaluating the social and economic losses caused by workforce dis-
ruption. Moreover, a risk-based framework developed for the guidance of policymakers is 
to manage and control the adverse effects of the earthquake on the disrupted region. This 
paper identifies and prioritizes critical industry sectors based on two metrics i.e., inoper-
ability and economic loss. Inoperability levels describe the percentage variation between 
the maximum production of the sector to the reduced production level, while economic 
loss is the quantified monetary value associated with the reduced level of sector output. 
The main contribution of this work focuses on the modeling of uncertainty caused by new 
disruption to the interconnected sectors within a recovery horizon of the initial outbreak of 
the disaster using a dynamic model for the disrupted region. This model is developed and 
applied to the regional sectors of Pakistan for an earthquake disaster but can be generalized 
to other regions and other disaster scenarios as well. Finally, the purpose of presenting dif-
ferent earthquake intensity scenarios is to validate the effective use of risk and uncertainty 
analysis in modeling the inoperability and economic loss behaviors because of time-vary-
ing perturbations and their related ripple effects on interdependent economic sectors.
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1 � Introduction and background

The Asian Disaster Reduction Center (2003) defined disasters as serious events that 
disrupt society’s functioning and have catastrophic effects, including significant losses 
in terms of human life, property, infrastructure, and environment, etc. In some cases, 
disasters even threaten government stability, go beyond its ability in the affected area 
(society), and limit that region to adapt using only its resources. According to (Sha-
luf 2007) disasters can be classified into three types (natural disaster, man-made, and 
hybrid disaster).

An earthquake is a type of natural disastrous event that takes place below the earth’s 
surface. It is the sudden release of energy from the earth’s crust initiated by the move-
ment along fault planes or by volcanic activity, which generates extremely destructive 
seismic waves on the surface (Becek 2014). Tectonic, volcanic, collapse, and explo-
sion earthquakes are the four different types of earthquakes. According to (Ainuddin 
and Routray 2012) based on their intensities and magnitude, earthquakes are further 
divided into categories that vary from minor to significant. An earthquake will nega-
tively affect the region’s socioeconomic environment. For example, high-magnitude 
earthquakes can have severe effects on communications, health, and transportation, 
which may further restrict post-emergency response. When an earthquake strikes near 
a populated area, it leaves the disrupted region unable to react regularly and causes 
substantial damage, disturbance, and possibly losses over thousands of square kilo-
meters. Economically, it results in billions of dollars in property damages, multiple 
losses of human, infrastructure, and financial capital, and a decrease in some business 
activities such as revenue generation, investment, production, and employment in the 
affected regions (Benson and Clay 1998). Since the interconnectedness amongst the 
production sectors in a regional economy expanded the influences, which will delay 
the recovery process. As a result, the disruption will have a negative impact on indus-
try output and partially halt economic activity for days or even months. Hence, the 
availability of a workforce is crucial to the interconnected production sectors; their 
absence in the aftermath of an earthquake in the disrupted region is a significant prob-
lem. It is necessary to develop a model to link the uncertainties of workforce avail-
ability level to earthquake intensity. A case in point, natural disasters mainly includes 
floods and earthquake that hit the Pakistan region several times, the regions that are 
prone to these two main natural disasters are shown in Figs. 1 and 2 respectively. Other 
disasters may include heatwaves floods, landslides, tsunamis, etc. which are not very 
common in the stated region.

In the year 2005, Pakistan faced a great earthquake that causes massive destruction 
and losses in the country’s history (Khalid and Ali 2019), killing 6700 people with a 
total income loss of about $576 million followed by recovery and reconstruction costs 
of a further $5.2 billion. In 2010 floods affect the entire country disturbing almost 78 
districts follow by 2011 severe flooding that affects 9.6 million people and caused con-
siderable destruction across the country (Khalid and Ali 2019). To minimize the dis-
ruption of such natural disasters Pakistan government in the year 2010 established an 
organization named the National Disaster Management Authority (NDMA) to improve 
disaster response and develop safety procedures to relieve the overall effects for identi-
fying and increasing the use of disaster risk funding.
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2 � Research goals

The current research aims to examine the uncertainties associated with the ripple effects of 
an earthquake’s impacts on interconnected workforce industry sectors. A high-magnitude 
earthquake has serious aftereffects, such as injuries, fatalities, and disruptions to the trans-
portation system, which further delay the recovery process by restricting the movement of 
services and goods like post-emergency response and health communications and possibly 
causing significant damage to critical infrastructure. This reduces the workforce’s availabil-
ity to industry sectors. In addition, it has several other adverse effects, such as ground fail-
ure, vibration damage, and in the worst scenarios, tsunamis, which seriously damage roads, 

Fig. 1   Flood-affected areas of Pakistan (Ul Hasan and Zaidi 2012)
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bridges, flyovers, highways, and railways. The output of interconnected economic sectors 
decreases because of this decreased workforce level. While tracing the various levels of 
inoperability values over the course of the recovery horizon, the economic resilience of an 
industry sector is considered, i.e., (The sector’s internal resistance or capacity to engross 
the disaster’s impact and recover to their initial degree of functionality). Thus, the inoper-
ability trend is decreasing over time due to the economic resilience of sectors. However, 
certain events, such as earthquake aftershocks, could change the downward pattern in inop-
erability levels. For instance, more people are likely to be injured or limited to their houses 
during aftershocks, which will degrade the level of inoperability of the interconnected eco-
nomic sectors. Figure 3 depicts the scope of research in the context of the overall problem.

The goal of the present research is to determine.

•	 Based on the currently available information, develop workforce perturbation mod-
els for their absenteeism because of an earthquake scenario.

•	 To improve the resolution of earthquake impacts, local (disrupted region) analysis 
must incorporate into the extended DIIM model.

•	 To develop a system that supports decisions in identifying and prioritizing industries 
that are vulnerable to inoperability and economic loss.

•	 To use the judgment support system to carry out various earthquake-intensity situa-
tions to assess and classify their severity.

•	 To create a standard model that will improve the idea of a statistical dependence-
based model of workforce uncertainty levels.

Fig. 2   Earthquake risk map of Pakistan (Khan et al. 2019)
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•	 To perform sensitivity analysis for various degrees of economic losses and an inoper-
ability matrix for various earthquake scenarios.

3 � Methodology

This study focuses on extending the Leontief economic (I–O) model to predict and quan-
tify the effects of workforce disruption caused by a natural disaster like an earthquake. The 
section begins with a discussion of input–output models, then moves on to a discussion of 
the fundamental Leontief input–output (I–O), and finally, its extensions, including the IIM 
and DIIM models respectively, which serve as a foundation of this study’s methodology.

3.1 � Input–output model

Considering the significance of economic losses incurred by disasters in the intercon-
nected sectors, it is necessary to concentrate attention on the studies related to risk 
analysis. The Leontief (I–O), model and its disaster-specific extensions like the IIM are 
used extensively in interdependency analysis. To evaluate and manage the economic 
effects of disasters, the model is updated and improved. (Olsen et al. 1997) suggests an 
I–O-based model for reporting risk analysis concerns regarding flood protection that 
are linked to the outcomes of such disasters. With grouping, the Leontief inter-industry 
model, (Hsu and Chou 2000) suggests a model for analyzing CO2 reduction strategies in 
Taiwan. (Cho et al. 2001) employs a similar methodology to report the overall effects of 
high-magnitude earthquakes in urban areas to both industrial and nonindustrial sectors. 
Similarly, (Haimes and Jiang 2001) suggest an addition to the Leontief (I–O) model, 
to reveal the effects of disaster for illustrating the interdependencies and impact on key 
sectors. The same methodology is used by (Alcántara and Padilla 2003) to identify 
sectors based on energy usage from sector-specific flexibility in final energy demand. 

Fig. 3   Scope of research in the context of the overall problem
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(Lenzen et al. 2004) suggest the model by introducing a multi-regional analysis for CO2 
multipliers and trade balances accountable for emitting greenhouse gas by-products. 
(Okuyama and Chang 2004) discusses the same model for calculating the total eco-
nomic losses brought on by natural disasters. (Rose and Liao 2005) carries out a case 
study for economic losses based on Computable General Equilibrium (CGE) methods 
for the disruption of water delivery in the wake of an earthquake. The approach taken 
by (Rose 2004) is an addition to the I–O model, not its replacement. (Velázquez 2006) 
outlines a combined strategy using the extended Leontief (I–O) model and the energy 
model put forth by (Proops 1984) for sectorial water usage and implements the find-
ings to the Andalusia region in Spain, which was classified as having a water shortage. 
The generalized hypothetical extraction method, which allows examining what would 
happen if a specific interdependent industry becomes inoperable, and a mixed endog-
enous/exogenous input–output model, which offers a distinct assessment of the retrieval 
process, (Dietzenbacher and Miller 2015) proposed as alternative methods for disaster 
impact analysis. (Ali et al. 2015) employs a similar strategy, concentrating on the inter-
actions between industries, and presents a setup that aids in identifying the industrial 
sectors that contribute to total output. Additionally, a comparison achieved applied suc-
cessfully to actual statistics for the Italian economy from the year 1995 to 2011. Simi-
larly, by incorporating all the segments of the money flow to or from the vulnerable 
to disruption sectors into the overall disaster impact on the economy. (El Meligi et al. 
2019) introduce the Inoperability Extended Multi-sectoral model to improve the exist-
ing approach, which was deployed to examine disruptive events and provide guidance 
for policymakers.

3.2 � The Leontief I–O model for economy

The (I–O) model is the main focus of this study. The basic purpose of the Leontief I–O 
Model is to investigate how regional businesses are interconnected (Miller and Blair 2009). 
These (I–O) tables are excellent for analyzing how each economic sector is performing 
within a region.

Wassily Leontief won the Alfred Nobel Memorial Prize for developing an economic 
model in 1973. The developed model offers insightful information about how industries 
interact within a given economic region. (Miller et al. 1989; Lahr and Stevens 2002) con-
tends that this model is widely used because it is a decision-making tool for many different 
economic applications.

It is a linear equation system that describes the shared output of each sector in an eco-
nomic system (Miller and Blair 2009), and it is only able to comprehend the interdepend-
ent behavior of sectors when we add this intermediate consumption to the ultimate demand 
for an economic region (Leontief 1936). The primary premise of this model is that final 
and intermediate demands are added together to form the overall output of any industry. 
Equation (1) illustrates the model’s relationship, which is as follows:

In the relationship shown in Eq. (1), x represents the overall production output,  A is the 
technical coefficient matrix of  aij that shows the output from sector i that fulfills the input 
requirement of sector j , Ax represents intermediate consumption of output within the sec-
tors, and c represents the final customer demand.

(1)x = Ax + c
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3.3 � Inoperability input–output (IIM) model

The Inoperability input–output Model (IIM), an extension of Leontief’s I–O model, is 
capable of measuring the inoperability of interdependent economic sectors as their total 
production output declines as a response to either direct or indirect effects of the disaster 
(Orsi and Santos 2009). In response to a catastrophe like terrorism, (Santos and Haimes 
2004) introduced a novel method for the IIM analysis that was centered on demand 
reduction. This study focuses on analyzing the effects of the September 11th, 2001, ter-
rorist attacks on the aviation industry and how demand was affected, which influenced 
other related industries. (Haimes et al. 2005) discusses the theory and techniques that 
underpin the development of the IIM based on Leontief’s model. It illustrates the inter-
dependence of economic sectors and analyzes those sectors for initial disruption and 
their cascading effects upon other sectors. This analysis was applied to terrorist activity 
to quantify and highlight the critical sectors and those whose operability is crucial dur-
ing the recovery process, (Santos 2006) uses the IIM to assess the impact of disasters 
on interconnected economic sectors, rather than assessing impacts in terms of financial 
aspects. (Lian and Haimes 2006) also suggests the IIM model using inoperability analy-
ses to model how interdependent sectors will recover after a disruptive event, like ter-
rorism or any natural catastrophe, by taking into account the resilience coefficient and 
expected recovery time to gauge the effectiveness of the sector. (Santos et al. 2007) put 
forth a framework for performing static and dynamic analysis to show how combined 
demand and supply impacts interact. Their study’s main objective was to model cyber-
security for the defense of the oil and gas industry from any natural and or man-made 
disaster. (Anderson et al. 2007) proposed a risk management framework to identify the 
vulnerabilities related to and their effects on the operability of other interconnected 
critical infrastructure by presenting the IIM model for demonstrating the economic 
and inoperability effects of the power sector in the 2003 Northeast America Blackout. 
(Crowther et al. 2007) proposed an analysis technique that emerges from the IIM struc-
ture to analyze the effects of disruptive events like Hurricanes Katrina and Rita on dif-
ferent regional sectors and to demonstrate hypothetical, reduced impacts as a result of 
different strategic awareness decisions for policymakers. Uses the same model to assess 
the effects of disruption brought on by natural disasters like floods on the transporta-
tion sector and their effects on the economy in terms of unpredictability and uncertainty 
related to the crucially interconnected sectors on the Philippine island. According to 
(Oosterhaven 2017) the key limitation of the IIM model is that it frequently overesti-
mates the financial costs associated with real applications. This study’s primary goal 
was to use the IIM to investigate and rank indirect economic impacts and proposed two 
distinct approaches to obtain the impact of major natural and man-made disasters. Equa-
tion (2) illustrates the basic relation of this model.

 where q represents normalized financial losses and indicates a sector’s level of operational 
inoperability, (operational inoperability is the proportional decrease in output level). A∗ 
represents the degree of coupling between industry sectors by the inoperability interde-
pendency matrix, and c∗ represents the normalized drop in the final request.

(2)q = A∗q + c∗
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3.4 � The DIIM model

The DIIM model, presented by (Lian and Haimes 2006) as an extension of the IIM for-
mulation, allows for taking into account the resilience of each sector in a region, which, 
according to (Santos and Haimes 2004; Santos 2006), resolves some limitations of the 
IIM model. For example, in the IIM model, inoperability levels were measured with-
out taking into account time-varying parameters (Santos et al. 2009). The fundamental 
function of DIIM development is to establish the idea of economic resilience through 
the dynamic inoperability of sectors for a predetermined recovery horizon.

As a result, (Santos et  al. 2009) present an analysis of a pandemic recovery using 
the DIIM. This analysis highlights the significance of workforce availability as a pan-
demic response and the necessity of taking into consideration the workforce distribu-
tion across the region. (Barker and Santos 2010) propose a methodology for classify-
ing sectoral interdependencies based on inventory and the DIIM to give policy-makers 
clear evidence about the sectors that offer and/or receive significant impact from the 
inventory-caused interruptions in inoperability as a result of a catastrophe. (Akhtar and 
Santos 2013) added a workforce recovery model to the DIIM for identifying key indus-
trial sectors. A decision support tool combines extended DIIM model and survey data 
to simulate different hurricane intensities for the identification of critical sectors, mak-
ing it easier for policymakers and advancing post-disaster recovery. By considering a 
variety of risk scenarios and their likelihood to occur within the GPN, (Niknejad and 
Petrovic 2016) provides a novel methodology of fuzzy DIIM, a risk evaluation method 
in a global production network (GPN), to measure interconnectedness among nodes 
in a GPN using expert knowledge for strategic decision-making. Three distinct phases 
were suggested by (Ramirez et al. 2016) as a way to represent the uncertainty in flood 
peak discharges and their duration as a response to climatic changes in a hydrodynamics 
model with reduced complexity for flood simulation. (Khalid and Ali 2019) constructed 
an (I–O) table for the Pakistan economic system and implement the DIIM through resil-
ience and recovery time to case studies involving flooding. Their work’s primary goal 
was to provide a rough estimate of the impact and its effects on the sectors’ inoperabil-
ity that persists for days after disruptive events like a flood so that policymakers and 
related departments could respond appropriately. As a response to the catastrophe for an 
interdependent sector exposed to that disaster, a dynamic recovery modeling introduced 
a resilience matrix (K). It may be defined as the ability of an industry to protect against 
and absorb losses and productivity reductions (Holling 1973; Perrings 2001; Santos 
2012). While the level of economic resilience influences how quickly each intercon-
nected industry recovers from a disruptive event (Anderson et  al. 2007). Equation  (3) 
illustrates the basic formulation of the DIIM model.

The inoperability vector at the time (t + 1) is illustrated in Eq. (3). While c∗(t) is the 
initial perturbation vector identical to that used in the IIM, q(t) represents the inoper-
ability vector at the specified time. A∗ , representing the interdependency matrix demon-
strating the sector’s interdependencies. The resilience coefficient matrix, or K , measures 
how quickly an industry can resume production at its pre-event level in a given region 
(Lian and Haimes 2006). The mathematical relation of K is given as in Eq. (4) .

(3)q(t + 1) = q(t) + K
[

A∗q(t) + c∗(t) − q(t)
]
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where Ki is the resilience vector of the sector.Ti Shows the length of time acquired by the 
sector to recover to its original production level after disruption with the original inopera-
bility level of qi

(

ti
)

 from an initial level of qi(0) . In short, a higher value of Ki indicates that 
a sector will recover more quickly from a catastrophe and suffer relatively fewer economic 
losses, which indicates that the sector is more disaster-resistant (Lian and Haimes 2006). 
The DIIM model calculates a disaster’s impacts on inoperability and monetary losses. To 
address the effects of workforce interruptions due to earthquakes and their subsequent 
effects on interdependent regional economic sectors, this research centers on the use of an 
extended form of the DIIM model.

Nevertheless, there is a lot of pertinent literature on modeling, evaluating, and dealing with 
the negative effects of disasters on human infrastructure. However, there has not been much 
substantial work done in stochastic modeling. It is important to classify the most serious dis-
ruptions in the sector and rank them based on financial loss and inoperability metrics using an 
extended form of the (I–O) model. To evaluate the effects based on reduced workforce avail-
ability in the aftermath of an earthquake scenario; this study is an attempt to advance the con-
cept of human infrastructure by modeling the relationship between workforce recovery across 
the interdependent sector and disaster time scale.

To determine the inoperability of an industry sector as a response to a reduced level of 
workforce in the aftermath of an earthquake. A proper methodology is required that can link 
the level of the reduced workforce to that of an inoperability of workforce-dependent sectors. 
Hence, a new approach adopted in this study is to predict the workforce involvement factor 
for every industry sector by assessing the workforce perturbation elements for determining 
inoperability across all the industry sectors. (Arnold et al. 2006) determine the inoperability 
by evaluating workforce productivity. However, the data utilized in the study applies to a rela-
tively small set of sectors. This study, however, according to (El Haimar and Santos 2015) 
modeled the inoperability level of economic sectors by combining the effects of the new per-
turbation (i.e., stochastic pattern) and the inoperability level brought on.

by the DIIM model pattern. Equation  (5) illustrates the assigned weighted average 
relationship.

For the DIIM pattern level of inoperability in Eq. (5), recall Eq. (3) given below.

where; q(t) in Eq. (3) represents the inoperability vector level at time t. K shows the resil-
ience matrix, and c∗(t) is the vector of initial sectors demand perturbation at time t. A∗q(t) 
is inoperability caused by other interconnected sectors.

The inoperability trajectory over the recovery period modeled using a combination of both 
the DIIM pattern and new perturbation (i.e., stochastic pattern). Equation (6) depicts the rela-
tion to measuring the inoperability level for the new perturbation (i.e., stochastic pattern) dur-
ing the recovery horizon.

(4)Ki = ln

(

qi(0)

qi
(

ti
)

)

∕Ti

(

1a∗
ij

)

(5)q(t) = �(t) ∗ qstochastic(t) + (1 − �) ∗ qDIIM(t)

(3)q(t + 1) = q(t) + K
[

A∗q(t) + c∗(t) − q(t)
]

(6)q(new)(t) = q(stochastic)(t) ∗ �(t)
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where �(t) represents a scaling factor, the value of this factor ranges from 0 to 1. Where 0 
corresponds to deterministic modeling when the probability of a new perturbation during 
the recovery horizon is 0, while a value of 1 corresponds to the maximum probability of a 
new perturbation during the recovery horizon.

As stated in Eq.  (5) this study combines both the modeling techniques (i.e., DIIM 
and stochastic pattern) to compute the overall inoperability trajectory over the recovery 
horizon. The DIIM pattern models the declining trend of inoperability over time due to 
the sector’s internal resilience effect against that disruptive event, while the stochastic 
pattern of inoperability models either the increasing or decreasing trend of inoperability 
caused by the new perturbation during the recovery horizon.

4 � Results and discussion

4.1 � Data collection

To determine the level of inoperability and economic losses for the regional indus-
try sectors across Pakistan, it is necessary to collect all the relevant data of all sec-
tors and manage them in the (I–O) table form to facilitate post-disaster aid and policy-
makers to help in decision-making, hence promoting faster recovery. These data sets 
normally include industrial demand and supply etc. (Khalid and Ali 2019) successfully 
develop (I–O) data tables in 2016, including data for 24 most workforce-dependent dis-
tinct sectors, including both the industrial and non-industrial sectors. The inclusion of 
non-industrial sectors in this study is to evaluate and provide a better understanding of 
the inoperability matrix, as the majority of these non-industrial sectors are workforce 
dependent and have a higher workforce as compared to the industrial sectors in Paki-
stan. Table 1 depicts the 24 different sectors.

Table 1   Industry sectors classification (Khalid and Ali 2019)

Sectors Sector description Sectors Sector description

1 Agriculture(S-01) 13 Electricity, gas, and water(S-13)
2 Fishing(S-02) 14 Construction(S-14)
3 Mining and quarrying(S-03) 15 Maintenance and repair(S-15)
4 Food & beverages(S-04) 16 Wholesale trade(S-16)
5 Textiles and wearing apparel(S-05) 17 Hotels and restaurants(S-17)
6 Wood and paper(S-06) 18 Transport(S-18)
7 Petroleum, chemical, and non-metal-

lic mineral products(S-07)
19 Post and telecommunications(S-19)

8 Metal products(S-08) 20 financial intermediation and Business 
Activities(S-20)

9 Electrical and machinery(S-09) 21 Public administration(S-21)
10 Transport equipment(S-10) 22 Education, health, and other services(S-22)
11 Other manufacturing(S-11) 23 Private households(S-23)
12 Recycling(S-12) 24 Others(S-24)



649Natural Hazards (2024) 120:639–675	

1 3

4.2 � Pakistan earthquake case study

To support the implementation of the workforce recovery modeling in the extended DIIM, 
this section considers the use of earthquake recovery data along with local economic infor-
mation gathered from the Bureau of Economic Analysis (BEA) illustrated in Appendix 1 
and Pakistan Standard Industrial Classification ((PSIC) Revision 4 2022). The information 
in Appendix 1 shows how various industries contributed to the total output of a network of 
interrelated industries in a given economic region. In other words, it illustrates the output 
multiplier for each unit change in demand for each industry, In input–output modeling, the 
stated data represents the matrix [I − A]_1 . Where A is the square matrix of the technical 
coefficients aij . Moreover, the use of extended DIIM is to determine how different earth-
quake scenarios affect workforce recovery in the regional industry sectors across Pakistan.

Significant literature is available about earthquake intensities and consequences. 
(Ainuddin and Routray 2012) provided comprehensive detail that reveals earthquakes with 
magnitudes, their effects based on economic losses and human fatalities, and estimated 
annual occurrence. This paper focuses on two earthquake scenarios (i.e., low-magnitude 
and high-magnitude) in the regional workforce-dependent sectors of Pakistan, by utilizing 
workforce survey data from (Khalid and Ali 2019). For briefness, only the detailed results 
are presented in this section. Data comparisons based on the overall level of inoperability 
and economic losses to inquire about impacts of different earthquake magnitudes in the 
stated region are incorporated from available regional economic and workforce data pro-
vided by ((PSIC) Revision 4 2022).

4.2.1 � Scenario 1: low probability and low magnitude earthquake

The earthquakes are categorized into various categories ranging from minor to great, 
depending on their intensities, effects, and frequency per year (Hossain 2002). While con-
sidering scenario 1, a low probability and low magnitude earthquake must exhibit the fol-
lowing main features.

•	 Include categories from minor to light (i.e., Magnitude ranges from 3.0 to 4.9 on the 
Richter scale).

•	 Higher estimated numbers per year (i.e., frequency), but comparatively lower conse-
quences.

•	 Lower Inoperability levels, Cumulative Economic losses, and faster recovery.
•	 The impact of the stochastic pattern is assumed to be equal to 1% of that of the initial 

disaster for all low probability and low magnitude cases discussed below (i.e., when 
� ≠ 0).

•	 Considering the case where up to 25% workforce fails to report their work in the after-
math of an earthquake.

•	 In addition, for a better understanding of the stochastic pattern, three aftershocks are 
also assumed during the recovery horizon on the 5th, 10th, and 15thday of the initial 
disaster with a magnitude of 99%, 50%, and 1% to that of the initial disaster, respec-
tively for all cases where (when � ≠ 0).

As stated in Eq.  (5) earlier, the overall inoperability is the sum of both the  qDIIM(t) 
and qstochastic(t) , therefore, the low probability and low magnitude earthquake scenario is 
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further divided into four different cases depending upon the values of � , that ranges from 
� = 0, 0.25, 0.50, and 0.75 , respectively.

Case 01: when �(t) = 0 (100% deterministic modeling case)
The first step corresponds to the case when the probability of a new perturbation is 

equal to zero i.e., λ(t) = 0. By putting the value in Eq. (5) we have.

Equation (7) is the true case of DIIM modeling for the level of inoperability measures. 
Since the sectors, expected to have their resilience and they tend to regain their original 
initial operability with time, shown in Fig. 4.

Figure 4 shows the level of inoperability of those sectors that are relatively more work-
force dependent and are most vulnerable to an earthquake disaster. The highest inoperabil-
ity levels for the mentioned top ten sectors range (1.6–19.3%) from minimum to maximum, 
but drop to (0.3–4.7%) within 5 days and almost vanishes to 0% after 20 days for all listed 
industry sectors shown in Fig. 4. This ranking of inoperability recognizes all critical sec-
tors based on the normalized loss of each sector as a part of its overall production output 
rather than based on overall economic losses.

Figure 5 shows the cumulative economic losses recovery trends of top ten the indus-
try sectors. The behavior of the recovery plots shown in Fig.  5 for all industry sectors’ 

(7)E
[

q(t) ∼ �
]

= qDIIM(t)

Fig. 4   Top ten highest inoperable industry sectors

Fig. 5   Top ten highest Economic loss industry sectors
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economic loss flattens after almost 15 days for a low-magnitude earthquake scenario. The 
total expected monetary loss for this scenario estimates at up to $1651 million (Approx. 
0.47% of GDP).

These figures i.e., Figs. 4 and 5 are obtained after entering all the necessary data regard-
ing the workforce perturbation and published data from BEA of Pakistan and Pakistan 
Standard Industrial Classification Revision (PSIC) for a low-magnitude earthquake in 
the extended DIIM model. Table 2 illustrates the top ten industry sectors with the highest 
degree of inoperability ranging from (1) Recycling(S-12) to (10) Wholesales(S-16) with 
codes (Alphanumeric) assigned against each sector:

Similarly, Table 3 illustrates the top ten industry sectors based on the highest overall 
cumulative economic losses ranging from; (1) Financial Intermediation and Business 
Activities(S-20) with a total loss of worth $522.66 million to (10) Construction(S-14) 
with a total loss of worth $57.03 million. The main reason for using two tables for each 
case is to discuss both the matrix i.e. inoperability and economic loss independently, 
as the results mentioned in Tables 2 and 3 revealed that for the top ten inoperable and 

Table 2   Top ten inoperable sectors with cumulative economic losses

Sector Name Inoperability
Rank

Economic loss
Value (10–2)

Rank Value ($M)

S-12 Recycling 1 1.73 17 6.24
S-15 Maintenance and repair 2 1.18 19 3.73
S-11 Other manufacturing 3 0.52 14 14.08
S-13 Electricity, gas, and water 4 0.46 11 44.57
S-23 Private households 5 0.39 24 0.68
S-6 Wood and paper 6 0.34 4 103.58
S-2 Fishing 7 0.19 23 0.14
S-8 Metal products 8 0.19 6 88.25
S-24 Others 9 0.15 22 0.78
S-16 Wholesale trade 10 0.13 3 124.92

Table 3   Top ten cumulative economic loss sectors with inoperability values

Sector Name Economic loss Inoperability

Rank Value ($M) Rank Value (10–2)

S-20 Financial intermediation and business activities 1 522.66 22 0.07
S-7 Petroleum, chemical, and non-metallic mineral products 2 320.26 14 0.11
S-16 Wholesale trade 3 124.92 10 0.13
S-6 Wood and paper 4 103.58 6 0.34
S-9 Electrical and machinery 5 92.32 17 0.09
S-8 Metal products 6 88.25 8 0.19
S-4 Food & beverages 7 83.59 12 0.13
S-22 Education, health, and other services 8 66.34 19 0.07
S-17 Hotels and restaurants 9 59.08 13 0.13
S-14 Construction 10 57.03 18 0.09
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economic loss sectors, the most inoperable sectors did not appear in the economic loss 
sectors list, which further shows that both the matrices are independent of each other 
even for the same earthquake scenario.

The ten highest inoperable sectors listed in Table 2 contribute 23% of total loss while 
the ten highest economic loss sectors listed in Table 3 contribute 91.7% of the total loss 
worth of the region.

	 (ii)	 Case 02: when �(t) = 0.25 (Combined case 25% stochastic & 75% deterministic 
modeling)

The second step corresponds to the case when the probability of a new disruption has 
some value like �(t) = 0.25 other than � (t) = 0, which means we are interested in putting 
some impact or influence of inoperability caused by new perturbation to allow us to per-
form the sensitivity analysis with varying corresponding weights given to each level of 
inoperability. By putting the value in Eq. (5) we have.

The Eq.  (8) is the linear summation of both the stochastic inoperability qstochastic(t) 
and DIIM inoperability qDIIM(t)  multiplied with their probabilities of 25% and 75%, 
respectively.

Figure 6 shows the level of inoperability, as the overall inoperability is the summa-
tion of both the qstochastic(t) and qDIIM(t) ranges (1.1–15.0%) from minimum to maximum 
that drops to (0.4–5.0%) within 4 days. However, as per assumption, three aftershocks 
strike on the 5th, 10th, and 15th day having magnitudes of 99%, 50%, and 1%, respec-
tively to the initials disruption. The declining trend of inoperability increases from (0.4 
to 5.0%) on the 4th day of disaster to (1.7 to 23.0%) on the 5th day, (0.8 to 11.0%) on 
the 10th day, and (0.2 to 2.6%) on the 15th day, respectively. Because of the stochastic 
pattern, there is uncertainty and the overall inoperability is never set to zero again. The 
overall effects of aftershocks are also sensed in Fig. 7, which represents the cumulative 
economic loss.

Figure 7 shows the cumulative economic losses recovery trends of the top ten indus-
try sectors. However, the highest sector economic loss in this case as compared to the 
1st case discussed earlier is 14% less because of that stochastic element and uncertainty 

(8)E
[

q(t) ∼ �
]

= qstochastic(t) ∗ (0.25) + qDIIM(t) ∗ (0.75))

Fig. 6   Top ten highest inoperable industry sectors
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Fig. 7   Top ten highest Economic loss industry sectors

Table 4   Top ten inoperable sectors with cumulative economic losses

Sector Name Inoperability Economic loss

Rank Value (10–2) Rank Value ($M)

S-12 Recycling 1 2.45 17 8.80
S-15 Maintenance and repair 2 1.71 18 5.35
S-11 Other manufacturing 3 0.78 13 20.95
S-13 Electricity, gas, and water 4 0.64 11 60.71
S-23 Private households 5 0.61 24 0.10
S-6 Wood and paper 6 0.41 4 125.71
S-2 Fishing 7 0.21 23 0.15
S-8 Metal products 8 0.20 8 92.00
S-24 Others 9 0.20 22 1.03
S-16 Wholesale trade 10 0.20 3 182.41

Table 5   Top ten cumulative economic loss sectors with inoperability values

Sector Name Economic loss Inoperability

Rank Value ($M) Rank Value (10–2)

S-20 Financial Intermediation and Business Activities 1 449.92 22 0.06
S-7 Petroleum, Chemical, and Non-Metallic Mineral 

Products
2 374.73 14 0.13

S-16 Wholesale Trade 3 182.41 9 0.20
S-6 Wood and Paper 4 125.71 6 0.41
S-9 Electrical and Machinery 5 101.92 18 0.10
S-4 Food & Beverages 6 92.45 12 0.15
S-8 Metal Products 8 92.00 8 0.20
S-22 Education, Health, and Other Services 7 89.95 19 0.10
S-14 Construction 9 67.34 17 0.10
S-17 Hotels and Restaurants 10 65.05 13 0.14
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in the overall inoperability the plot never flattens and for this reason, the expected mon-
etary loss estimates up to $1822 million (Approx. 0.52% of GDP).

Table  4 depicts the top ten industry sectors with the highest degree of inoperabil-
ity ranging from (1) Recycling(S-12) to (10) Wholesales(S-16). Similarly, Table 5 illus-
trates the top ten industry sectors based on the highest overall cumulative economic losses 
ranging from (1) Financial Intermediation and Business Activities(S-20) with a total loss 
of worth $449.92 million to (10) Hotels and restaurants(S-17) with a total loss of worth 
$65.05 million.

The ten highest inoperable sectors listed in Table 4 contribute 27% of total loss while 
the ten highest economic loss sectors listed in Table 5 contribute 90.6% of the total loss 
worth of the region.

	 (iii)	 Case 03: When λ(t) = 0.50: (Combined case 50% stochastic & 50% deterministic 
modeling)

The third step corresponds to the case when the probability of a new perturbation is 
equal λ(t) = 0.50. By putting the value in Eq. (5), we have.

(9)E
[

q(t) ∼ �
]

=
(qstochastic(t)) + (qDIIM(t))

2

Fig. 8   Top ten highest inoperable industry sectors

Fig. 9   Top ten highest Economic loss industry sectors
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Figure  8 illustrates the overall inoperability is the average summation of both the 
qstochastic(t) and qDIIM(t) ranges (0.5–10.6%) form minimum to the maximum that drops 
to (0.4–4.1%) within 4 days. However, as per assumption, three aftershocks strike on 
the 5th, 10th, and 15th day having magnitudes of 99%, 50%, and 1%, respectively to the 
initials disruption. The declining trend of inoperability increases from (0.4 to 4.1%) on 
the 4th day of disaster to (1.3 to 22.5%) on the 5th day, (0.7 to 11.4%) on the 10th day, 
and (0.2 to 3.07%) on the 15th day, respectively. Because of the stochastic pattern, there 
is uncertainty and the overall inoperability is never set to zero again.

Figure 9 shows the overall cumulative economic losses. However, the highest sector 
economic loss in this case as compared to the 1st and 2nd cases discussed earlier is 32% 
and 22% less, respectively. The main reason is the high impact of stochastic elements 
and uncertainty in the overall inoperability, the plot never flattens as in case 2, and for 
this reason, the expected monetary loss estimates up to $1649 million (Approx. 0.47% 
of GDP).

Table 6   Top ten inoperable sectors with cumulative economic losses

Sector Name Inoperability Economic loss

Rank Value (10–2) Rank Value ($M)

S-12 Recycling 1 2.50 17 8.95
S-15 Maintenance and Repair 2 1.76 18 5.48
S-11 Other Manufacturing 3 0.81 13 2.17
S-13 Electricity, Gas, and Water 4 0.64 10 60.84
S-23 Private Households 5 0.64 24 0.10
S-6 Wood and Paper 6 0.39 4 119.65
S-16 Wholesale Trade 7 0.20 3 187.83
S-24 Others 8 0.19 22 1.02
S-2 Fishing 9 0.19 23 0.13
S-8 Metal Products 10 0.18 8 80.59

Table 7   Top ten cumulative economic loss sectors with inoperability values

Sector Name Economic loss Inoperability

Rank Value ($M) Rank Value (10–3)

S-7 Petroleum, Chemical, and Non-Metallic Mineral 
Products

1 350.22 15 0.13

S-20 Financial Intermediation and Business Activities 2 343.17 22 0.04
S-16 Wholesale Trade 3 187.83 7 0.20
S-6 Wood and Paper 4 119.65 6 0.39
S-9 Electrical and Machinery 5 92.33 18 0.09
S-22 Education, Health, and Other Services 6 89.97 16 0.10
S-4 Food & Beverages 7 83.85 12 0.13
S-8 Metal Products 8 80.59 10 0.18
S-14 Construction 9 63.23 17 0.10
S-13 Electricity, Gas, and Water 10 60.84 4 0.64
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Table  6 illustrates the top ten industry sectors with the highest degree of inoperabil-
ity ranging from (1) Recycling(S-12) to (10) Metal products(S-8) for this case. Simi-
larly, Table  7 illustrates the top ten industry sectors based on the highest overall cumu-
lative economic losses ranging from (1) Petroleum, Chemical, and Non-Metallic Mineral 
Products(S-7) with a total loss of worth $350.22 million to (10) Electricity, Gas, and Water 
(S-13) with a total loss of worth $60.84 million.

The ten highest inoperable sectors listed in Table 6 contribute 28.3% of total loss while 
the ten highest economic loss sectors listed in Table 7 contribute 89.2% of the total loss 
worth of the region.

	 (iv)	 (iv) Case 04 When �(�) = 0.75: (Combined case 75% stochastic & 25% deterministic 
modeling)

The next step is when there is a case of λ(t) = 0.75, setting the stochastic probability of 
a new perturbation i.e., λ(t)  = 0.75. Shown in Eq. (10) i.e., setting λ(t) = 0.75 for stochas-
tic inoperability of a new perturbation means giving more significance to the inoperability 
of a new perturbation qstochastic(t) in comparison to the inoperability results from the DIIM 
modeling qDIIM(t). Putting the value in Eq. (5) we have.

Fig. 10   Top ten highest inoperable industry sectors

Fig. 11   Top ten highest Economic loss industry sectors



657Natural Hazards (2024) 120:639–675	

1 3

Figure 10 depicts the overall inoperability ranges (0.3–6.2%) from minimum to maximum 
which drops to (0.2–3.0%) within 4 days. However, as per assumption, three aftershocks 
strike on the 5th, 10th, and 15th day having magnitudes of 99%, 50%, and 1%, respectively 
to the initials disruption. The declining trend of inoperability increases from (0.2 to 3.0%) on 
the 4th day of disaster to (1.3 to 21.8%) on the 5th day, (0.7 to 11.6%) on the 10th day, and 
(0.2 to 3.4%) on the 15th day, respectively. Because of the high impact of stochastic pattern, 
there is uncertainty and the overall inoperability is never set to zero again.

Figure 11 shows the overall cumulative economic losses. However, the highest sector 
economic loss in this case, as compared to the first case is 37% low but because of the 
high impact of stochastic elements and uncertainty, increased weightage in the overall 
inoperability. The plot never flattens as in cases 2 and 3 for the reason the expected 
monetary loss estimates at up to $1477 million (Approx. 0.42% of GDP). Note that the 

(10)E
[

q(t) ∼ �
]

= qstochastic(t) ∗ (0.75) + qDIIM(t) ∗ (0.25)

Table 8   Top ten inoperable sectors with cumulative economic losses

Sector Name Inoperability Economic loss

Rank Value (10–2) Rank Value ($M)

S-12 Recycling 1 2.55 17 9.09
S-15 Maintenance and Repair 2 1.80 18 5.60
S-11 Other Manufacturing 3 0.84 13 22.50
S-23 Private Households 4 0.67 24 0.11
S-13 Electricity, Gas, and Water 5 0.65 9 60.96
S-6 Wood and Paper 6 0.37 4 113.59
S-16 Wholesale Trade 7 0.21 3 193.24
S-24 Others 8 0.19 22 1.01
S-3 Mining and Quarrying 9 0.17 21 2.13
S-2 Fishing 10 0.16 23 0.12

Table 9   Top ten cumulative economic loss sectors with inoperability values

Sector Name Economic loss Inoperability

Rank Value ($M) Rank Value (10–3)

S-7 Petroleum, Chemical, and Non-Metallic Mineral 
Products

1 325.72 14 0.125

S-20 Financial Intermediation and Business Activities 2 236.43 22 0.03
S-16 Wholesale Trade 3 193.24 7 0.21
S-6 Wood and Paper 4 113.59 6 0.37
S-22 Education, Health, and Other Services 5 89.98 16 0.10
S-9 Electrical and Machinery 6 82.75 19 0.08
S-4 Food & Beverages 7 75.24 13 0.12
S-8 Metal Products 8 69.18 11 0.15
S-13 Electricity, Gas, and Water 9 60.96 5 0.65
S-14 Construction 10 59.12 18 0.09
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expected monetary loss in cases 2, 3, and 4 is less as compared to the first case as the 
analysis performed is only for 45 days, and as the plot never flatten in cases 2,3, and 4 
while in 1st cases the plot flatten after 20 days. These losses from cases 2 to 4 increase 
if the duration of analysis is further increased.

Table 8 illustrates the top ten industry sectors with the highest degree of inoperability rang-
ing from (1) Recycling(S-12) to (10) Fishing(S-2) for this case. Similarly, Table 9 illustrates 
the top ten industry sectors based on the highest overall cumulative economic losses ranging 
from (1) Petroleum, Chemical, and Non-Metallic Mineral Products(S-7) with a total loss of 
worth $325.72 million to (10) Construction(S-14) with a total loss of worth $59.12 million.

The ten highest inoperable sectors listed in Table 8 contribute 27.6% of total loss while 
the ten highest economic loss sectors listed in Table 9 contribute 88.4% of the total loss 
worth of the region.

4.2.2 � Scenario 2: high probability and high magnitude earthquake

While considering scenario 2 of a high-probability and high-magnitude earthquake it must 
exhibit the following main features.

•	 Include categories from major to great (i.e., Magnitude ranges from 7.0 or above on the 
Richter scale).

•	 Lower estimated numbers per year i.e., frequency, but comparatively higher conse-
quences.

•	 Higher Inoperability levels, Cumulative Economic losses, and relatively slower recovery.
•	 The impact of the stochastic pattern is assumed to be equal to 99% of that of the initial 

disaster for all high probability and high magnitude cases discussed below (i.e., when 
� ≠ 0).

•	 Considering the case where up to 75% workforce fails to report their work in the after-
math of an earthquake.

•	 In addition, to better understand the stochastic pattern three aftershocks are also 
assumed during the recovery horizon on the 5th, 10th, and 15th day of the initial disas-
ter with a magnitude of 99%, 50%, and 1% to that of the initial disaster, respectively for 
all cases where (when � ≠ 0).

As stated in Eq.  (5), the overall inoperability is the linear summation of both the  
qDIIM(t) and qstochastic(t) , therefore, the high probability and magnitude earthquake scenario 
is also further divided into four different cases depending upon the values of � , discussed 
earlier the same case for a low-magnitude earthquake for extended DIIM model.

(i)	 Case 01: when �(t) = 0 (100% deterministic modeling case)

The first step corresponds to the case when the probability of a new perturbation is 
equal to zero i.e., λ(t) = 0. Recall Eq. (7) discussed in scenario 1.

Figure 12 shows the level of inoperability. The highest inoperability levels for the men-
tioned top ten sectors range (from 4.9 to 58%) from minimum to maximum, but drop to 

(7)E
[

q(t) ∼ �
]

= qDIIM(t)
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Fig. 12   Top ten highest inoperable industry sectors

Fig. 13   Top ten highest Economic loss industry sectors

Table 10   Top ten inoperable sectors with cumulative economic losses

Sector Name Inoperability Economic loss

Rank Value (10–2) Rank Value ($M)

S-12 Recycling 1 5.20 17 18.72
S-15 Maintenance and Repair 2 3.56 19 11.19
S-11 Other Manufacturing 3 1.56 14 42.25
S-13 Electricity, Gas, and Water 4 1.40 11 13.37
S-23 Private Households 5 1.19 24 0.20
S-6 Wood and Paper 6 1.02 4 310.74
S-2 Fishing 7 0.59 23 0.42
S-8 Metal Products 8 0.59 6 264.77
S-24 Others 9 0.45 22 2.35
S-16 Wholesale Trade 10 0.41 3 374.78
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(1.05 to 18.8%) within 4 days and almost vanishes to 0% after 20 days for all listed industry 
sectors.

Figure 13 shows the cumulative economic loss recovery trends of the top ten industry 
sectors. The behavior of the recovery plots shown for all industry sectors, the economic 
losses flatten after 25–30  days for a high-magnitude earthquake scenario. The total 
expected monetary loss for this scenario estimates at $4955 million (Approx. 1.42% of 
GDP). Whereas Table 10 depicts the top ten industry sectors with the highest degree of 
inoperability ranging from (1) Recycling(S-12) to (10) Wholesales(S-16) for this stated 
case.

Similarly, Table 11 illustrates the top ten industry sectors based on the highest over-
all cumulative economic losses ranging from; (1) Financial Intermediation and Business 
Activities(S-20) with a total loss of worth $1567.98 million to (10) Construction(S-14) 
with a total loss of worth $171.09 million.

The ten highest inoperable sectors listed in Table 10 contribute 20.9% of total loss, 
while the ten highest economic loss sectors listed in Table 11 contribute 91.9% of the 
total loss worth of the region.

Table 11   Top ten cumulative economic loss sectors with inoperability values

Sector Name Economic loss Inoperability

Rank Value ($M) Rank Value (10–2)

S-20 Financial Intermediation and Business Activities 1 1567.98 22 0.21
S-7 Petroleum, Chemical, and Non-Metallic Mineral 

Products
2 960.80 14 0.35

S-16 Wholesale Trade 3 374.78 10 0.41
S-6 Wood and Paper 4 310.74 6 1.02
S-9 Electrical and Machinery 5 276.96 17 0.29
S-8 Metal Products 6 264.77 8 0.59
S-4 Food & Beverages 7 250.77 12 0.40
S-22 Education, Health, and Other Services 8 199.03 19 0.22
S-17 Hotels and Restaurants 9 177.24 13 0.40
S-14 Construction 10 171.09 18 0.27

Fig. 14   Top ten highest inoperable industry sectors



661Natural Hazards (2024) 120:639–675	

1 3

(ii) Case 02: when �(t) = 0.25 (Combined case, 25% stochastic & 75% deterministic 
modeling)

The second step corresponds to the case when the probability of a new disruption has 
some value like �(t) = 0.25 other than �(t) = 0 , as already discussed the same case for 
low probability and low-magnitude earthquake case, referring to the Eq. (8).

Figure 14 shows the level of inoperability, as the overall inoperability is the summation 
of both the qstochastic(t) and qDIIM(t) which ranges (3.2–57.9%) from minimum to maximum 
that drops to (2.4–28.5%) within 4  days. However, as per assumption, three aftershocks 
strike on 5th, 10th, and 15th day the declining trend of inoperability increases from (2.4 to 
28.5%) on the 4th day of disaster to (5.4 to 82.6%) on the 5th day, (3.16 to 46.6%) on the 
10th day, and (1.4 to 20.9%) on the 15th day, respectively. Because of the stochastic pat-
tern, there is uncertainty and the overall inoperability never set to zero again.

Figure 15 shows the cumulative economic losses recovery trends of the top ten industry 
sectors, because of that stochastic element and uncertainty in the overall inoperability the 

(8)E
[

q(t) ∼ �
]

= qstochastic(t) ∗ (0.25) + qDIIM(t) ∗ (0.75))

Fig. 15   Top ten highest Economic loss industry sectors

Table 12   Top ten inoperable sectors with cumulative economic losses

Sector Name Inoperability Economic loss

Rank Value (10–2) Rank Value ($M)

S-12 Recycling 1 20.29 17 71.94
S-15 Maintenance and Repair 2 14.32 19 44.28
S-11 Other Manufacturing 3 6.68 13 177.48
S-23 Private Households 4 5.34 24 0.89
S-13 Electricity, Gas, and Water 5 5.16 9 483.04
S-6 Wood and Paper 6 3.03 4 906.74
S-16 Wholesale Trade 7 1.70 3 1525.64
S-24 Others 8 1.57 22 8.04
S-3 Mining and Quarrying 9 1.39 21 16.97
S-2 Fishing 10 1.37 23 0.96
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plot never flattens, and for this reason, the expected monetary loss estimates up to $11,917.5 
million which is almost 58.4% more than a case where � = 0 (Approx. 3.42% of GDP).

Table 12 depicts the top ten industry sectors with the highest degree of inoperability rang-
ing from (1) Recycling(S-12) to (10) Fishing(S-2) for a high-magnitude earthquake. Similarly, 
Table 13 illustrates the top ten industry sectors based on the highest overall cumulative eco-
nomic losses ranging from; (1) Petroleum, Chemical, and Non-Metallic Mineral Products(S-7) 
with a total loss of worth $2607.72 million to (10) Construction(S-14) with a total loss of 
worth $472.98 million.

The ten highest inoperable sectors listed in Table 12 contribute 27.15% of total loss while 
the ten highest economic loss sectors listed in Table 13 contribute 88.35% of the total loss 
worth of the region.

	 (iii)	 Case 03: When �(�) = 0.50    :(Combined case 50% stochastic & 50% deterministic 
modeling)

The third step corresponds to the case when the probability of a new perturbation is equal 
λ(t) = 0.50. Earlier discussed for low-magnitude earthquake cases so by putting the value in 
Eq. (5) we have.

Table 13   Top ten cumulative economic loss sectors with inoperability values

Sector Name Economic loss Inoperability

Rank Value ($M) Rank Value (10–2)

S-7 Petroleum, Chemical, and Non-Metallic Mineral 
Products

1 2607.72 15 0.98

S-20 Financial Intermediation and Business Activities 2 1988.51 22 0.27
S-16 Wholesale Trade 3 1525.64 7 1.70
S-6 Wood and Paper 4 906.74 6 3.03
S-22 Education, Health, and Other Services 5 713.14 17 0.82
S-9 Electrical and Machinery 6 666.11 20 0.71
S-4 Food & Beverages 7 605.59 14 1.00
S-8 Metal Products 8 560.58 11 1.27
S-13 Electricity, Gas, and Water 9 483.04 5 5.16
S-14 Construction 10 472.98 19 0.77

Fig. 16   Top ten highest inoperable industry sectors



663Natural Hazards (2024) 120:639–675	

1 3

Figure 16 illustrates the overall inoperability which is the average summation of both 
the qstochastic(t) and qDIIM(t) and ranges (3.6–57.8%) form minimum to maximum that drops 
to (2.31–38.18%) within 4 days. But as per assumption, three aftershocks strike on the 5th, 
10th, and 15th day of disruption that increases the declining trend of inoperability from 
(2.31–38.18%) on the 4th day of disaster to (5.8–93.4%) on the 5th day, (3.7–60.1%) on the 
10th day, and (1.8–35.06%) on the 15th day, respectively. Because of the stochastic pattern, 
there is some uncertainty and the overall inoperability never set to zero again.

Figure 17 shows the overall cumulative economic losses. Because of that stochastic ele-
ment and uncertainty in the overall inoperability, the plot never flattens like in case 2 and 
for this reason, the expected monetary loss estimates up to $17,850.3 million, which is 72% 
more than case 1 and 33% more than case 2 discussed for high probability and high magni-
tude earthquake cases (Approx. 5.12% of GDP).

Table 14 depicts the top ten industry sectors with the highest degree of inoperability 
ranging from (1) Recycling(S-12) to (10) Agriculture (S-1) for a high-magnitude earth-
quake case 3. Similarly, Table  15 illustrates the top ten industry sectors based on the 

(9)E
[

q(t) ∼ �
]

=
(qstochastic(t)) + (qDIIM(t))

2

Fig. 17   Top ten highest Economic loss industry sectors

Table 14   Top ten inoperable sectors with cumulative economic losses

Sector Name Inoperability Economic loss

Rank Value (10–2) Rank Value ($M)

S-12 Recycling 1 33.37 17 117.89
S-15 Maintenance and Repair 2 23.65 19 72.87
S-11 Other Manufacturing 3 11.12 13 294.41
S-23 Private Households 4 8.93 23 1.49
S-13 Electricity, Gas, and Water 5 8.42 9 784.31
S-6 Wood and Paper 6 4.76 4 1418.17
S-16 Wholesale Trade 7 2.82 2 2520.26
S-24 Others 8 2.54 22 12.94
S-3 Mining and Quarrying 9 2.24 21 27.21
S-1 Agriculture 10 2.08 18 81.98
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highest overall cumulative economic losses ranging from; (1) Petroleum, Chemical, and 
Non,-Metallic Mineral Products(S-7) with a total loss of worth $4017.73 million to (10) 
Construction(S-14) with a total loss of worth $731.60 million.

The ten highest inoperable sectors listed in Table 14 contribute 29.8% of total loss while 
the ten highest economic loss sectors listed in Table 15 contribute 87.6% of the total loss 
worth of the region.

Case 04 When �(�) = 0.75: (Combined case 75% stochastic & 25% deterministic 
modeling)

The last step is when there is a case of λ(t) = 0.75, setting the stochastic probability of a 
new perturbation i.e., λ(t) = 0.75, as already discussed for the low magnitude earthquake 
scenario shown in Eq. (10).

Figure  18 depicts the overall inoperability which ranges (from 3.6 to 57.6%) from 
minimum to maximum which drops to (2.9 to 47.8%) within 4 days. However, as per 
assumption, three aftershocks strike on the 5th, 10th, and 15th day of the initial disaster 
that increases the declining trend of inoperability from (2.9 to 47.8%) on the 4th day of 
the disaster to (6.5 to 104%) on the 5th day, (4.6 to 73.6%) on the 10th day, and (2.7 to 

(10)E
[

q(t) ∼ �
]

= qstochastic(t) ∗ (0.75) + qDIIM(t) ∗ (0.25)

Table 15   Top ten cumulative economic loss sectors with inoperability values

Sector Name Economic loss Inoperability

Rank Value ($M) Rank Value (10–2)

S-7 Petroleum, chemical, and non-metallic mineral products 1 4017.73 14 1.52
S-16 Wholesale trade 2 2520.26 7 2.82
S-20 Financial intermediation and business activities 3 2307.04 23 0.31
S-6 Wood and paper 4 1418.17 6 4.76
S-22 Education, health, and other services 5 1156.47 17 1.34
S-9 Electrical and machinery 6 997.72 20 1.07
S-4 Food & beverages 7 908.00 15 1.50
S-8 Metal products 8 810.95 12 1.85
S-13 Electricity, gas, and water 9 784.31 5 8.42
S-14 Construction 10 731.60 19 1.20

Fig. 18   Top ten highest inoperable industry sectors
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49.91%) on the 15th day, respectively. Because of the high impact of stochastic pattern, 
there is uncertainty and the overall inoperability never set to zero again.

Figure 19 shows the overall cumulative economic losses. Because of the stochastic 
element and uncertainty, increased weightage in the overall inoperability the plot never 
flattens likewise in cases 2 and 3. Hence, the expected monetary loss estimates up to 
$23,783.2 million which is 81%, 50%, and 24.9% greater than Cases 1, 2, and 3, respec-
tively i.e., (Approx. 6.1% of GDP) and this cost further increases if the analysis duration 
is increased from 45 days.

Table 16 depicts the top ten industry sectors. The level of inoperability ranges from 
(1) Recycling(S-12) to (10) Agriculture(S-1) for this case. Similarly, Table 17 illustrates 
the top ten industry sectors based on the highest overall cumulative economic losses 
ranging from; (1) Petroleum, Chemical, and Non-Metallic Mineral Products(S-7) with 
a total loss of worth $5427.74 million to (10) Construction (S-14) with a total loss of 
worth $990.23 million.

The ten highest inoperable sectors listed in Table  16 contribute 31.02% of total loss 
while the ten highest economic loss sectors listed in Table 17 contribute 87.3% of the total 
loss worth of the region.

Fig. 19   Top ten highest Economic loss industry sectors

Table 16   Top ten inoperable sectors with cumulative economic losses

Sector Name Inoperability Economic loss

Rank Value (10–2) Rank Value ($M)

S-12 Recycling 1 46.45 17 163.83
S-15 Maintenance and repair 2 32.98 19 101.46
S-11 Other manufacturing 3 15.56 13 411.34
S-23 Private households 4 12.53 23 2.09
S-13 Electricity, gas, and water 5 11.67 8 1085.58
S-6 Wood and paper 6 6.49 4 1929.60
S-16 Wholesale trade 7 3.94 2 3514.88
S-24 Others 8 3.51 22 17.83
S-3 Mining and quarrying 9 3.09 21 37.44
S-1 Agriculture 10 2.92 18 114.83
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5 � Conclusions

This study extends the DIIM workforce recovery model, which is capable of estimating the 
impacts of an earthquake on the industry/non-industry sector within an economic region. The 
study focuses on two risk metrics (i.e., economic loss and inoperability) for analyzing and 
evaluating the effects of workforce absenteeism in the aftermath of different earthquake sce-
narios. The main reason for using two tables for each case in this study is to discuss both 
these matrices independently, as results revealed that for the top ten inoperable and economic 
loss sectors, the most inoperable sectors did not appear in the economic loss sectors list, 
which reveals that both the matrices are independent of each other even for the same scenario. 
Also, it was noted that in case of low probability and low-magnitude, inserting and increasing 
the impact of stochastic pattern in the overall inoperability and economic loss cuts down the 
monetary loss worth for a particular period say 45 days (in this study). It will increases if we 
increase the period as already mentioned that after inserting the uncertainty of the stochastic 
pattern the inoperability and economic loss curve never flattens to a zero or horizontal line. 
In contrast, inserting and increasing the impact of stochastic pattern in high probability and 
magnitude cases further increases the inoperability and cumulative economic loss as com-
pared to the true DIIM case for the particular period (say 45 days in this case) and will keep 
on increasing as the curves never set to zero or remain parallel to the horizontal lines.

The results obtained in this study will assist in post-disaster policy-making, specifically in 
systems-based resource allocation areas. As these results reveal critical industry sectors for 
various earthquake scenarios for the stated region, focusing on such sectors will boost the post-
disaster recovery process, and keeping in view the level of interdependencies across these crit-
ical sectors for allocation of optimal resources will enhance the recovery pace. Furthermore, 
the higher labor-dependent sectors i.e., Recycling(S-12), Maintenance & Repair(S-15), and 
other manufacturing(S-11) remain the most inoperable while (petroleum, chemical, and non-
metallic mineral product(S-7), Financial Intermediation and Business Activities(S-20) and 
Wholesale Trade(S-16) are amongst the most economic loss sectors in all scenarios. In addi-
tion, some industry sectors like Wood and paper(S-6), metal products(S-8), Electricity, Gas 
and water(S-13), etc. in some scenarios appeared in both the Tables i.e., the top ten inoperable 
sectors and top ten economic loss sectors as well. The methodology discussed in this paper is 
specifically designed for the regional economic sectors of Pakistan; however, it may work for 
other regions and for some other natural disasters as well.

Table 17   Top ten cumulative economic loss sectors with inoperability values

Sector Name Economic loss Inoperability

Rank Value ($M) Rank Value (10–2)

S-7 Petroleum, chemical, and non-metallic mineral products 1 5427.74 14 2.06
S-16 Wholesale trade 2 3514.88 7 3.94
S-20 Financial intermediation and business activities 3 2625.57 24 0.36
S-6 Wood and paper 4 1929.60 6 6.49
S-22 Education, health, and other services 5 1599.80 17 1.85
S-9 Electrical and machinery 6 1329.32 20 1.43
S-4 Food & beverages 7 1210.41 15 2.01
S-13 Electricity, gas, and water 8 1085.58 5 11.67
S-8 Metal products 9 1061.33 13 2.42
S-14 Construction 10 990.23 19 1.63
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