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Abstract
This study develops a novel approach for identifying buildings that were damaged in the 
aftermath of the Kahramanmaraş earthquakes on February 6, 2023, which were among 
the most devastating in the history of Türkiye. The approach involves using two pre-event 
and one post-event Sentinel-1 and Sentinel-2 images to detect changes in the varying-sized 
and shaped buildings following the earthquakes. The approach is based on the hypothesis 
that the radiometric characteristics of building pixels should change after an earthquake, 
and these changes can be detected by analysing the spectral distance between the building 
pixel vectors before and after the earthquake. The proposed approach examines the changes 
in building pixel vectors on pre-event and post-event Sentinel-2 MultiSpectral Instrument 
images. It also incorporates the backscattering features of Sentinel-1 Synthetic Aperture 
Radar images, as well as the variance image, a feature that is derived from a Grey-Level 
Co-occurrence Matrix, and the Normalized Difference Built-up Index image, which were 
derived from the optical data. The approach was tested on three sites, two of which were in 
Kahramanmaraş and the third in Hatay city. The results showed that the proposed method 
was able to accurately identify damaged and undamaged buildings with an overall accuracy 
of 75%, 84.4%, and 73.8% in test sites 1, 2, and 3, respectively. These findings demonstrate 
the potential of the proposed approach to effectively identify damaged buildings in post-
disaster situations.

Keywords  Kahramanmaraş earthquakes · Post-disaster damage detection · Building 
damage assessment · Multi-temporal satellite imagery · Image processing · Remote sensing

1  Introduction

On February 6, 2023, Türkiye was struck by two major earthquakes, resulting in signifi-
cant damage and loss of life. The first earthquake, with a magnitude of M 7.8, hit the city 
of Kahramanmaraş at around 4:17 a.m. local time. The epicentre was located at a depth 
of about 17.9  kms. The second earthquake, with a magnitude of M 7.5, occurred just 
nine hours later, at 13:24 p.m. local time, with its epicentre located at a depth of 10 kms 
(https://​earth​quake.​usgs.​gov/​story​map/​index-​turke​y2023.​html). According to the Disaster 
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and Emergency Management Authority of Türkiye (AFAD), the death toll from the earth-
quakes has exceeded 50,000, and over 100,000 people have been injured (https://​www.​bbc.​
com/​turkce/​artic​les/​c51kd​v8d15​jo). The consequences of the earthquakes have affected 
around 14 million people in eleven cities. The February 6 earthquakes are exceptional in 
terms of both their type and the occurrence of two large and severe earthquakes at short 
intervals. Türkiye is located in an area of high seismic activity, and earthquakes are not 
uncommon in the country. However, the February 6 earthquakes were particularly devas-
tating due to their proximity to populated areas and the relatively shallow depth at which 
they occurred.

Taking quick action after an earthquake is crucial for a number of reasons. Firstly, it 
can help protect the people from potential harm. After an earthquake, there may be haz-
ards such as aftershocks, gas leaks, fires, and structural damage that pose a risk to peo-
ple’s safety. Taking swift action can help prevent injuries and fatalities. Additionally, quick 
action can allow authorities to assess the extent of the damage and coordinate relief efforts. 
The faster they can determine the areas most affected, the sooner they can mobilize rescue 
and recovery efforts, and provide aid to those who need it the most. It is also essential to 
act quickly to secure the buildings and prevent further damage or collapse. Overall, taking 
quick action after an earthquake can help save lives, minimize the impact of the disaster, 
and facilitate the recovery process.

1.1 � Literature review

Following an earthquake, it is crucial to assess the damage to buildings and infrastructure 
to determine the extent of the impact and identify areas that require immediate attention. 
Traditional methods of damage assessment, such as visual inspection and field surveys, 
can be time-consuming, expensive, and often hazardous. Moreover, they might not offer a 
thorough analysis of the destruction, particularly in large-scale disasters. Remote sensing 
techniques have emerged as a powerful tool for detecting and analysing changes in build-
ings caused by earthquakes. These techniques use various sensors and imaging platforms 
to collect data from a distance, enabling rapid and comprehensive assessment of earth-
quake damage. Remote sensing techniques can furnish information on the extent and sever-
ity of the destruction, as well as the location of critical infrastructure, such as hospitals and 
water supply systems, that may have been affected. Several methods have been developed 
to identify structural damage using data obtained from remote sensing techniques. These 
methods can be categorized into two main classes (Dong and Shan 2013): (1) methods that 
identify damage using pre- and post-event data, and (2) methods that rely solely on post-
event data.

1.1.1 � Methods based on pre‑ and post‑event data

Automated change detection is challenging when comparing pre- and post-earthquake 
images due to differing imaging parameters. Hence, visual interpretation of images of pre- 
and post-event data is widely used for building damage detection. Several studies found 
visual interpretation to be effective (Saito et  al. 2004; Saito and Spence 2005; Adams 
et  al. 2005; Yamazaki et  al. 2005), with pre-event imagery being particularly useful for 
detecting lower damage grades (Yamazaki et al. 2005). However, visual interpretation is 
not suited for quick damage assessment over a large region because it takes time, calls for 
qualified operators, and creates a lot of labour (Dong and Shan 2013). The developments in 
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the damage identification techniques have caused a lack of encounter in the literature with 
visual interpretation-based strategies in recent years.

There are also some methods that reveal the damage by comparing the pre- and post-
event data through mathematical operations such as ratioing and subtraction. One common 
approach is to co-register and subtract pre- and post-event images to produce a residual 
image that highlights changes (Ishii et al. 2002; Oommen et al. 2012). The difficulty of this 
technique is finding the best threshold used to identify the extent of damage. Other meth-
ods focused on comparing brightness values (Yusuf et  al. 2001), colour difference (Ishii 
et al. 2002), and image structure features (Zhang et al. 2003) between pre- and post-event 
images. Sakamoto et al. (2004) introduced a non-linear mapping strategy that mapped the 
post-event image onto the pre-event image in a non-linear fashion. The degree of damage 
to the buildings was estimated by evaluating the distribution of the image matching scores. 
Kohiyama and Yamazaki (2005) modelled the fluctuation of digital numbers on a pixel-
by-pixel basis to evaluate deviation values and detect surface changes. Trinder and Salah 
(2012) used image differencing as part of four change detection techniques that used Light 
Detection and Ranging (LiDAR) data and aerial images to reveal the damage in buildings. 
Turker and Cetinkaya (2005) and Menderes et al. (2015) compared Digital Elevation Mod-
els (DEMs) and Normalized Digital Surface Models (nDSMs) produced from pre- and 
post-earthquake aerial images to detect collapsed buildings caused by earthquakes, respec-
tively. Methods that utilize mathematical operations, such as image differencing, require 
precise spatial co-registration, which can occasionally pose challenges (Chen and Hutchin-
son 2010). Chen and Hutchinson (2011) also indicated that conventional change detection 
methods such as image differencing are not effective when used with very high-resolution 
satellite images due to the large amount of detailed spatial information present and the 
potential for noise variations if the images were captured at different times.

A method to detect building damage is by comparing the classification results obtained 
from pre- and post-event data separately (Al-Khudhairy et al. 2005; Wu et al. 2021). This 
technique has the advantage of minimizing the impact of variations in radiometric char-
acteristics between the two datasets. However, the accuracy of the outcomes is entirely 
reliant on the initial classification results (Al-Khudhairy et al. 2005; Dong and Shan 2013; 
Wu et  al. 2021). On the other hand, these methods may not be effective in urban envi-
ronments where the features are heterogeneous and characterized better by spatial proper-
ties like texture, rather than spectral reflectance (Zhang 1999). Moreover, these methods 
cannot differentiate easily between objects with high spectral overlap, like building roofs 
and pavements made of the same material (Al-Khudhairy et al. 2005). These restrictions 
can be circumvented by object-oriented segmentation (Gusella et  al. 2005; Yamazaki 
et al. 2008) and classification techniques, which consider the spatial relationships between 
pixels when deciding which class is best for each individual pixel. These methods gener-
ate a thematic map that maintains spectral and spatial coherence by utilizing information 
about neighbouring pixels. However, the spatial resolution of the sensor and the size of 
the features can affect the degree to which adjacent pixels are correlated. Object-oriented 
approaches, on the other hand, operate on the principle that semantic information is con-
veyed not by individual pixels, but by significant image objects and their interrelationships 
(Al-Khudhairy et al. 2005). Khodaverdizahraee et al. (2020) proposed a method that iden-
tifies image-objects in the pre- and post-earthquake images and aligns them through seg-
mentation intersection. Then, the method calculates various textural and spectral properties 
of the images and uses their differences as input features for a classification algorithm. 
Al-Khudhairy et al. (2005) indicated that, although object-based image segmentation tech-
niques are flexible and user-friendly, they necessitate expert image analysis knowledge and 
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a significant investment of time and effort to determine the optimal settings and methods 
for segmentation and classification. Alizadeh et al. (2022) generated a change map using 
a post-classification approach that combines optical and Synthetic Aperture Radar (SAR) 
images through decision fusion. Some approaches demonstrated the effectiveness of tex-
ture information extracted from pre- and post-event data to reveal the damage in buildings 
aftermath of an earthquake (Chesnel et al. 2008; Klonus et al. 2012; Khodaverdizahraee 
et al. 2020).

When speaking of the techniques used for the identification of earthquake-induced 
changes in buildings, it is impossible to talk without mentioning Deep Learning (DL)-
based techniques, which have continued to rapidly develop in recent years. One of the main 
advantages of using DL techniques is their ability to automatically extract complex features 
from data, enabling accurate identification of even subtle changes that may be difficult for 
traditional methods to detect. Additionally, DL models can be trained on large datasets, 
making them more robust and capable of generalizing to new, unseen data. In recent years, 
the increasing usage of Convolutional Neural Networks (CNNs) for various recognition 
tasks has resulted in the widespread adoption of these methods for detecting building dam-
age (Nex et al. 2019). Duarte et al. (2019), Ji et al. (2019), Ghaffarian et al. (2019), Xu 
et al. (2019), Bhangale et al. (2019) and Kalantar et al. (2020) used CNNs to reveal the 
change in buildings aftermath of an earthquake through the use of pre- and post-event 
images. One major drawback of using DL-based techniques is the need for large amounts 
of data to train these models effectively, which may be hard to obtain in the event of an 
earthquake, given the issues described above (Zhu et al. 2017; Takhtkeshha et al. 2023). 
Hence, some approaches were developed to tackle a reduced number of training data (Li 
et al. 2018). Therefore, it is beneficial to have the capability to include images of varying 
types and sizes in the training model (Kerle et al. 2019).

1.1.2 � Methods based on post‑event data

Approaches utilizing both pre- and post-event data can achieve superior accuracy com-
pared to methods that rely solely on post-event data (Dong and Shan 2013; Duarte et al. 
2019). Nevertheless, multi-temporal techniques have a significant drawback in that several 
cities, particularly those in developing countries, lack pre-event reference data (Li et  al. 
2011). Even if pre-event data are accessible, reliable and precise outcomes may be diffi-
cult to obtain due to substantial spectral variations between pre- and post-event data (Kaya 
et al. 2011; Dong and Shan 2013).

The practice of visually interpreting post-earthquake optical data to identify damaged 
buildings was common years ago. Ogawa and Yamazaki (2000) achieved over 70% accu-
racy in building damage identification using single and stereoscopic aerial photographs for 
the Kobe earthquake. Yamazaki et al. (2004) used only post-event QuickBird imagery for 
the Boumerdes earthquake and discovered that pre-event images were essential for detect-
ing minor damage grades in visual analysis. Recent advances in damage identification tech-
niques have resulted in a decreased prevalence of visual interpretation-based strategies in 
the literature.

An interesting study was conducted by Brunner et  al. (2010). They estimated the 3D 
parameters of buildings from pre-event optical imagery, predicted what undamaged build-
ings would look like in post-event SAR image, and compared this to the actual post-event 
SAR image to determine if the building was damaged. In order to reveal the earthquake-
induced changes in buildings, Sumer and Turker (2005) used gradient orientation analysis, 
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Turker and Sumer (2008) utilized image segmentation techniques, Ye et  al. (2014) used 
fuzzy reasoning techniques, Gong et  al. (2016) applied Machine Learning (ML) algo-
rithms, Janalipour and Mohammadzadeh (2019) applied the k-means clustering algorithm 
on LiDAR data, Nie et al. (2021) used the optimization of polarimetric contrast enhance-
ment matching algorithm on SAR data.

By using texture features, the identification of subtle changes in the texture pattern 
caused by building damage can be achieved, which makes them a powerful tool for build-
ing damage detection and has led to their wide use in recent years. Dell’Acqua et al. (2011), 
Ye et al. (2014), Gong et al. (2016), Janalipour and Mohammadzadeh (2019) and Alataş 
and Taşkın (2019) used texture features to detect the earthquake-induced changes in build-
ings from post-event data. One of the main challenges with using texture features is their 
sensitivity to image noise, which can affect the accuracy of the extracted features. Addi-
tionally, the effectiveness of texture features in building damage detection may reduce in 
regions with homogeneous textures, where the texture pattern of buildings does not change 
significantly after an earthquake. Furthermore, the selection of appropriate texture feature 
parameters, such as the size of the analysis window and the number of orientations, can be 
challenging, and the optimal values may vary depending on the type of data and the spe-
cific application. Despite these limitations, texture features remain a valuable tool in build-
ing damage detection and are often used in conjunction with other techniques to improve 
the accuracy of the results.

A thorough literature review revealed that many recent studies have employed DL tech-
niques to identify the changes in buildings from only post-event data. In order to reveal 
the changes in buildings with only post-event data; Mohammadi et al. (2019) used a 3D 
fully convolutional network model on photogrammetric point clouds; Li et al. (2019) used 
a convolution auto-encoder; Ji et al. (2018, 2020) and Miura et al. (2020) used CNNs; Abdi 
et al. (2021) used a pre-trained Residual Neural Network (RNN); Koukouraki et al. (2021) 
employed the few-shot learning, which is a ML approach for cases where the amount of 
labelled data is limited; Abdi et  al. (2022) used deep transfer learning; and Zhan et  al. 
(2022) used a mask region-based CNN (Mask R-CNN) model. The study conducted by 
Duarte et al. (2019) is noteworthy. The study involved the comparison of the performance 
of three CNN architectures utilizing pre- and post-event images and another CNN archi-
tecture utilizing only post-event images. The results showed that the CNN architectures 
utilizing pre- and post-event data were more resilient. The ‘black-box’ nature of DL models 
makes it challenging to comprehend what exactly DL has learned during training. Addi-
tionally, the computational resources required for training and deploying DL models can be 
significant, which may limit their feasibility in resource-limited situations.

The literature review shows that the majority of the previous studies used high-reso-
lution images to detect the earthquake-induced changes in buildings. However, obtaining 
high-resolution commercial images may not always be possible due to financial restric-
tions, especially when the earthquake hits a large-extent area. The acquisition of high-res-
olution images may not be possible even if sufficient budget is available. Atmospheric con-
ditions may not allow high-resolution images to be taken immediately after an earthquake 
for rapid response. The literature review also shows that many previous studies have been 
conducted using data produced from stereo aerial images captured by Unmanned Aerial 
Systems (UASs). Obtaining and processing UAS images could be a time-consuming pro-
cess, especially in the case of earthquakes that have an impact over a wide area. This, of 
course, eliminates the possibility of emergency response.

A significant amount of current studies have used conventional ML methods and DL 
techniques to reveal the changes in the buildings after earthquakes. While conventional 
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ML techniques have shown promise in identifying earthquake-induced changes in build-
ings, there are also several disadvantages that must be considered. One major challenge is 
the parameterization of conventional ML algorithms. Inaccurate parameters may lead to 
misleading results. Additionally, the accuracy of the results obtained from conventional 
ML techniques may be limited by the quality of the input data, such as the resolution and 
quality of the images used for analysis. This can lead to false positives or false negatives in 
identifying damage, which could have serious consequences in emergency response situa-
tions. When it comes to the use of DL techniques for damage detection, they have shown 
great potential in identifying earthquake-induced changes in buildings after earthquakes. 
However, there are some notable disadvantages that need to be taken into account. One 
significant challenge is the requirement for large volumes of high-quality labelled data to 
train the models effectively. In some cases, obtaining such data may be difficult or impossi-
ble. Furthermore, DL models are often complex and can be difficult to interpret, leading to 
potential issues with model transparency and explainability. This can make it challenging 
to identify and address potential issues with the models and can limit their effectiveness 
in practice. Additionally, the accuracy of the models may be affected by the variability 
in building designs and construction materials, which can lead to inaccurate assessment 
of damage in some cases. Another challenge associated with using DL techniques is the 
significant computational power and expertise required to train and implement the mod-
els. This can be a significant barrier for some organizations and communities, particularly 
those with limited resources or technical expertise.

Considering all these, an effective methodology is needed to quickly identify the changes 
in buildings following earthquakes that affect large areas, such as the Kahramanmaraş 
earthquakes that occurred on February 6th, 2023. The objective of this study is to introduce 
an automated approach that relies on the use of Sentinel-1 SAR and Sentinel-2 MultiSpec-
tral Instrument (MSI) images captured before and after the Kahramanmaraş earthquakes 
to detect changes in buildings. Using Sentinel-2 MSI images will provide a high spectral 
resolving power, which is also a significant advantage over the previous studies that uti-
lized multispectral or UAS images with less spectral resolution. By the combined use of 
data from these satellites, the drawbacks of poor atmospheric conditions and time of day 
that impact data collection can be overcome. In addition, using data from these satellites 
will not only enable work in large areas but also eliminate budget requirements. Compared 
to many previous studies that identified the damage on pixel basis, the proposed approach 
focuses on the identification of the changes in building scale through the use of satellite 
images with medium spatial resolution. Another merit of the proposed approach is that it 
takes only a couple of seconds to identify the damaged and undamaged buildings, even in 
large-extent areas. One major benefit of the proposed approach, in contrast to ML- or DL-
based techniques, is that it does not necessitate prior knowledge of the working domain, 
hence, eliminating the need for training procedure. To the best of our knowledge, this study 
will be the first to study the effects of these catastrophic earthquakes.

2 � Material and methods

2.1 � Test sites and data used

The capacity of the proposed approach was tested in three test sites, two of which were 
in Kahramanmaraş and one was in Hatay. Both cities are located in the Mediterranean 
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Region of Türkiye. The reason for selecting the test sites from these cities is that they 
experienced the most severe destruction in the earthquake. Test sites 1 and 2, which are 
located in the city centre of Kahramanmaraş, cover an area of approximately 9 ha and 
48 ha, respectively. Test site 3, which is located in Antakya, the centre province of the 
city of Hatay, covers an area of approximately 80 ha. Site 3 was selected as being larger 
than the others to test the performance of the proposed method on a greater number of 
buildings. Another reason for selecting these test sites was the availability of robust ref-
erence data for these areas. Test sites can be seen in Fig. 1.

The proposed approach uses two Sentinel-1 and two Sentinel-2 images taken before 
the event and one Sentinel-1 and Sentinel-2 image taken after. The Sentinel-1 and 
Sentinel-2 satellites revisit a location every 10 days, whereas the combined constella-
tion leads to a revisit time of approximately six days. The short revisit time of these 
satellites can provide timely updates on the displacement of buildings and the ground 
surface caused by the earthquake. Hence, the combined use of data from these satel-
lites makes it possible to obtain more frequent and regular observations of earthquake-
affected areas, leading to better monitoring of the damages caused by the earthquake. 
This advantage of the Sentinel-1 and Sentinel-2 satellites played a significant role in 
their use in the proposed methodology. In this study, images from the date closest to 
the earthquake were attempted to be used in order to obtain the most accurate results. 

Fig. 1   Test sites, a test site 1, b test site 2, c Test site 3
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All satellite images were obtained from Google Earth Engine (GEE) cloud computing 
platform.

The current study used pre-processed Sentinel-2 MSI (Level 2A, Bottom-Of-Atmos-
phere surface reflectance product) images with collection id ‘COPERNICUS/S2_SR’. The 
images were filtered so that the cloudy pixel percentage would be less than 10% to get a 
clear look over the test sites. The Sentinel-2 MSI data comprises 13 spectral bands having 
spatial resolutions between 10 and 60  m. However, experiments showed that the Senti-
nel-2 MSI bands 2, 3, 4, 8 and 8A provided the most robust results in the identification of 
the earthquake-induced changes in buildings, which is why these spectral bands were used 
within the suggested approach. The current study also used the Sentinel-1 SAR imagery 
data with collection id ‘COPERNICUS/S1_GRD’. This collection provides Ground Range 
Detected (GRD) scenes, which were pre-processed by the Sentinel-1 Toolbox. The pre-pro-
cessing stage comprised the removal of thermal noise, radiometric calibration, and terrain 
correction (https://​devel​opers.​google.​com/​earth-​engine/​datas​ets/​catal​og/​COPER​NICUS_​
S1_​GRD#​descr​iption). The data collection was filtered to obtain images at Interferometric 
Wide Swath (IW) mode with dual polarization (i.e., VV and VH) in ascending orbit. As a 
final step, the pre- and post-event Sentinel-1 SAR images underwent a noise reduction pro-
cess using a refined Lee filter (Lee et al. 2008). The characteristics of the satellite data used 
in the current study are summarized in Table 1.

The OpenStreetMap (OSM) open-source platform provided the building data used as a 
reference for obtaining the building footprints in the test locations. Due to the numerous 
inaccuracies in the building data obtained from the OSM, the building data downloaded in 
shapefile (.shp) format for all test sites were manually corrected using both the high-reso-
lution GEE base images and 50 cm free-to-use Planet images acquired before and after the 
earthquake. The Planet images used, which can also be seen in Fig. 1, were downloaded 
from https://​github.​com/​kalkan/​Turkey-​Earth​quake-​2023-​GeoDa​ta/. After manual correc-
tions, very high-resolution pre- and post-event images were used to identify the damaged 
and undamaged buildings after the event. Observations showed that 45 buildings out of 
96 were damaged in site 1, while 95 buildings out of 263 were damaged in site 2, and 587 
buildings out of 907 were damaged in site 3. The corrected building data were labelled 
considering these observations. Figure 2 shows the reference pre/post-event Planet images 
and pre/post-event Sentinel-2 MSI images used.

Table 1   Characteristics of the 
satellite data used

Test site Data used Acquisition date Bands used

1–2 Sentinel-1 SAR 01/28/2023 VV-VH polarization
Ascending pass at 10 m02/04/2023

02/09/2023
Sentinel-2 MSI 01/20/2023 B2-B3-B4-B8 at 10 m

B8A at 20 m01/25/2023
02/09/2023

3 Sentinel-1 SAR 01/04/2023 VV-VH polarization
Ascending pass at 10 m01/16/2023

02/10/2023
Sentinel-2 MSI 01/20/2023 B2-B3-B4-B8 at 10 m

B8A at 20 m01/25/2023
02/09/2023

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD#description
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD#description
https://github.com/kalkan/Turkey-Earthquake-2023-GeoData/
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2.2 � Proposed methodology

2.2.1 � Generation of texture features

The method proposed in this study was developed in MATLAB environment. The very first 
step of the suggested approach is to produce the texture features for the pre- and post-event 
images of the test sites. To derive the texture features more robustly, Principal Component 
Analysis (PCA) is applied to the Sentinel-2 MSI images of the test sites and the variance 
Grey-Level Co-occurrence Matrix (GLCM) feature, one of the most discriminative texture 
features derived from the GLCM, is produced from the first PC obtained. The GLCM vari-
ance texture feature ( V  ) is calculated as (Haralick et al. 1973);

Fig. 2   Reference pre/post-event Planet images and pre/post-event Sentinel-2 MSI images. a, b and c Ref-
erence pre-event Planet images for sites 1, 2 and 3, respectively; d, e and f Reference post-event Planet 
images for sites 1, 2 and 3, respectively; g, h and i Pre-event Sentinel-2 MSI images (acquisition date: 
01/25/2023) for sites 1, 2 and 3, respectively; j, k and l Post-event Sentinel-2 MSI images for sites 1, 2 and 
3, respectively
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where p denotes (i, j) th element in a normalized GLCM.

2.2.2 � Generation of normalized difference built‑up index (NDBI) images

The next step of the suggested approach is to calculate the NDBI images from the pre- and 
post-event images of the test sites. The NDBI is calculated as (Zha et al. 2003);

where SWIR and NIR represent the short-wave infrared (i.e., band 11) and near-infrared 
(i.e., band 8) bands of the Sentinel-2 MSI images, respectively.

2.2.3 � Estimation of the damaged and undamaged buildings

The suggested approach is based on the fact that the radiometric characteristics of the pix-
els corresponding to buildings should change after the earthquake. For each pre- and post-
event image, the pixels corresponding to each building are determined by establishing a 
relationship between all of the raster data (including the Sentinel-1 SAR, Sentinel-2 MSI, 
GLCM variance and NDBI images produced) and building data obtained from OSM. This 
approach allows for the specification of the pixels that fall in the boundary of each building 
polygon vector. The suggested approach determines if a building is damaged during the 
earthquake considering four criteria; spectral distance, VV-VH correlation, GLCM vari-
ance correlation and NDBI correlation.

•	 Spectral distance: A pixel vector is formed for each group of pixels within a building 
polygon. Each pixel vector consists of three elements, the first two come from the pre-
event images and the last one from the post-event images. The elements of each vector 
are calculated by averaging the grey values of the corresponding building pixels in the 
Sentinel-2 MSI bands (i.e., B2, B3, B4, B8 and B8A). Then, for each group of pixels 
within a building polygon, the spectral distance is computed between the pixel vectors. 
Let a1 , a2 (i.e., pre-event grey values) and b (i.e., post-event grey value) be the elements 
of a pixel vector derived for a building polygon, the spectral distance ( s ) is calculated 
as;

for i = 1 ∶ n ( n = 2 in our case),

•	 VV-VH correlation: A Correlation Coefficient (i.e., CCVV−VH
pre

 ) is calculated between 
the building pixel groups of two pre-event Sentinel-1 SAR VV-VH images. A CC (i.e., 
CCVV−VH

post
 ) is also computed between the building pixel group of a pre-event and the 

post-event Sentinel-1 SAR VV-VH image. The general CC formula is;where cov refers 
to covariance, whereas the �x and �y denote the standard deviations of x and y , respec-
tively.

(1)V =
∑

i

∑

j

(i − �)2p(i, j)

(2)NDBI = (SWIR − NIR)∕(SWIR + NIR)

(3)s =

�
∑�

ai − b
�2

n
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•	 GLCM Variance correlation: A CC (i.e., CCGLCM
pre

 ) is calculated between the building 
pixel groups of two pre-event GLCM variance images. A CC (i.e., CCGLCM

post
 ) is also 

computed between the building pixel group of a pre-event and the post-event GLCM 
variance image.

•	 NDBI correlation: A CC (i.e., CCNDBI
pre

 ) is calculated between the building pixel 
groups of two pre-event NDBI images. A CC (i.e., CCNDBI

post
 ) is also computed 

between the building pixel group of a pre-event and the post-event NDBI image.

The suggested approach determines whether a group of pixels belongs to a dam-
aged building by using a threshold, which is calculated using the Otsu algorithm (Otsu 
1979), one of the most widely-used thresholding algorithms. The algorithm determines 
the optimal threshold value that separates the vectors into different classes based on 
their component values. This is achieved by calculating the threshold that maximizes 
the between-class variance of the vector components. Once the threshold value is deter-
mined, the vectors are separated into two clusters based on their component values rela-
tive to the threshold value. The original version of the Otsu technique offers satisfactory 
results in cases where the data used is in Gaussian distribution (Kittler and Illingworth 
1985; Kurita et al. 1992; Cao et al. 2021). However, if the data has a high variance, then 
the threshold value provided by Otsu algorithm is likely to be greater than it should be. 
In such instances, the improved Otsu technique suggested by Yuan et al. (2015) can be 
utilized. Hence, the suggested technique examines the distribution of the spectral dis-
tance values computed to determine whether to use the original or improved version of 
the Otsu algorithm for each test site. Since the spectral distances calculated for sites 1 
and 2 follow a normal distribution, the original version of the Otsu algorithm is used for 
these sites. The improved version of the Otsu algorithm is used for site 3, as the spec-
tral distance values calculated for this site do not conform to a normal distribution. The 
MATLAB script is written to automatically select the appropriate version of the Otsu 
algorithm based on the distribution of the spectral distance values.

•	 The original version of the Otsu algorithm estimates the threshold ( t  ) as (Otsu 1979; 
Yuan et al. 2015);

Let the spectral distance data ( s ) be divided into two classes as c1 and c2 . In this case, 
the spectral distance values from the minimum ( smin ) to t  are gathered in c1 . Similarly, 
the spectral distance values that fall between the minimum spectral distance value 
greater than t  ( sk ) and the maximum ( smax ) are stored in c2 . Let ni be the number that 
shows the frequency of a spectral distance value i in s . The probability of occurrence 
( pi ) of the spectral distance values ( ni ) is calculated as;

where n is the total number of buildings in the test site. The P0(t) and P1(t) cumula-
tive probabilities for the classes c1 and c2 are calculated as;

(4)CC =
cov(x, y)

�x�y

(5)pi =
ni

n
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The mean value for each class is computed as;

The between-class variance ( �2

b
 ) for the threshold t  is computed as;

The final threshold ( T  ) value is determined as;

•	 The improved version of the Otsu algorithm estimates the threshold ( t  ) as (Yuan 
et al. 2015);where � is a weighting factor that ranges between 0 and 1. Yuan et al. 
(2015) recommended setting � to P0(t).

Several previous studies have enhanced the performance of the Otsu algorithm 
through the use of metaheuristic optimization algorithms (Hamdaoui et  al. 2015; 
Pruthi and Gupta 2016; Shahabi et  al. 2020). Hence, the proposed method optimizes 
the threshold value obtained by the Otsu algorithm using the Jaya (Rao 2016), one of 
the most recent powerful metaheuristic optimization algorithms. The Jaya algorithm, 
which derives its name from the Sanskrit word for ‘victory’, operates on the premise 
that a potential solution to a problem iteratively progresses towards the optimal solu-
tion while steering clear of inferior solutions. The Jaya algorithm does not require any 
algorithm-specific parameters and also can converge very fast, which is why it was pre-
ferred in this study. Suppose we have an objective function, f (x) , that needs to be opti-
mized (Eqs. (10) or (12)), where x is a set of decision variables (i.e., spectral distance 
values). Let i denote the current iteration number, m denote the total number of decision 
variables (i.e., m = 1 ), and l denote the population size (i.e., the number of potential 
solutions, k = 1, 2, ..., l ). Additionally, let b and w represent the best and worst fitness 
values obtained from the best and worst solutions among all the candidate solutions, 
respectively. During the i th iteration, the value of the j th variable for the k th solution 
( Xj,k,i ) is updated as (Rao 2016);

(6)P0(t) =

t∑

i=smin

pi

(7)P1(t) =

smax∑

i=sk

pi = 1 − P0(t)

(8)�0(t) =

t∑

i=smin

i ∗
pi

P0(t)

(9)�1(t) =

smax∑

i=sk

i ∗
pi

P1(t)

(10)�
2

b
(t) = P0(t)

(
�0(t)

)2
+ P1(t)

(
�1(t)

)2

(11)T = arg max
smin<t<smax

𝜎
2

b
(t)

(12)�
2

b
(t) = �P0(t)

(
�0(t)

)2
+ P1(t)

(
�1(t)

)2
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where X′
j,k,i stands for the updated value of Xj,k,i . Xj,b,i and Xj,w,i represent the j th variable 

of the best and worst candidate solutions, respectively. Additionally, r1,j,i and r2,j,i denote 
two random numbers generated between 0 and 1 for the variable j during the i th iteration. 
If the X′

j,k,i yields a better solution than Xj,k,i , it will be retained and passed on to the next 
iteration.

As a final step, the suggested approach decides whether a group of pixels belongs to a 
damaged building if;

•	 The spectral distance ( s ) value of a building is greater than T ,
•	 And, CCVV−VH

post
< CCVV−VH

pre
 , or CCGLCM

post
< CCGLCM

pre
 , or CCNDBI

post
< CCNDBI

pre
.

The flowchart of the proposed method is shown in Fig. 3.

3 � Results and discussion

This section presents the results of the suggested approach qualitatively and quantitatively. 
Figures 4, 5 and 6 show the detected and reference buildings for comparison.

The quantitative evaluation results obtained from the proposed approach are given in 
Table 2. As seen in the table, the proposed approach was able to identify 37, 76, and 557 
buildings that were damaged due to the earthquake in sites 1, 2, and 3, respectively. In 
addition, the method also identified 59, 187, and 350 buildings that were undamaged in the 
same sites. The Omission Error (OE), which indicates the percentage of undamaged build-
ings that were mistakenly determined as damaged, was calculated to be 15.7%, 6.5%, and 
32.5% for sites 1, 2, and 3, respectively. The Commission Error (CE), which represents the 
percentage of damaged buildings that were mistakenly identified as undamaged, was found 
to be 35.5%, 31.5%, and 22.8% for the respective sites. The Total Error (TE), which shows 
the overall percentage of inaccurate identifications, was determined to be 25%, 15.6%, and 
26.2% for sites 1, 2, and 3, respectively. The Overall Accuracy (OA), which indicates the 
overall percentage of correct identifications, was found to be 75%, 84.4%, and 73.8% for 
the respective sites.

The OEs were found to be relatively low for sites 1 and 2 but were higher for site 3. The 
difficulty in identifying the damaged buildings in site 3 can be explained by two factors: 
the density of the buildings and the presence of numerous buildings with different sizes 
and shapes. The CEs were also found to be lower for site 3, indicating that the method 
performed better in identifying damaged buildings in site 3 than in the other two sites. The 
OA of the proposed method was found to be highest in site 2, indicating that the method 
performed the best in identifying damaged buildings in this site. The OA was found to be 
lowest in site 3, indicating that the method had the most difficulty in identifying damaged 
buildings in this site.

The results given in Table 2 demonstrate the potential of the proposed approach. This is 
a significant finding as it can help in quickly assessing the extent of damage caused by an 
earthquake, allowing for prompt response and recovery efforts. However, the method also 
had a high CE, which means that a significant number of damaged buildings were identi-
fied as undamaged. This can be attributed to several factors, such as the threshold value 

(13)X�
j,k,i = Xj,k,i + r1,j,i

(
Xj,b,i −

|||
Xj,k,i

|||

)
− r2,j,i

(
Xj,w,i −

|||
Xj,k,i

|||

)
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Fig. 3   Flowchart of the proposed method
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Fig. 4   Detected damaged/undamaged buildings and reference buildings in site 1
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Fig. 5   Detected damaged/undamaged buildings and reference buildings in site 2
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Fig. 6   Detected damaged/undamaged buildings and reference buildings in site 3
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obtained by the metaheuristics-based Otsu algorithm, limitations of the satellite images 
and the complexity of identifying subtle changes in the building structures.

The suggested approach centres on utilizing the dissimilarity in spectral distance 
between the pre-event and post-event pixel vectors to detect changes in buildings caused 
by earthquakes. Such an approach leads to several advantages when identifying earth-
quake-induced changes in buildings. Firstly, it enables the detection of subtle changes in 
the building pixels, which may not be visible to the naked eye or visible in conventional 
change detection methods. This is particularly important when detecting small or partial 
damages that may go unnoticed by other methods. Secondly, it is a quantitative approach 
that provides an objective and consistent measure of change, which can be used to moni-
tor changes over time and across different spatial scales. Thirdly, this method is flexible 
and can be applied to different types of satellite imagery, including multispectral, hyper-
spectral, and radar data, allowing for more comprehensive monitoring and analysis of 
earthquake-induced changes. Additionally, this method does not require prior knowledge 
or information about the buildings or the damage, making it suitable for large-scale moni-
toring and analysis.

The combined use of Sentinel-1 SAR and Sentinel-2 MSI data was found to be partially 
advantageous in the identification of earthquake-induced changes in buildings. Sentinel-1 
SAR images can provide information on the texture changes on the ground surface caused 
by the earthquake. On the other hand, Sentinel-2 MSI images can provide medium-resolu-
tion details of the buildings before and after the earthquake. By combining these two types 
of data, it was possible to detect and map the changes in the buildings caused by the earth-
quake with promising accuracy. This can be particularly useful in identifying areas that 
require immediate attention and in prioritizing rescue and recovery efforts.

The suggested approach utilizes the NDBI images and GLCM variance texture feature 
to identify changes in buildings induced by earthquakes, resulting in several benefits. The 
use of these data was found to be useful in identifying subtle changes in the images. Of the 
GLCM texture features, the variance feature provided the best overall accuracy, which is 
why it was incorporated in the proposed approach. Another advantage of using the GLCM 
variance texture feature is its non-destructive nature. The texture feature can be applied to 
existing images of buildings without causing any damage or alteration to the structure. This 
means that the analysis can be performed without disturbing the integrity of the buildings 
in the test sites, which is essential for the preservation of the structure.

To comprehensively examine the contributions of the data types used (i.e., VV, VH, 
GLCM, and NDBI) to the proposed methodology in the test sites, the histograms of the 
CCs computed between pairs of pre-event and post-event images for each data type were 
analysed in building scale. The resulting CC distributions are presented in Fig. 7.

Table 2   Quantitative evaluation results obtained from the proposed method

Test site Detected Reference OE (%) CE (%) TE (%) OA (%)

Damaged Undamaged Damaged Undamaged

1 37 59 45 51 15.7 35.5 25.0 75.0
2 76 187 95 168 6.5 31.5 15.6 84.4
3 557 350 587 320 32.5 22.8 26.2 73.8
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The figure clearly demonstrates that the CCs changed significantly after the earth-
quake specifically for the GLCM and NDBI image pairs. This indicates that these par-
ticular datasets made the most significant contributions to the proposed methodology. 
Conversely, the CCs for the VV and VH datasets did not show significant changes after 
the event, indicating that the utilization of Sentinel-1 SAR data had less impact on 
the performance of the proposed methodology. The use of logical OR operator in the 

Fig. 7   Histograms of the building-scale CCs computed between pairs of pre-event and post-event images 
for each auxiliary data used
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proposed methodology was found to be useful in finding the damaged buildings with at 
least one of the features used.

4 � Conclusion

This study suggested a novel methodology to detect earthquake-induced changes in build-
ings after the catastrophic February 6 Kahramanmaraş earthquakes, which are among 
the most severe disasters in the history of Türkiye. The method is based on the use of 
pre- and post-event Sentinel-1 SAR and Sentinel-2 MSI images. The capacity of the sug-
gested approach was tested on three test sites, which suffered the most extensive damage. 
The evaluations showed that the suggested method was found to be effective in identifying 
damaged buildings, achieving an OA of 75%, 84.4%, and 73.8% in the sites 1, 2, and 3, 
respectively.

One significant benefit of the suggested approach is its ability to identify changes at 
building scale on images with medium spatial resolution, which sets it apart from several 
other techniques that detect changes at pixel level. Identifying earthquake-induced changes 
on pixel basis could make it difficult to determine which buildings require immediate atten-
tion for rescue efforts. The suggested method also has the advantage of rapid identification 
of damaged and undamaged buildings as it focuses solely on image pixels corresponding 
to building footprints. This differs from other methods that require analysis of all pixels in 
the images, which can be time-consuming. The proposed technique can detect changes in a 
few seconds, which is a significant benefit. It also uses a straightforward strategy and does 
not require any prior knowledge about the study area. This is a significant advantage over 
many DL-based methods that require large amounts of training data, which can be difficult 
to acquire in most cases. Another important advantage of the proposed approach is that it 
uses free satellite images. Free-to-use satellite images make it easier for researchers, emer-
gency responders, and government officials to access the data they need to make informed 
decisions without incurring significant costs. Free satellite images, on the other hand, often 
have a higher temporal resolution, meaning they are available more frequently than com-
mercial images. This enables researchers to track changes over time and monitor the pro-
gress of recovery efforts. Commercial satellite images can be costly, have restrictive licens-
ing agreements, and may not provide the same level of coverage and temporal resolution 
as free satellite images. The proposed method offers another crucial benefit, which is the 
utilization of both Sentinel-1 SAR and Sentinel-2 MSI data to find the damaged buildings 
following an earthquake. This allows for the exploitation of the regular revisit time of the 
Sentinel-1 and Sentinel-2 satellites, which is highly advantageous for techniques that rely 
on at least one reference data collected before the earthquake—similar to the suggested 
method. The success of the suggested approach could be hindered by adverse atmospheric 
and radiometric influences. However, in our research, we overcame this obstacle by uti-
lizing images that were atmospherically and radiometrically corrected. Additionally, the 
effectiveness of the proposed methodology is affected by the pre-processing procedures 
applied to Sentinel-1 SAR data. To fully optimize the suggested method, it is also essential 
to co-register the utilized raster data and building footprint data. The advantages and disad-
vantages of the proposed method are summarized in Table 3.

The suggested method requires up-to-date building footprints as vector data, which may 
seem like a disadvantage at first glance. However, considering the importance of up-to-date 
footprint data for land objects in applications like this, it can be concluded that footprint 
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should be provided by relevant institutions not only for emergency management, but also 
for other applications regarding land management. On the other hand, although the pro-
posed approach provided promising results, further optimization is needed for more com-
plex landscapes. The relatively high OEs and CEs suggest that the method should be fur-
ther improved to reduce false-positive and false-negative rates. Future work will focus on 
optimizing the proposed method to increase its accuracy and effectiveness.
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