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Abstract
Shandong Province, the main grain-producing area in China, has ranked first in China in 
terms of total agricultural output value for many years. However, droughts with high fre-
quency and long duration have been hindering local agricultural production.  This paper 
aims to assess the risk of drought disasters in Shandong Province. Firstly, based on the 
natural disaster system theory, an agricultural drought disaster risk assessment model is 
developed. This model is applied to assess the agricultural drought hazard, exposure, vul-
nerability, emergency response and recovery capability, and agricultural drought disaster 
risk from 2012 to 2020. Secondly, risk uncertainty is analyzed through the evolution of risk 
over the past years. Finally, the accuracy of the risk assessment is verified through agri-
cultural drought-related losses. The results show that: (1) The risk assessment results are 
in good agreement with the actual drought losses. (2) From the spatial scale, the high-risk 
areas of agricultural drought disasters were mainly located in the western part of Shandong 
Province. High-hazard areas of drought were located in eastern Shandong Province, and 
areas with high agricultural exposure and vulnerability were concentrated in the western 
part of the province, and the emergency response and recovery capacity of Rizhao and 
Zaozhuang was low. (3) From the time scale, there was high uncertainty of agricultural 
drought disaster risk in Dongying, Qingdao, and Heze in 2012–2020, all of which had 
reached a high-risk level of agricultural drought disaster several times. The agricultural 
exposure in Dongying, the agricultural vulnerability in Heze, and the emergency response 
and recovery capacity in Heze and Linyi all showed an increasing trend. The interannual 
variation characteristics and spatial zoning of agricultural drought risk are explored, and 
it is instructive for risk decision-makers to better develop drought response measures and 
improve drought resilience.
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1  Introduction

Drought is a phenomenon in which the precipitation is significantly less than the multi-year 
average precipitation during a certain period (Dracup et  al. 1980). When the water sup-
ply is insufficient to meet the water needs of the population and causes economic losses 
and human casualties, which is called a drought disaster (Bi et al. 2021), drought disasters 
pose a serious threat to climate-sensitive economic sectors, especially the agricultural sec-
tor (Simelton et al. 2012; Liu et al. 2018). More than 7% of global crop output loss comes 
from drought (Lesk et al. 2016). In recent years, with the uneven spatiotemporal distribu-
tion of precipitation, changes in land surface factors, and human activities, drought disas-
ters have occurred frequently in China (Zhang et al. 2020b). Shandong Province leads the 
rest of China in arable land rate, which has long ranked first in agricultural growth value. 
However, the drought disaster has been affecting local agricultural development (Wang 
et al. 2019). From the China Drought and Water Disaster Bulletin, the agricultural drought-
affected area in Shandong Province reached 570,000 hectares in the past four years, of 
which 36,300 hectares were in extinction. Therefore, it is necessary to develop risk assess-
ment work to promote regional drought planning and improve drought mitigation capacity. 
Furthermore, this facilitates emergency decision-making in disasters and thus reduces food 
losses (Zhang et al. 2022).

Drought disaster risk assessment can be divided into three main categories (Qu et al. 
2018), i.e., the mathematical and statistical-based assessment method, the assessment 
method based on the physical formation mechanism, and the indicator system method. 
Historical disaster data contain the process of disaster evolution. The mathematical 
and statistical-based assessment method can be used to refine historical data to calcu-
late trends of disaster evolution and risk probabilities (Sun et al. 2020). The method is 
limited by the availability of data information and requires a high length and accuracy 
of historical data, e.g., through the statistics of the main hydrological disaster data in 
Urumqi from 1949 to 2015; Li et  al. (2019) identified and analyzed the risk charac-
teristics and integrated distribution of hydrological disasters in the city. Bahrami et al. 
(2021) assessed the spatial and temporal distribution of drought severity in the Iranian 
region from 1967 to 2014 by using a standardized reconnaissance drought index (RDIst) 
and further assessed the trend by parametric and nonparametric statistical tests. By 
using the improved linkage number and entropy information diffusion method, Chen 
et al. (2020) assessed the risk of agricultural drought disasters in the Huabei Plain. The 
assessment method based on the physical formation mechanism can be used to describe 
the physical process of drought disaster formation. The internal linkages and evolution-
ary processes among the components of drought disaster risk can be obtained; however, 
this method requires high spatial resolution of the data and is complicated to operate. 
Zhu et al. (2021) used the AquaCrop model to simulate the yield of maize under differ-
ent irrigation scenarios; furthermore, vulnerability curves (a function of DHI and yield 
loss rate) were developed for the entire growing season and each growth stage. Li et al. 
(2020) used the partial least squares regression method to analyze the effects of climate 
change and non-climatic factors on NDVI dynamics and drought risk, thus exploring the 
key drivers of risk formation. The indicator system method is the most commonly used 
in drought disaster risk assessment. The regional disaster system theory and natural dis-
aster system theory are used to construct the indicator system. The regional disaster 
system theory can be used to divide disaster risk sources into disaster-formative fac-
tors, disaster-formative environment, disaster-affected bodies, and emergency response 
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and recovery capability (Yang et  al. 2021). The natural disaster system theory can be 
used to divide disaster risk sources into hazard, exposure, vulnerability, and emergency 
response and recovery capability (Jia et al. 2016). Then we get specific indexes based 
on the source of risk, and the indicator weights are determined by the analytic hierar-
chy process (AHP) (Palchaudhuri and Biswas 2016), entropy weight method (Yi et al. 
2018), CRITIC weight method (Krishnan et al. 2021), etc. And further, the index data 
are weighted to obtain the risk assessment value. Zarei et al. (2021) used the AHP and 
geographical information systems (GIS) to assess the sensitivity to the occurrence of 
different types of drought, such as meteorological drought, hydrological drought, and 
agricultural drought. Guo et al. (2021) assessed the degree of agricultural drought vul-
nerability in China by using the entropy weight method and the weighted composite 
score method; moreover, the contribution of the influencing factors was analyzed by the 
contribution model.

The previous indicators of drought hazard assessment include precipitation, tem-
perature, evaporation, etc. However, these indicators do not provide a good description 
of the extent of drought hazards. Drought indices have been used to quantify drought, 
and a combination of drought indices and run theory (Yevjevich 1967) can be used to 
identify elements such as the duration, severity, and peak of the drought. Therefore, 
we use the drought index to assess the hazard level of drought. Drought indices can 
be generally categorized into drought indices based on ground climate data and remote 
sensing monitoring. The indices based on ground climate data are used to quantify the 
drought situation through statistical analysis of the observed data, e.g., the precipita-
tion anomaly percentage (Zhao et  al. 2019), the Palmer crop moisture index (CMI) 
(Ahammed et al. 2020), and the Standardized Runoff Indicator (SRI) (Shukla and Wood 
2008), etc. Remote sensing has the advantages of high timeliness and wide coverage, 
which can realize the dynamic monitoring of drought. Drought indices based on remote 
sensing monitoring include the normalized difference vegetation index (NDVI) (Chu 
et  al. 2019), the vegetation temperature condition index (VTCI) (Zhou et  al. 2020), 
and the perpendicular drought index (PDI) (Nie et  al. 2020), etc. The most common 
drought indices are the Palmer drought severity index (PDSI) (Wang et  al. 2015; Yan 
et  al. 2016), the standardized precipitation index (SPI) (Karimi et  al. 2019; Bhunia 
et al. 2020), and the standardized precipitation evapotranspiration index (SPEI) (Zhang 
et al. 2020a; Musei et al. 2021). PDSI has been widely used as a more mature drought 
monitoring indicator, but the fixed time scale is its limitation. The SPI only considers 
the effect of precipitation on drought but ignores the effect of temperature on drought. 
Since SPEI compensates for the shortcomings of these two drought indices (Wang et al. 
2017), we choose SPEI to assess the drought hazard level.

Currently, drought disaster risk assessments based on indicator systems are relatively 
mature (Dabanli 2018; Hoque et al. 2021), but most of them are assessed only for a par-
ticular year, and few studies have assessed the variation of drought disaster risk in inter-
annual units. Due to the complexity of agricultural drought formation and the variability 
of the human social environment, the risk of agricultural drought disaster in each region 
varies significantly from year to year. Therefore, a risk assessment model is developed to 
evaluate agricultural drought disaster risk and to describe and assess the uncertainty of 
drought disaster risk over several years. Moreover, we count the changes in indicators in 
different regions in different years, which can reflect the sources of risk in different regions. 
Due to the consideration of data availability and timeliness, we validate the model based on 
meteorological, geographic, and social data of Shandong Province from 2012 to 2020. The 
output’s results can provide quantitative direction for food security work.
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2 � Materials and methods

2.1 � Study area

Shandong Province is a coastal province in East China (longitude 114° 47.5′–122° 42.3′ 
E and latitude 34° 22.9′–38° 24.01′ N), which is 721.03 km long from east to west and 
437.28 km long from north to south (Fig. 1). Shandong Province is a largely agricultural 
province (Xu et al. 2020). The province becomes the first province in China with a total 
agricultural output value of more than one trillion yuan in 2020, reaching 1019.06 billion 
yuan. However, the drought disaster has been hindering local agricultural development 
(Wang et al. 2019). The climate of Shandong Province is a warm-temperate monsoon cli-
mate, with low precipitation in spring and winter, and prone to drought disasters. With the 
increasing population and water demand, Shandong Province is more vulnerable to drought 
(Zuo et al. 2018). Therefore, it is instructive to develop an agricultural drought disaster risk 
assessment for Shandong Province to protect the local agricultural development.

2.2 � Assessment indicators system and data sources

According to the four elements theory of natural disaster risk formation, natural disaster 
risk is composed of natural disaster hazard, exposure and vulnerability of the disaster-
bearing body, and emergency response and recovery capability. According to this theory, 
the index system is shown in Table 1. Furthermore, food loss data from 2012 to 2020 are 
derived from the “China Water and Drought Disaster Bulletin" (The Ministry of Water 
Resources of the People’s Republic of China 2012‒2020).

2.2.1 � Hazard

(1) Annual drought conditions are described by the standardized precipitation evapo-
transpiration index on a 12-month time scale (SPEI-12) in December. SPEI (Vicente-
Serrano et  al. 2010) is an index to analyze the trend of drought evolution, which is 

Fig. 1   Geographical location of the study area and meteorological stations
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obtained by normal normalizing the cumulative probability distribution values of differ-
ence value series of precipitation and potential evapotranspiration. The calculation steps 
of SPEI are as follows:

Step 1: Calculate the potential evapotranspiration by the Thornthwaite method. After 
obtaining the temperature and latitude data of each meteorological station, we can cal-
culate the potential evapotranspiration (PET).

where K is the correction factor of a function of latitude and month, T represents the average 
monthly temperature, H represents the annual temperature efficiency index, and A represents 
a function of the heat index, A = 6.75 × 10−7H3 − 7.71 × 10−5H2 + 1.79 × 10−2H + 0.492

.
Step 2: Get the difference values Di between monthly precipitation and 

evapotranspiration.

where Pi is monthly precipitation, PETi represents monthly evapotranspiration.
Step 3: Compute the SPEI series. The D series is fitted to the log-logistic probability 

distribution and then it was normalized, thus obtaining the SPEI series.

where α, β, and γ are scale, shape, and origin parameters, respectively. The parameters α, β, 
and γ can be obtained by the linear moment (L-moment) method.

The probability distribution function of D is given in Eq. (5).

Step 4: Obtain the SPEI value. P is the probability that a given D value will be 
exceeded, P = 1 − F(x) . If P ≤ 0.5 , then W =

√

−2 ln(P) ; otherwise W =
√

−2 ln(1 − P) , 
multiply the resulting SPEI value by − 1.

where C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and 
d3 = 0.001308.

(2) Dd, Ds, and Dp. Run theory can be used to identify drought events (Yevjevich 
1967), and a drought event includes drought duration, drought severity, and drought 
peak (Fig. 2). Set the drought threshold as − 0.5, i.e., when the SPEI value is less than 
− 0.5, the month is in drought. Ddi , the cumulative duration of all drought events in year 
i, is the count of months with SPEI values less than − 0.5 in year i. Dsi , the cumulative 

(1)PET = 16K
(

10T

H

)A

,

(2)H =

12
∑

mon=1

(

Tmon,ave

5

)1.514

,

(3)Di = Pi − PETi,

(4)f (x) =
�

�

(x − y

�

)[

1 +
(x − y

�

)]−2

,

(5)F(x) =

[

1 +

(

�

x − �

)]−1

,

(6)SPEI = W −
C0 + C1W + C2W

2

1 + d1W + d2W
2 + d3W

3
,
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severity of all drought events in year i, is the sum of the SPEI values less than − 0.5 in 
year i. Dpi , the peak value of a drought event, is the minimum SPEI value in the year i.

(3) Annual normalized difference vegetation index is described by the average of the 
normalized difference vegetation index (NDVI) for each month of the year. NDVI is a com-
monly used drought index calculated based on remote sensing data and can be used to 
characterize the degree of drought (Chu et al. 2019; Liu et al. 2020). The index is calcu-
lated by near-infrared band reflectance and red band reflectance, which can reflect the spar-
sity of vegetation. In areas with little or no vegetation, the contrast between the two bands 
is small; in areas with dense vegetation, the contrast between the two bands is large.

where �n is the near-infrared band reflectance and �r is the red light band reflectance.

2.2.2 � Agriculture exposure

Exposure of the disaster-bearing body indicates the number or value of disaster-bearing 
bodies exposed to the drought disaster, and the disaster-bearing body studied in this paper 
is agriculture. Both agricultural land (% of survey land) and grain crop sown area (% of the 
total sown area) are positive indicators (Zeng et al. 2019), i.e., the larger the proportion, the 
bigger the exposure to agriculture. Likewise, the rural population (% of the total popula-
tion) is a positive indicator.

2.2.3 � Agriculture vulnerability

The vulnerability of the disaster-bearing body indicates the extent of crop damage caused 
by drought disasters in a given region, and it synthetically reflects the extent of drought 
disaster damage. Agricultural films play an important role in moisturizing and insulating 
crops during the planting period, and it can effectively reduce the impact of drought on 
crops. The larger the grain crops output per hectare, the higher the grain output value per 
hectare, and the greater the potential loss (Luo et al. 2020).

2.2.4 � Emergency response and recovery capability

Emergency response and recovery capability indicate the extent that the affected area recov-
ers from the disaster in the long or short term. The total power of agricultural machinery per 
hectare determines the level of agricultural mechanization in the region, which determines 
the level of agricultural development. Therefore, the higher the total power of agricultural 

(7)NDVI =
�n − �r

�n + �r
,

Fig. 2   Schematic diagram show-
ing the run theory
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machinery per hectare, the higher the level of agricultural development, and the greater the 
resistance to adversity (Liu et al. 2019). Disposable income of rural households and agricul-
tural insurance premiums can effectively reduce the risk of drought disasters, both of which 
are negative indicators (Hagenlocher et al. 2019). The greater the density of the road network, 
the more conducive to doing disaster relief work in the event of a disaster (Duan et al. 2021).

2.3 � The indicator system method

The calculation steps of the indicator system method are as follows: (1) standardization of 
indicator data. To eliminate the influence of different physical dimensions on decision-mak-
ing, we standardize the positive indicator data with Eq. (8) and standardize the negative indi-
cator data with Eq. (9).

where Xij is the value corresponding to the jth indicator of the ith region. Aij represents the 
standardized value of the jth indicator of the ith region.

(2) Calculate indicator weights. The AHP-entropy weight method is a common method for 
calculating indicator weights, and the indicator weights calculated by this method are more 
accurate (Sahana et al. 2021). The calculation steps are as follows:

Step 1: Calculate objective weights. The principle of the entropy weight method is that the 
smaller the information entropy of the indicator, the greater the variability of the indicator 
value, the more information the indicator provides, and thus the greater the weight of the indi-
cator (Yi et al. 2018). The calculation steps can be divided into three parts: Firstly, normalize 
the indicator data; secondly, get the information entropy of each indicator; finally, determine 
the objective weights W+

j
 of each indicator.

Step 2: The subjective weights of the indicators are calculated by the AHP method (Pal-
chaudhuri and Biswas 2016). The calculation steps can be divided into three parts: Firstly, the 
judgment matrix is constructed; secondly, the consistency test is performed; and finally, the 
weight vector of indicators is normalized to obtain the final weights W−

j
.

Step 3: The comprehensive indicator weight W
j
 is computed by Eq. (10).

where W+
j

 represents objective weight and W−
j

 represents subjective weight.
(3) Calculate the assessment value. With the indicator weights obtained, we use the WAA 

algorithm (Merigo 2011) to calculate agricultural drought disaster risk assessment values.

where yij represents the standardized value of the jth indicator for the ith region and Wj rep-
resents the weight value of each assessment indicator.

(8)Aij=
Xij−min

{

X1j,… ,Xnj

}

max
{

X1j,… ,Xnj

}

−min
{

X1j,… ,Xnj

} ,

(9)Aij=
max

{

X1j,… ,Xnj

}

− Xij

max
{

X1j,… ,Xnj

}

−min
{

X1j,… ,Xnj

} ,

(10)Wj =
W+

j
×W−

j
∑n

1
W+

j
×W−

j

j = 1,… , n

(11)WAA(Y) = yi1W1 + yi2W2 +⋯ + yijWj,
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(4) Based on the average assessed values from 2012 to 2020, the natural breakpoint 
method is used to determine the different level ranges.

(5) ArcGIS software is used to visualize data. The multi-year mean of the indicator 
describes the perennial state of the risk, and the variance of the change in risk level over 
multiple years describes the degree of uncertainty of the risk.

2.4 � The method of comprehensive percentage of production loss

The method of comprehensive percentage of production loss was derived from the 
“Drought Assessment Criteria,” which was issued by the Office of State Flood Control and 
Drought Relief Headquarters in China (Yang et al. 2022). C is agricultural drought disaster 
assessment values(%). The larger its value, the more severe the drought disaster loss.

where I1 is the affected area (more than 10% yield reductions) as a percentage of the sown 
area, I2 represents the damaged area (more than 30% yield reductions) as a percentage of 
the sown area, and I3 represents the extinction area (more than 80% yield reductions) as a 
percentage of the sown area.

3 � Results and discussion

3.1 � Agricultural drought disaster risk assessment in Shandong Province

Based on the indicator system method to assess the risk of agricultural drought disasters in 
Shandong Province, the subjective weights calculated by AHP, the objective weights calcu-
lated by the entropy weight method, and the combined weights calculated by Eq. (1) are all 
shown in Table 2.

Based on the average assessed values from 2012 to 2020, the natural breakpoint method 
is used to determine the different agricultural drought disaster risk level ranges, i.e., low 
(0–0.4196), lower (0.4197–0.4742), moderate (0.4743–0.4923), higher (0.4924–0.5145), 
and high (0.5146–1). ArcGIS software is used to visualize data. The multi-year mean of 
the indicator describes the perennial state of the risk, and the variance of the change in risk 
level over multiple years describes the degree of uncertainty of the risk.

The distribution of agricultural drought disaster risk and risk uncertainty in Shan-
dong Province from 2012 to 2020 (Fig. 3) is as follows: (1) High-risk areas for agricul-
tural drought disasters were frequently located in the western part of Shandong Province. 
Moreover, the overall agricultural drought disaster risk in Shandong Province was higher in 
2014, 2019, and 2020 and lower in 2015 and 2016. (2) The risk uncertainty in Liaocheng 
and Zaozhuang was low, and both regions had been at high risk of agricultural drought 
disasters from 2012 to 2020, so attention should be paid to the prevention of drought disas-
ters in the two regions. Agricultural drought disaster risk in Weihai City is consistently at 
a low level from 2012 to 2020. (3) There was a high degree of uncertainty in agricultural 
drought disaster risk in Dongying, Qingdao, and Heze. The agricultural drought disasters 
in Dongying were at a high-risk level in 2014, 2017, 2019, and 2020, Qingdao was at a 
high-risk level in 2015 and 2019, and Heze was at a high-risk level in 2012, 2013, and 
2020. (4) High-risk areas for agricultural drought disasters in 2012–2020 were located in 

(12)C = I3 × 90% + (I2 − I3) × 55% + (I1 − I2) × 20%,
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Dezhou, Liaocheng, Zaozhuang, and Rizhao, and it is important to focus on drought miti-
gation in these areas.

3.2 � Risk causes of agricultural drought disasters in Shandong Province

3.2.1 � Drought hazard analysis in Shandong Province

Based on the indicator system method to assess the drought hazard in Shandong Province. 
The five drought hazard indicators in Table 1 and the corresponding indicator weights in 
Table  2 are used to assess the drought hazard of different regions, i.e., W

R1
 = 0.0735, 

W
R2

 = 0.0858, W
R3

 = 0.0372, W
R4

 = 0.0425, and W
R5

 = 0.0975. Based on the average assessed 
values from 2012 to 2020, the natural breakpoint method is used to determine the different 
drought hazard level ranges, i.e., low (0–0.0812), lower (0.0813–0.1066), moderate 
(0.1067–0.1299), higher (0.1300–0.2175), and high (0.2176–1).

The distribution of drought hazard and hazard uncertainty in Shandong Province from 
2012 to 2020 (Fig. 4) is as follows: (1) High-hazard areas of drought are frequently concen-
trated in the eastern part of Shandong Province. Moreover, the overall drought hazard in 
Shandong Province is higher in 2018 and 2020 and lower in 2015 and 2016. (2) The uncer-
tainty level of drought hazard in Yantai, Weifang, Zibo, Linyi, and Rizhao is low. Among 
them, the drought hazard is higher in Yantai, Weifang, Linyi, and Rizhao, and lower in 
Zibo. (3) The degree of uncertainty of drought hazard is high in Weihai, Dezhou, and Heze 
cities. The drought hazard is higher in Weihai City in 2015, 2017, 2019, and 2020, Dezhou 
City in 2014, 2017, 2018, and 2020, and Heze City in 2012 and 2013. (4) The high-haz-
ard areas of drought in 2012–2020 are located in Yantai, Qingdao, and Rizhao, which can 
reduce the risk of agricultural drought disasters by strengthening disaster monitoring and 
early warning.

Fig.3   Map of drought disaster risk and risk uncertainty in Shandong Province, 2012–2020
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3.2.2 � Agricultural exposure analysis in Shandong Province

Based on the indicator system method to assess the agricultural exposure in Shandong 
Province, the three agricultural exposure indicators in Table 1 and the corresponding indi-
cator weights in Table 2 are used to assess the agricultural exposure of different regions, 
i.e., W

E
1

 = 0.0315, W
E
2

 = 0.1069, and W
E
3

 = 0.0566. Based on the average assessed values 
from 2012 to 2020, the natural breakpoint method is used to determine the agricultural 
exposure level ranges, i.e., low (0–0.0419), lower (0.0420–0.0843), moderate 
(0.0844–0.0979), higher (0.0980–0.1382), and high (0.1383–1).

The distribution of agricultural exposure and agricultural exposure uncertainty in Shan-
dong Province from 2012 to 2020 (Fig. 5) is as follows: (1) The areas with high agricul-
tural exposure are mainly concentrated in the western part of Shandong Province, and the 
changes over multiple years are minor. (2) The uncertainty level of agricultural exposure 
was lower in Dezhou, Liaocheng, Zibo, Jining, and Heze, which are areas with higher 
agricultural exposure. (3) The uncertainty level of agricultural exposure in Dongying is 
high, and the degree of agricultural exposure in the area shows an increasing trend. (4) The 
high agricultural exposure areas in 2012–2020 are located in Dezhou and Liaocheng cities, 
where agricultural drought resistance can be enhanced through the development of digital, 
water-saving agriculture.

3.2.3 � Agricultural vulnerability analysis in Shandong Province

Based on the indicator system method to assess the agricultural vulnerability in Shandong 
Province, the three agricultural vulnerability indicators in Table 1 and the corresponding 
indicator weights in Table 2 are used to assess the agricultural vulnerability of different 
regions, i.e., W

V
1

 = 0.0253, W
V
2

 = 0.0882, and W
V
3

 = 0.1517. Based on the average assessed 

Fig. 4   Map of drought hazard and hazard uncertainty in Shandong Province, 2012–2020
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values from 2012 to 2020, the natural breakpoint method is used to determine the agricul-
tural vulnerability level ranges, i.e., low (0–0.0359), lower (0.0360–0.0935), moderate 
(0.0936–0.1333), higher (0.1334–0.1893), and high (0.1894–1).

The distribution of agricultural vulnerability and agricultural vulnerability uncertainty 
in Shandong Province from 2012 to 2020 (Fig. 6) is as follows: (1) Areas of high agricul-
tural vulnerability are concentrated in the western part of Shandong Province, and there 
has been slight change over multiple years. (2) The uncertainty level of agricultural vulner-
ability is lower in Dezhou, Binzhou, and Jining, which are areas with higher agricultural 
vulnerability. (3) The uncertainty level of agricultural vulnerability in Heze is high, and 
the degree of agricultural vulnerability in the area shows an increasing trend. (4) The high 
agricultural vulnerability area in 2012–2020 is located in Jining City, where losses can be 
reduced by promoting agricultural insurance and improving the disaster response platform.

3.2.4 � Emergency response and recovery capability in Shandong Province

Based on the indicator system method to assess the emergency response and recovery 
capability in Shandong Province, the four emergency response and recovery capability 
indicators in Table 1 and the corresponding indicator weights in Table 2 are used to assess 
the emergency response and recovery capability of different regions, i.e., W

B
1

 = 0.0645, 
W

B
2

 = 0.0229, W
B
3

 = 0.0481, and W
B
4

 = 0.0678. Based on the average assessed values from 
2012 to 2020, the natural breakpoint method is used to determine the emergency response 
and recovery level ranges, i.e., low (0–0.0424), lower (0.0425–0.0779), moderate 
(0.0780–0.0935), higher (0.0936–0.1188), and high (0.1189–1).

The distribution of emergency response and recovery capability and capability uncer-
tainty in Shandong Province from 2012 to 2020 (Fig. 7) is as follows: (1) The high emer-
gency response and recovery capability areas from 2012 to 2020 are mainly concentrated 

Fig. 5   Map of agricultural exposure and exposure uncertainty in Shandong Province, 2012–2020
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in Weifang, Qingdao, and Dezhou, and the low capability areas are mainly concentrated in 
Rizhao and Zaozhuang. (2) There is a low level of uncertainty in the emergency response 
and recovery capabilities of Dongying, Weifang, and Yantai cities. Among them, the emer-
gency response and recovery capabilities of Weifang and Yantai are consistently strong, 
while those of Dongying is consistently weak. (3) The uncertainty levels of emergency 

Fig. 6   Map of agricultural vulnerability and vulnerability uncertainty in Shandong Province, 2012–2020

Fig. 7   Map of emergency response and recovery capability and capability uncertainty in Shandong Prov-
ince, 2017–2020
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response and recovery capabilities in Heze and Linyi are high, and the capabilities in both 
areas show an increasing trend.

3.3 � Discussion

3.3.1 � The Rationality of the constructed model

(1) The rationality of the indicator system. The SPEI based on the Thornthwaite method 
can be used for quantitative analysis of drought in Shandong (Zuo et al. 2018; Yao et al. 
2021; Yang et al. 2023). Moreover, SPEI-3 can be used to assess agricultural drought con-
ditions in Shandong (Zuo et al. 2018), and it is reasonable to identify the duration (Dd), 
severity (Ds), and peak (Dp) of agricultural drought based on SPEI-3. Also, it has been 
documented that NDVI can be used to quantify the drought status in Shandong Province 
(Liu et al. 2020).

Other indicators are appropriate for assessing agricultural drought disaster risk, i.e., 
Agricultural land (% of survey land) (Zeng et  al. 2019), grain crop sown area (% of the 
total sown area) (Zeng et al. 2019), the rural population (% of the total population) (Pal-
chaudhuri et al. 2016), Agricultural films (Zhang et al. 2019), the grain crops output per 
hectare (Luo et al. 2020), the grain output value per hectare, (Luo et al. 2020), the total 
power of agricultural machinery (Liu et al. 2019), disposable income of rural households 
(Hagenlocher et al. 2019), agricultural insurance premiums (Hagenlocher et al. 2019), and 
the density of the road network (Duan et al. 2021).

(2) To further verify the ability of this paper to assess drought disaster risk, we com-
pared the drought disaster risk distribution and drought disaster loss derived from each 
year’s assessment. The moderate and above level of risk can cause significant losses, and 
we counted the number of cities with moderate and above levels from 2012 to 2020. At 
the same time, we calculate the year-by-year drought loss values by using the method of 
comprehensive percentage of production loss (Fig. 8). By comparing them, we find that the 
trends are almost the same. Based on the relationship between high risk and high loss, it 
shows that the assessment results of this paper are reasonable.

3.3.2 � Risk causes in high‑risk areas

This paper presents a detailed analysis of the overall components of agricultural drought 
disaster risk in Shandong Province. By calculating the drought hazard, agricultural expo-
sure and vulnerability, emergency response and recovery capacity, and comprehensive risk 
in 2012–2020, the distribution of agricultural drought disaster risk and risk development 
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trends of Shandong Province in different years in recent years can be obtained. Moreover, 
the average of the last nine years is calculated to reflect the perennial risk status of different 
regions, and the variance of level change is used to describe the risk uncertainty of differ-
ent regions. With the above information, it is convenient for risk decision-makers to find 
out the shortcomings of the drought work in each city and propose corresponding drought 
strategies.

Through the four risk causes analysis, we can grasp the causes of high risk of agri-
cultural drought disasters in Dezhou, Liaocheng, Zaozhuang, and Rizhao cities. (1) The 
causes of the high risk of agricultural drought disasters in Dezhou are mainly high agri-
cultural exposure and high agricultural vulnerability. The city has the highest grain crop 
sown area (% of the total sown area) at 0.86%, which is the reason for the high agricultural 
exposure. The city has the highest grain yield per hectare at 7319 kg/ha, which explains the 
high agricultural vulnerability of the area. (2) The high agricultural exposure and vulner-
ability of Liaocheng City lead to a high risk of agricultural drought disasters in the area. 
The city has the most agricultural land (% of survey land) at 0.8%, which explains the high 
agricultural exposure in the area. And the high grain yield and production value per hec-
tare of agricultural land in the city, 6705 kg/ha and 56,000 yuan/ha, are the reasons for the 
high agricultural vulnerability in the area. (3) The causes of the high risk of agricultural 
drought disasters in Zaozhuang City are high agricultural vulnerability and weak emer-
gency response and recovery capability. The city has a high grain production value per 
hectare of 57,700 yuan/ha, which results in high agricultural vulnerability in the area. The 
total power of agricultural machinery per hectare is the lowest in the area, about 8.11kw/
ha, which is the reason for the weak emergency response and recovery capability. (4) The 
causes of the high risk of agricultural drought disaster in Rizhao are high drought haz-
ard and weak emergency response and recovery capability. The city has the longest annual 
drought duration, averaging 4.33 months, and the highest drought intensity, averaging 4.51 
units, which explains the high hazard of drought in the area. The lowest agricultural insur-
ance premium in the city was 43.53 million yuan, which explains the weak emergency 
response and recovery capability.

4 � Conclusion

Based on meteorological, geographical, and social data of Shandong Province from 2012 
to 2020, the risk of agricultural drought disasters in Shandong Province and the degree of 
risk uncertainty are assessed. Moreover, the risk causation analysis is conducted in four 
aspects of drought hazards, agricultural exposure, agricultural vulnerability, and emer-
gency response and recovery capacity. The findings of the study are as follows:

From the spatial scale, (1) the high-risk areas of agricultural drought disasters were 
mainly located in the western part of Shandong Province. Moreover, it was mainly concen-
trated in Dezhou, Liaocheng, Zaozhuang, and Rizhao, and it is important to focus on the 
drought mitigation work in these areas. (2) The high-hazard areas of drought were mainly 
located in the eastern part of Shandong Province, mainly in Yantai, Qingdao, and Rizhao 
cities. (3) Areas with high agricultural exposure were concentrated in the western part of 
Shandong Province, mainly in Dezhou and Liaocheng. (4) Areas with high agricultural 
vulnerability were concentrated in the western part of Shandong Province, mainly in Jining 
City. (5) The areas with low emergency response and recovery capacity were mainly con-
centrated in Rizhao and Zaozhuang.
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From the temporal scale, (1) agricultural drought disaster risk in Shandong Province 
was high in 2014, 2019, and 2020. Furthermore, there was a high uncertainty of agricul-
tural drought disaster risk in Dongying, Qingdao, and Heze in 2012–2020, all of which 
had reached a high-risk level of agricultural drought disaster several times. (2) The overall 
drought hazard in Shandong Province was higher in 2018 and 2020, and the uncertainty 
level of drought hazard was high in Weihai, Dezhou, and Heze cities. (3) There was little 
change in agricultural exposure in Shandong Province from 2012 to 2020. Among them, 
the uncertainty level of the agricultural risk exposure was higher in Dongying, and the 
agricultural risk exposure in this region showed an increasing trend. (4) There had been a 
slight change in agricultural vulnerability in Shandong Province over the years. And the 
uncertainty level of agricultural vulnerability in Heze was high, and the degree of agricul-
tural vulnerability in the region was on the rise. (5) The uncertainty of emergency response 
and recovery capacity in Heze and Linyi was high, and the capacity in both places was on 
the rise.
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