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Abstract
Extreme rainfall events are becoming more frequent in South Peninsular India (SPI), which 
is resulting in an increase in flash floods, landslides, and damage to agriculture and infra-
structure. However, because of the scarcity of rainfall data over remote areas and oceans, 
the reanalysis datasets are a boon for understanding various meteorological phenom-
enon. India’s first high-resolution reanalysis dataset, Indian Monsoon Data Assimilation 
and Analysis (IMDAA), simulates past climate data at the regional or local levels. In this 
study, a comprehensive evaluation of IMDAA is carried out with respect to Indian Mete-
orological Department (IMD) daily gridded dataset over SPI during 2000–2020. It was 
found that monsoon and post-monsoon seasons demonstrated strong compatibility whereas 
annual and pre-monsoon seasons displayed some dissimilarity as depicted by Mahalanobis 
metric. Spatiotemporal analysis of IMDAA in capturing seasonal and annual climatic vari-
ations implied that the reanalysis product considerably showed a similar pattern to that of 
IMD neglecting some overestimations. According to the study, an analogy of 96% can be 
seen between IMDAA and IMD on an average scale. Results also suggest the efficiency of 
IMDAA model in capturing some extreme rainfall episodes better than the IMD. Conse-
quently, the findings provide insight into the reanalysis product’s ability to depict climatic 
variability and reliability in employing precipitation data estimated by IMDAA in model-
ling extreme events over SPI.
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1 Introduction

The Indian subcontinent is one of the most densely populated regions of the world. The 
region’s socioeconomic development is significantly influenced by rainfall, and rainfed 
crops constitute a major part of the agriculture sector (Ashrit et al. 2020). Rainfall is an 
essential part of various hydrological and meteorological scenarios over the area. Spati-
otemporal rainfall patterns play a crucial role in energy cycles that rely on land coupling 
and atmosphere (Chakraborty et al. 2015). Therefore, the availability of precise or reana-
lysed rainfall datasets is a crucial prerequisite for monitoring weather variabilities, model-
ling natural phenomena, forecasting and hydrometeorological studies.

Most accurate observations can be obtained from gauge measurements, but the scarcity 
of gauge stations remains a challenge. The sparsity of gauge stations over remote areas and 
oceans hinders in prediction and forecasting of climatic variations in those regions. Reanal-
ysis datasets are characterised by the combined effect of empirical and satellite datasets to 
provide the most recent gridded atmospheric conditions for a certain time period (Blacutt 
et al. 2015). The precision of reanalysis datasets depends on the data assimilation scheme 
and the underlying model. Reanalysis products provide high-quality, long-term information 
about climate variability and atmospheric circulations. With the aid of a stable and indi-
vidual data assimilation technique, the modelling system can combine limited and varying 
observations producing gridded coherent meteorological data (Rienecker et al. 2011). Over 
the past few decades, further developments of reanalysis datasets and their analysis have 
been extensively carried out (Kalnay et al. 1996; Saha et al. 2010; Dee et al. 2011; Maus-
sion et al. 2014). The establishment of various global and regional reanalysis datasets paved 
the way for new high-resolution datasets that can provide insight into different atmospheric 
variabilities (Fortelius et al. 2002; Mesinger et al. 2006; Onogi et al. 2007; Kobayashi et al. 
2015; Bollmeyer et al. 2015). Due to the requirement of enormous computational power, 
labour, and storage, global reanalysis products are produced with coarse grid resolutions. 
This moderate resolution of the global reanalysis product impedes its application in various 
mesoscale processes and prediction of climatic extremes which necessitates high spatial 
resolution. A regional reanalysis product employs a high-resolution model with restricted 
spatial coverage with boundary conditions and initial conditions derived from global rea-
nalysis and can evaluate regional synoptic incidents more precisely (Dahlgren et al. 2016). 
National Centre for Medium Range Weather Forecasting (NCMRWF), Ministry of Earth 
Sciences, India, recently released two high-resolution reanalysis datasets, namely Indian 
Monsoon Data Assimilation and Analysis (IMDAA) and NCMRWF Global Forecast Sys-
tem model (NGFS). With the help of these reanalysis products, high-resolution datasets 
can be made available. Another positive aspect is a better understanding of extreme events 
and monsoon patterns at finer scales, particularly over India. IMDAA reanalysis product is 
developed for a limited area to produce a high-resolution (12 km) dataset rather than global 
reanalyses. IMDAA is better at quantifying rainfall in the past period and predicting future 
trends than NGFS (Mahmood et al. 2018).

Spatial aggregations of India show an adverse increase in extreme precipitation events, 
mainly during the monsoon season (Ghosh et  al. 2016). About 80% of the overall rain-
fall received by India is during the monsoon season, i.e., June to September. Climatic 
changes including global warming, greenhouse gas emissions and land cover increase due 
to urbanisation inclining the chances of occurrence of extreme events as shown by the 
study in (Kharin et al. 2007). Every 1 °C of warming results in an increase in the water-
holding capacity of the atmosphere, by 6–7% which leads to an increase in extreme rainfall 
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(Trenberth 2005). The urbanisation rate of India in 2020 is estimated as 34.92%, out of 
which the South Peninsular Region’s contribution is very high. An increase in the number 
of extreme events during 1901–2010 in many urban cities indicated the influence of urbani-
sation on the occurrence of such events (Ali et al. 2014). Extreme rainfall events associated 
with the water vapour transport from the Arabian Sea and the Indian Ocean caused floods 
in Kerala in 2018 (Lyngwa and Nayak 2021). Similarly, many states of South Peninsular 
India are facing havoc due to extreme rainfall events. Explanations of spatiotemporal trends 
in extremes, mean precipitation and other hydrometeorological factors remain challeng-
ing because of the uncertainties in the multi-model observations and disagreement in data 
assimilation strategies in reanalysis products (Zhang et al. 2017). Henceforth, an investiga-
tion of the reanalysis products in estimating extreme precipitation scenarios and quantify-
ing the rainfall amount received by the area is essential for societal growth and prediction 
of future trends in the spatial variability of precipitation and other factors. A limited num-
ber of studies have been conducted to analyse the performance of IMDAA over India; nota-
bly, no studies were conducted to study the rainfall occurrences and extreme events over 
South Peninsular India (SPI) using IMDAA. In (Aggarwal et al. 2022), an investigation of 
IMDAA’s ability to characterise the Indian Summer Monsoon (ISM) was carried out over 
Northwest India for the years 1979–2018. The results showed the capability of IMDAA 
in realistically representing the ISM features and the linkage between moisture availabil-
ity and convective precipitation formation. For the year 2018, a study was conducted to 
assess the ability of NCMRWF in predicting ISM for the months of June to September 
revealing the qualitative reliability of IMDAA in forecasting precipitation and zonal winds 
(Chakraborty et  al. 2021). Precipitation forecast analysis was done with respect to Inte-
grated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG GPM), 
predictive skills were calculated based on Tropical Rainfall Measuring Mission (TRMM) 
observations and skills for zonal winds forecasts were computed using European Centre for 
Medium-Range Weather Forecasts Reanalysis (ERA-interim). A study over Western Hima-
laya region depicts that IMDAA is efficient in demonstrating heavy rainfalls as well as 
characteristics of winter precipitation at seasonal, diurnal and interannual scales associated 
with western disturbances. The study also implied that IMDAA is coherent in exhibiting 
spatial patterns comparing to gauge based and satellite products, even in higher magni-
tudes due to its high resolution (Sharma et al. 2022). Another intercomparison research on 
gridded rainfall datasets of nine global datasets over Sri Lanka implies that IMDAA well 
identified rainfall patterns and suitable for hydrological applications (Bandara et al. 2022). 
Significance of high-resolution datasets is emphasized in a study over Western Himalayas, 
in which, authors analysed winter seasonal precipitation over the area using different satel-
lite (IMERG), observational (IMD) and reanalysis products (European Centre for Medium-
Range Weather Forecasts (ERA5), IMDAA). Evaluation also revealed the efficiency of 
using IMDAA precipitation data in moisture transport, cloud cover, upper tropospheric cir-
culations and surface temperature simulations (Punde et al. 2022).

This study focuses on the evaluation of the high-resolution reanalysis dataset, 
IMDAA during the years 2000–2020 in estimating precipitation characteristics and 
extreme events over SPI. The research study is categorised into the following details:

1. Spatiotemporal variability of daily average precipitation amounts on annual and seasonal 
scale is carried out using IMDAA with Indian Meteorological Department (IMD) daily 
gridded dataset as the benchmark.
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2. Reliability of IMDAA is further emphasised by statistically analysing IMDAA in captur-
ing precipitation using different agreement and categorical indices.

3. Spatial analysis over the grid points showing significant differences in percentile val-
ues of precipitation is done using a new approach known as Mahalanobis distance. 
Mahalanobis distance is preferred for multivariate comparison since a multivariate 
system is converted to a univariate system in the process and it exhibits sensitivity in 
intervariable changes in the system (Mahalanobis 1930). Also, a study conducted over 
San Cristobal, Venezuela concluded that Mahalanobis distance is better than Euclidean 
distance and Manhattan distance in detecting atypical observations in monthly precipita-
tion series (Rivas et al. 2020).

4. Further, a statewise analysis of extreme rainfall episodes detection by IMDAA and 
extreme event prediction using extreme value distribution is carried out.

5. ENSO (El Niño-Southern Oscillation) climatic phenomenon is used to analyse its reso-
nance with the extreme years using both IMDAA and IMD standardised precipitation 
data.

The paper is organised as follows: Sect. 2 describes the data and climatology of the 
site; Sect. 3 consists of the methodology of the research done; the results are discussed 
in Sect. 4; Summary and main conclusions of the study are presented in Sect. 5.

2  Data and climatology of the site

2.1  Data

Indian Monsoon Data Assimilation and Analysis (IMDAA) reanalysis datasets of 12 km 
resolution are downloaded from the NCMRWF database from 2000 to 2020 (Rani et al. 
2021). This high-resolution reanalysis dataset is comprehensively analysed using the 
Indian Meteorological Department (IMD) observations for the same period (Pai et  al. 
2014).

2.2  IMD precipitation data

Indian Meteorological Department (IMD) provides 0.25◦ × 0.25◦ daily gridded precipi-
tation datasets over India. This agency provides datasets based on ground-based gauge 
stations across the country. Around 6955 gauge stations are utilised to estimate the pre-
cipitation over the region. These 6955 gauge stations include observations from 547 
IMD observatory stations, 494 hydro-meteorology observatories, 74 Agromet observa-
tories, and the rest are rainfall stations maintained by the government (Rajeevan et al. 
2008). Due to the topography and complex hilly terrains, there is a paucity of gauge 
stations in the country, mainly in the northernmost regions of the country. There is a 
non-uniform distribution of the gauge stations in the country, and the Inverse Distance 
Weighted interpolation (IDW) method was implemented to reduce this effect of nonu-
niformity and temporal unavailability of gauge stations (Rajeevan et al. 2006). The pre-
cipitation data from 2000 to 2020 downloaded from its official website are used as a 
benchmark in assessing the reanalysis dataset.



1973Natural Hazards (2023) 117:1969–1999 

1 3

2.3  IMDAA precipitation data

IMDAA is a high-resolution reanalysis dataset implemented in the combined endeavour 
of the National Centre for Medium Range Weather Forecasting (NCMRWF), India and 
the Met Office (MO), UK, in association with the IMD as part of the National Monsoon 
Mission (NMM) project of the Ministry of Earth Sciences, Government of India (Shepard 
1968). It is the foremost reanalysis dataset produced by NCMRWF with a horizontal reso-
lution of 12 km spanning south Asia with neighbouring regions to capture all the necessary 
variables affecting the climatic variations or occurrence of the monsoon season. The data-
base consists of hourly, three hourly and six hourly datasets of different observed variables, 
such as precipitation, moisture, temperature, and humidity, and non-observed variables, 
such as cloud cover and fluxes, for the period of 1979–2022 at present. This mesoscale 
version is built on a four-dimensional assimilation method and with 63 vertical levels lead-
ing to a height of 40  km. The precipitation data are downloaded from RDS NCMRWF 
repository.

2.4  Climatology of SPI

Assessment of reanalysis product over a region necessitates the knowledge of climatology 
of the study region. The performance of each precipitation product differs from area to 
area due to topological and climatic characteristics. This study focuses on the precipitation 
characteristics over the South Peninsular region of India as shown in Fig. 1 using IMDAA 
and IMD.

SPI is a triangle-shaped landmass surrounded by the Bay of Bengal on the east, the Ara-
bian Sea on the west and the Indian Ocean on the south. SPI consists of five states: Kerala, 
Karnataka, Tamil Nadu, Andhra Pradesh, and Telangana.

Along with the sea, ocean and other water resources, the Western Ghats and the Eastern 
Ghats present in the borders play a significant role in the wind circulations. The circula-
tions transport moisture content across the country, leading to monsoon and several pre-
cipitations phenomena. These moisture contents from the Arabian sea move towards the 
Narmada and Tapi rivers causing precipitation in areas of central India, and the combined 
flow of moisture content from the Indian Ocean and the Bay of Bengal leads to widespread 
rain in the northeast parts of India (Singh et al. 2021). Hence, an analysis related to SPI is 
critical in the context of climatology because of the area’s topography.

3  Methodology

Precipitation datasets for 21 years from 2000 to 2020 are utilised in this study. Total hourly 
precipitation estimated by IMDAA during the analysis time is extracted from NCMRWF 
official web page (Tan and Santo 2018). Daily precipitation data over India for the study 
period are downloaded from IMD website. The resolutions of the two datasets used here 
are different. So, the first step was to regrid the reanalysis dataset to a horizontal resolution 
of 0.25 ◦ . After interpolating the datasets to the same resolution, precipitation over SPI is 
obtained. A comparison of the estimation capacity of the reanalysis dataset with the obser-
vation dataset is done by examining seasonal and interannual variability. Based on the cli-
matology of SPI, the data are classified into four seasons: (1) Winter (January–February), 
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(2) Pre-monsoon (March–May), (3) Monsoon (June–September), and (4) Post-monsoon 
(October–December). For the comprehensive assessment of the reanalysis product and the 
observation datasets, different statistical indices are made use of.

3.1  Assessment indices

Statistical indices are calculated over 810 grid points over the land within the geographical 
boundaries of the states representing SPI spanning 7 ◦ N to 22◦ N to 73.5◦ E to 84.25◦ E for 
the observation period. The performance of IMDAA is analysed at annual, monthly, and 
seasonal scales. Here, Oi and Si is the average precipitation obtained by IMD and IMDAA, 
respectively, over the area, O and S is the mean of Oi and Si , respectively, n is the number 
of samples corresponding to space and time rd and cd are the standard deviations of IMD 
and IMDAA values, respectively. A detailed description of the statistical indices used is 
given in Table 1.

Rather than the above-mentioned metrics, Kling Gupta Efficiency (KGE) takes into 
account the pattern similarity, variance and error, while Nash Sutcliffe Efficiency Coef-
ficient (NSE) gives the index value totally based on residuals. Hence, these two indexes 
altogether give different scores and are important to make any decision regarding the best 
model selection. The details of these two metrics are given as follows:

Kling Gupta Efficiency (KGE): A measure to show the degree of fit and helps to under-
stand the relationship between variability, correlation, standard deviation, bias, etc.

Fig. 1  Map of South Peninsular India
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Nash Sutcliffe Efficiency Coefficient (NSE): A statistic that establishes the magnitude 
of variability between the variances in observed and reanalysis data. Its value shows how 
strongly a 1:1 line fits in the observed versus reanalysis graph. The optimal value of NSE is 
1 which implies an ideal model.

Moreover, seasonal and interannual variability of data is compared using spatial distri-
butions and the significant difference between average precipitation during different sea-
sons and years is analysed using the Student’s t test with the null hypothesis that there is no 
difference in the mean precipitation of IMD and IMDAA estimation.

Student’s t test is a statistical method of testing how significant the differences can be 
between two groups which are drawn from a normally distributed population where the 
standard deviation is unknown.

where n1 and n2 are sample sizes of IMD and IMDAA, but here n1 and n2 are same, D is the 
pooled standard deviation of IMD and IMDAA.

3.2  Mahalanobis distance

Other than the usual distance metric calculated for single mean variables, a new approach is 
utilised which makes use of a multivariate distance metric known as Mahalanobis distance 
to find out if there exists any significant distance between IMD observations and reanalysis 
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product datasets across seasonal and annual percentiles of precipitation of each year corre-
sponding to each grid point.

Mahalanobis distance (MD) is an approach which provides a covariance distance between 
data that helps to detect anomalies and similarities of unidentified samples effectively (Mim-
mack et al. 2001). It gives distance between centroids of two or more groups to get an idea 
about the divergence of characteristics associated with the groups (Matcharashvili et al. 2017). 
Rather than Euclidean distance, it addresses different groups based on the correlation of data 
points and all variables are equally characterised by giving less weightage to highly correlated 
variables (Kishore et al. 2016). Other important properties of Mahalanobis distances include 
their relationship to multidimensional scaling and the log-likelihood of multivariate normal 
distributions. Mahalanobis distance is used to produce univariate distance for multivariate 
groups with various parameters. Mahalanobis distance is given by the formula:

where x and y represent sample means with sizes m and n , respectively, T  is the transpose 
operation and P is the covariance matrix:

where Pi ’s denote the covariance matrices of the corresponding groups.
As the MD value gets smaller, the variables tend to fall into the same group or it implies 

that the groups possess similar characteristics. After the calculation of MD values, Hotelling’s 
T2 test is used to calculate the significant difference in the precipitation values. The T statistic 
is given by:

where p is the number of variables used. The significance test is undergone with the 
assumption that there is no discrepancy in the performance parameters of the groups as the 
null hypothesis. If F > Fp,m+n−p−1, then the null hypothesis is rejected implying the exist-
ence of a significant difference between the group parameters.

3.3  Performance diagram

Performance diagram is used to analyse the detection capability of IMDAA in seasonal, 
annual and percentile scales. The performance diagram plots four forecast statistics such as 
Probability of Detection (POD), Success Ratio (SR), Critical Success Index (CSI) and bias 
simultaneously. Points close to the upper right corner of the graph show the best efficiency 
in forecasting. POD is the probability with which a product will detect the rainfall correctly 
(Haile et  al. 2016). CSI gives the capability of the product in estimating precipitation and 
SR is the inverse of the False Alarm Ratio (FAR) which gives the ratio of wrongly detected 
occurrences.
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where H is the number of hits, M is the number of misses and F is the number of false 
alarms (Tang et al. 2020).

3.4  Extreme value distribution

The occurrence of extreme precipitation events over SPI has increased during the past 
few decades. The geographical conditions of SPI with the ocean surrounding the land-
mass on three sides lead to the development of thermal and pressure gradients increas-
ing the chances of formation of hydrometeorological extremes more often (Baki et  al. 
2021). Extreme flood events are causative of these extreme precipitations. During the study 
period of 2000–2020, the states of SPI were prone to severe flooding events that caused 
catastrophic destructions of agricultural, economic, and societal aspects. The prediction of 
these disastrous extreme events attributed to variations in several dynamical parameters is 
a need. Spatial distributions of extreme rainfall episodes of each state detected by IMDAA 
are analysed and compared against the IMD observation dataset. Not only the detec-
tion or estimation of precipitation is needed, but a reanalysis dataset must also be capa-
ble of detailing small variations in precipitation amounts in calibrating future extremes. 
An extreme value distribution was used to give an insight into the prediction capability of 
IMDAA. Extreme value Type 1 distribution was used for finding the large extremes of the 
data (Phien 1987).

General representation of the probability density function of the Gumbel (maximum) 
distribution is given by:

where x is the precipitation data, � is the location parameter and � is the scale parameter. 
For the standard Gumbel distribution � = 0 and � = 1, lead to the following formula:

The spatial distribution of grid points showing extreme precipitation amounts during the 
observed extreme rainfall episodes was compared based on the IMD observations.

Gumbel distribution is widely used to predict extreme values of different phenomena 
such as wind speeds, flood frequency, and extreme event prediction. Extreme value pre-
diction can be done using different distribution such as Normal, Log-Normal, Weibull, 
Gamma, and Gumbel. The best fit distribution differs from data to data. Hence, goodness 
of fit measures such as the Kolmogorov–Smirnov (K–S) Test, Anderson–Darling (A–D) 
Test and Root Mean Square Error (RMSE) were used to determine the best fit distribution. 
Gumbel distribution resulted in the best fit for the data and in predicting the extremes. Also 
Gumbel distribution seems to be better in predicting extremes using IMD rainfall data as 
seen in studies related to rainfall intensity duration frequency curve over Bangladesh (Rasel 
and Islam 2015), intensity duration frequency duration with maximum rainfall (Barrie and 
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Scott 2021) and the distribution shows reliable results in flood forecasting, extreme events 
prediction, estimate river discharge or flow (Solomon and Prince 2013; Meeyaem and 
Polpinit 2014; Mamman et al. 2017; Bhagat 2017; Naz et al. 2019).

4  Results and discussion

As the primary analysis, the annual cycle of IMDAA and IMD is shown in Fig. 2. It can 
be noticed that daily average rainfall given by IMDAA is in close correlation with IMD 
rainfall data. However, a little exaggeration of the data is seen for IMDAA. A broad over-
view of the similar behaviour of average daily data can be seen from the figure. It is clear 
that IMDAA and IMD data share same patterns of crest and trough throughout the daily 
average of the 21 years of study. However, to guarantee the precision of IMDAA data in 
all respects, particularly in grid-based and extreme event prediction, an analysis in higher 
level skills is important. The following subsections are devoted to spatiotemporal analysis, 
variability assessment using different metrics and research on reliability of the data in pre-
dicting extremes.

4.1  Interannual variability of precipitation between IMDAA and IMD

The behavioural patterns of the reanalysis product throughout the years in comparison to 
the IMD observations over SPI are studied. Here, the findings reveal that during monsoon 
season, the estimated rainfall data are more spread out which can be observed from the 
standard deviation (SD) values of IMD (SD = 4.49 mm/day) and IMDAA (SD = 4.72 mm/
day), whereas the data are clustered around the average values during pre-monsoon (SD 
of IMD = 0.8  mm/day, SD of IMDAA = 1.28  mm/day) and winter seasons(SD of IMD 
0.2  mm/day, SD of IMDAA = 0.31  mm/day). Figure  3 shows interannual variability of 
average precipitation estimated by IMDAA and IMD over the years 2000–2020 during dif-
ferent seasons and total yearly precipitation. Annual precipitation of IMDAA is compa-
rable with IMD but with an overestimation by IMDAA. Figure  3a, d shows a common 
pattern indicating average rainfall estimation of IMDAA and IMD is closely related during 
monsoon season and overall annual precipitation values. As depicted in Fig. 3b, e, Winter 

Fig. 2  Daily average precipita-
tion estimated by IMDAA and 
IMD
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and post-monsoon season show similar characteristics implying that IMDAA has well-cap-
tured the rainfall during these seasons on overall seasonal scale. Out of these seasonal and 
annual estimations, Fig. 3c exhibits the highest deviation of precipitation amount obtained 
by IMDAA when compared to IMD. That is, during the pre-monsoon period, a high level 
of overestimation by IMDAA occurred during these 21 years.

4.2  Daily climatology comparison using scatter plots

Scatter plots define the correlation between two quantities with respect to the direction in 
which the points are scattered and the closeness of the points. If the data points are closely 
correlated, the scatter plot will show a straight line fit, and the direction of correlation 
depends on whether the line possesses a positive or negative slope.

Fig. 3  Year to year variation of average daily rainfall on annual and seasonal scale, a Annual, b Winter, c 
Pre-monsoon, d Monsoon and e Post-monsoon
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Here, Fig.  4 presents scatter plots of average daily precipitation amount over SPI for 
21  years during different seasons and the whole year. For a comprehensive analysis of 
the correlation, daily rainfall data of all grid points of SPI from both IMD and IMDAA 
for annual and respective seasons are pooled. All the seasonal and annual scatter plots 
show a positive correlation between IMDAA and IMD. In the scatter plots of annual 
(CC = 0.8018) and monsoon (CC = 0.8196) seasons, IMDAA displays a high correlation 

Fig. 4  Scatter plot of average daily precipitation estimated by IMD versus IMDAA during a annual, b win-
ter, c pre-monsoon, d monsoon and e post-monsoon
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with the IMD observations. The winter and post-monsoon seasonal rainfall are dominant 
over some parts of SPI with significant interannual variability. The dynamical variation in 
the rainfall amounts during these seasons is causing anomalies in the correlation values. As 
inferred from Fig. 4b, e, the correlation values are comparatively less in the case of win-
ter (CC = 0.3294) and post-monsoon (CC = 0.69315) seasons. A correlation coefficient of 
0.7315 indicates that pre-monsoon seasonal IMDAA data shows a moderate level of corre-
lation with the IMD daily grid wise precipitation data. An additional information about the 
correlational relationship can be derived from the best fit trend line and the corresponding 
equation of the line which is included in the figure.

4.3  Spatial variability of IMDAA and IMD on annual and seasonal range

Spatiotemporal patterns of precipitation estimation resulting from a reanalysis product are 
an important analysis technique in establishing many hydrometeorological parameters.

Figure  5 depicts spatial distributions of grid points showing significant difference in 
annual and seasonal precipitation between IMDAA and IMD across the landmass during 
2000–2020. Different colours in the distribution represent grid points which are manifest-
ing notable positive or negative changes in mean precipitation amount when compared to 
the observation dataset.

Student’s t test was used to analyse the extent to which there is a significant difference 
between IMDAA precipitation values and the observation dataset. For the 810 data points, 
a t test was done between 21  years’ annual and seasonal precipitation values. The test 
resulted in zero for the grid points showing the same rainfall value as that of IMD during 
the years 2000–2020 period and the statistic value is one for grid points exhibiting a differ-
ence in precipitation.

In Fig. 5a, the spatial distribution shows that over the Telangana and most of the areas 
of Andhra Pradesh, there is a significant positive difference of 0.5–1 mm/day. It is evident 
that there is an overestimation by IMDAA over some grids of Karnataka over which an 
annual rainfall of 3 mm/day is received. Along the coastal sides of the peninsular region, 
IMDAA shows good agreement with the IMD observations and is having average precipi-
tation of 10–12 mm/day. Additionally, along the coastal sides of SPI, an underestimation 
of IMDAA annual rainfall can be seen. Furthermore, IMDAA overestimated the amount of 
rainfall in most areas of SPI during the winter by 0–1 mm/day.

Pre-monsoon rainfall predicted by IMDAA is analogous to IMD as the number grids 
indicating significant difference is very less and an overestimation is only seen in relatively 
few number of grids along the coastal regions Andhra Pradesh, Karnataka and Kerala 
as shown in Fig.  5c. Precipitation during monsoon season estimated by IMDAA dem-
onstrate a great homogeneity over all the parts of the landmass as given in Fig. 5d. The 
area received mean rainfall of 5.35 mm/day according to IMD and 6.43 mm/day based on 
IMDAA during the monsoon period from 2000 to 2020. A mixture of over and under esti-
mations of IMDAA rainfall can be seen with a concentration of significantly different grids 
over Telangana. For the post-monsoon season, IMD and IMDAA estimated 2–3 mm/day 
along the northwest sides of Karnataka and over Telangana, 7–8 mm/day over Kerala and 
some regions of Fig. 5e indicate that IMDAA rainfall during post-monsoon season shows 
significant difference in the northern states of the region, especially overestimation in the 
range of 0–0.5  mm/day over Telangana and Karnataka. Underestimation of the rainfall 
amount predicted by IMDAA can be visualised through the mean difference value which is 
in the range of 0–1.5 mm/day.
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Fig. 5  Spatial distribution of significantly different grid points of seasonal and annual daily average precipi-
tation, a annual, b winter, c pre-monsoon, d monsoon, e post-monsoon
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Quantitatively, the estimations of IMDAA are comparable with IMD observations 
excluding overestimations in the course of some seasons over particular areas of the land-
mass. Hence, during 2000–2020, IMDAA well-captured the precipitation for all the sea-
sons and overall times of the years.

The performance of IMDAA in correctly extracting precipitation amounts for each grid 
point in different years shows differences in several grid points during winter and post-
monsoon seasons. But for the monsoon and pre-monsoon seasons, the spatial distribution 
follows a pattern in which there is a larger number of white grids than shaded grids indicat-
ing the efficiency of IMDAA.

4.4  Comparison using statistical metrics

Apart from the visual representation of the homogeneity of the two products, a statisti-
cal evaluation gives a better interpretation of the performance of the reanalysis product. 

Table 2  Statistical indices results for monthly analysis

Months INDICES

CC RMSE (mm/
month)

RB (mm/month) MAE (mm/
month)

d KGE NSE

January 0.81 3.83 27.39 3.14 0.99 0.65 0.41
February 0.91 8.73 59.12 5.75 0.99 0.35 0.43
March 0.96 14.38 67.06 12.40 0.98 0.32 0.67
April 0.89 27.93 70.17 26.17 0.98 0.28 − 0.78
May 0.83 40.95 56.33 37.11 0.98 0.39 − 1.28
June 0.75 59.17 36.76 54.23 0.97 0.46 − 2.21
July 0.80 43.74 17.59 36.74 0.98 0.71 0.09
August 0.93 30.67 12.69 24.90 0.99 0.83 0.60
September 0.92 33.89 18.30 28.55 0.99 0.79 0.44
October 0.91 28.26 14.19 24.16 0.99 0.83 0.62
November 0.93 19.66 5.54 16.49 0.99 0.75 0.85
December 0.83 10.65 7.78 7.59 0.99 0.80 0.61

Table 3  Statistical indices results for seasonal and annual analysis

Indices Seasonal Annual

Winter Pre-monsoon Monsoon Post-monsoon

CC 0.84 0.75 0.76 0.88 0.77
RMSE (mm/season) 10.92 80.91 155.75 44.15 268.34
RB (mm/season) 45.2 62.19 20.37 10.69 23.27
MAE (mm/season) 8.34 75.44 138.34 36.22 245.67
d 0.98 0.97 0.97 0.99 0.97
KGE 0.48 0.31 0.66 0.84 0.66
NSE 0.23 − 3.88 − 1.06 0.65 − 1.72
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Tables 2 and 3 illustrate the values of various statistical measures to predict the reliability 
of the reanalysis product.

Monthly, seasonal, and annual variations of statistical indices are observed for IMDAA 
with an observation dataset from IMD across the SPI region during the span of 2000–2020. 
CC values are high for all the months indicating a good linear relationship between reanaly-
sis and observation. RMSE and MAE show a similar trend moving from January to Decem-
ber. RMSE and MAE values are lowest for the month of January (~ 3–4 mm/month), from 
February to June there is a linear increase in RMSE and MAE values i.e., ~ 5.5–60 mm/
month and a sudden trend of decreasing RMSE and MAE values can be seen from July to 
December with approximately in the range of 35–7 mm/month. Relative Bias is also show-
ing a similar pattern to that of RMSE and MAE values. Index of Agreement values is close 
to one, indicating a good agreement over all twelve months even though there are some 
differences in the performance of IMDAA in each month as indicated by other statistics. 
This may be because of the sensitivity of the index due to the presence of extreme values 
leading to varying squared differences.

Table  3 gives statistical values for seasonal and annual scales. A similar pattern is 
shown by the seasonal values also. That is, the NSE, KGE and CC values are the small-
est and have a high relative bias for the pre-monsoon (March–May) season. Monsoon and 
annual periods have a negative NSE but a lower relative bias indicating the efficiency of 
IMDAA. The RMSE and MAE values are very high in the case of monsoon and annual 
since these are calculated on a seasonal (mm/season) and annual (mm/year) basis in which 
the total precipitation amount is very high. Overall results show that IMDAA estimations 
are in close relation to IMD based on all the statistical indices even though some months 
are showing some discrepancies.

4.5  Geometrical evaluation using performance diagrams

Evaluation of performance of IMDAA is done using a geometrical relationship representa-
tion approach known as performance diagram. Performance diagram can depict the rela-
tionship between four important forecast metrics such as Probability of Detection (POD), 
Bias, Success Ratio (SR) and Critical Success Index (CSI). Percentiles of data are nor-
malised to find out the hits and misses by fixing a threshold of zero. Hit occurs when both 
observation and reanalysis data behave analogously, that is, when observation is greater 
than zero, reanalysis is also greater than zero or vice versa. Misses are defined as a condi-
tion where observation and predicted data behaves oppositely.

Figure 6a indicates performance diagram of IMDAA during seasonal and annual scales 
where the data are taken yearly over areal average of 810 grid points and temporal average 
corresponding to seasonal or annual basis. In all the seasonal and annual data, IMDAA 
is showing good performance. IMDAA performs best during pre-monsoon season where 
the POD and SR values are close to one, winter and post-monsoon values are coinciding, 
annual and monsoon season plots are varying similarly. Figure 6b shows performance of 
IMDAA in the case of daily data for annual and seasonal scale. Prediction during annual 
(POD = 0.98 and SR = 0.98) and post-monsoon (POD = 0.98 and SR = 0.99) season is rel-
atively satisfactory with respect to other seasons in daily case. POD and CSI of winter 
(POD = 0.87) and monsoon (POD = 0.84) are less than other points. Spatial scale compari-
son of annual and seasonal data is shown in Fig.  6c. IMDAA works better in monsoon 
season, which is having high POD (0.95), CSI, and SR (0.97) values. But annual, pre-mon-
soon and post-monsoon seasons show similar properties. Out of the five forecast values, 
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IMDAA during winter season (POD = 0.82 and SR = 0.88) shows relatively worst perfor-
mance. Moreover, the mean values over yearly, spatial, and daily scale data, an analysis 
was carried out to evaluate the reliability using percentile values. Performance diagram of 
90th percentile (Fig. 6d), 95th percentile (Fig. 6e) and 99th percentile (Fig. 6f) resulted in 
the excellence of detection of precipitation by IMDAA during monsoon season with large 
POD and SR values. 90th and 95th percentile performance plots exhibit similar charac-
teristics with annual( POD for 90th = 0.90, SR for 90th = 0.91 and POD for 95th = 0.88, 
SR for 95th = 0.93), pre-monsoon (POD for 90th = 0.91,SR for 90th = 0.94 and POD for 
95th = 0.89, SR for 95th = 0.93), monsoon (POD for 90th = 0.93, SR for 90th 0.97 and 

Fig. 6  Performance diagrams of IMDAA with respect to a annual variation, b daily variation, c spatial vari-
ation, d 90th percentile variation, e 95th percentile variation, f 99th percentile variation
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POD for 95th = 0.95, SR for 95th = 0.97) and post-monsoon(POD for 90th = 0.96, SR for 
90th = 0.93, POD for 95th = 0.92, SR for 95th = 0.91) seasons. Working of IMDAA dur-
ing the winter season is relatively bad when compared to other seasons as seen in all the 
three percentile diagrams. Analysing all the performance diagrams, it can be concluded 
that prediction by IMDAA is close enough in all aspects, whether it is annual, daily, spatial 
or percentiles indicating the robustness of IMDAA in capturing precipitation occurrences.

4.6  Mahalanobis distance metric for percentiles

The intensity of rainfall events can adversely affect agriculture, biodiversity, lives of peo-
ple, constructions, etc. Extreme rainfall can cause flash floods leading to catastrophes. The 
frequency of such extreme events increases the chance of distorting the balance of the cli-
matic conditions. Hence a study verifying the changes in percentiles of precipitation over 
the years 2000–2020 of each grid point rather than mean rainfall is also important. Rather 
than the usual Euclidean metric, a new technique of finding multivariate distance is used 
to evaluate the variations in percentiles of IMDAA and IMD. Corresponding to each grid 
point, the 90th, 95th, and 99th percentile of precipitation for 21 years are calculated. Two 
groups are formed relative to IMDAA and IMD datasets using these percentiles as the 
three variables. Mahalanobis distance was calculated between these groups in annual and 
seasonal cases.

Mahalanobis distance considers correlation between variables explaining the variability 
between groups by measuring distance between centroids of clusters of different groups. 
Average MD values over the area are smaller for winter (1.29), monsoon (3.09) and post-
monsoon (2.64) seasons while annual (8.38) and pre-monsoon (6.45) shows distinguish-
ably high MD values. With reference to the IMD, IMDAA shows distinct percentile char-
acteristics during different seasons as depicted by the MD values.

After calculating the distance, Hotelling’s T2 test was utilised to find the grid points 
with a significant difference in percentile values or which have high Mahalanobis dis-
tance. Spatial plots showing the grid points of significant variations are shown in Fig. 7. 
At 5% significance level, the annual percentile groups show the highest number of sig-
nificantly different grids with account of 810 grids. Grid points spread out in the central 
regions of SPI show distinguishable variation in percentiles considering the yearly data 
(Fig. 7a). Telangana and different parts of Andhra Pradesh also contain grid points with 
percentile differences during the pre-monsoon season, as seen in Fig. 7c. 188 out of 810 
grid points, mostly lying in Telangana and coastal regions of Andhra Pradesh shows sig-
nificant difference during pre-monsoon season. Apart from the lower MD values, the simi-
larity between IMDAA and IMD percentile groups for winter (1 grid), monsoon (19 grids) 
and post-monsoon (5 grids) seasons is again shown by the smaller number of significantly 
different grids. Indifferent behavioural patterns in percentiles are not displayed by IMDAA 
during monsoon and post-monsoon seasons as presented in Fig. 7d, e. In a nutshell, a com-
parison of IMDAA and IMD in terms of distance between groups dependent on percentiles 
resulted in the depiction of proficiency of reanalysis product in capturing precipitation to a 
great extent.

4.7  Spatial distribution of extreme rainfall episodes over SPI

The agricultural and economic growth of India is largely dependent on rainfall received by 
the country. The occurrence of extreme rainfall events over the country is exceeding the 
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Fig. 7  Spatial plot of grid points showing significant Mahalanobis distance during a annual, b winter, c pre-
monsoon, d monsoon and e post-monsoon
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normal frequency for the past few years. Regional variations in land cover, urbanization, 
global warming, deforestation, etc. affect the amount of rainfall received by the country. 
Low-pressure systems over the Bay of Bengal and the increase in cyclonic activity over the 
Arabian sea are also causing extreme events in many parts of the country (Chaluvadi et al. 
2021). To avert the significant economic damage caused by such catastrophic events, an 
effective reanalysis dataset is needed.

This section examines the statewise assessment of severe rainfall incidents that occurred 
between 2000 and 2020. Analyses are done to see how well IMDAA and IMD can estimate 
supposedly severe occurrences that have already taken place.

Between the Arabian Sea to the west and the Western Ghats to the east sits Ker-
ala, which covers 38,863  km2 of the total area of the mainland. Kerala has a humid 
marine climate with the monsoon season from June to August receiving an average of 
3100–7030 mm annual rainfall. The state consists of land imposed by the Western Ghats 
composed of mountains, valleys, etc. About 44 rivers are present in Kerala, out of which 40 
are originating in the Western Ghats. For the past few years, the frequency of flooding has 
increased in the state (Lal et al. 2020). The spatial distribution of average rainfall obtained 
by the area during extreme rainfall events from 6 to 18 August 2018 estimated by IMDAA 
and IMD is displayed in Fig. 8a, b. This extreme rainfall event caused havoc in the state 
with huge economic loss. Spatial distributions are plotted with the original resolutions of 
both datasets. That is, IMDAA is having 12 km resolution and IMD with 25 km resolution. 
IMDAA and IMD are exhibiting comparable spatial patterns from 6 August to 18 August 
2018 with heavy rains in several areas of Kerala.

Tamil Nadu is one of the largest states in India, having a total area of 130,058  km2. 
The Indian Ocean borders it on the south, the Bay of Bengal to the east, Kerala to the 
west, Karnataka to the northwest, and Andhra Pradesh to the north. Much of the rain-bear-
ing clouds are obstructed by the Western Ghats, leading to variations in monsoon over 
Tamil Nadu, effectively causing droughts in some regions. But a distinct sudden rainfall is 
causing severe floods in Tamil Nadu. An extreme rainfall scenario is observed from 26th 
November to 2nd December 2015 (Singh et al. 2018). Figure 8c, d depicts spatial analysis 
on these rainy days. Results imply that IMDAA underestimated rain in some regions of 
Tamil Nadu as seen in the distribution image. Discrepancies between the IMDAA and IMD 
outcomes are seen in the figures where IMD showed heavy rainfall in coastal lines but 
IMDAA showed heavy rainfall in some grid points other than one shown by IMD.

Andhra Pradesh is located between latitudes 12° 41′ N and 19.07°′N and longitudes 77° 
E and 84° 40′ E. Andhra Pradesh has the second longest coastal line in the country and 
consists of major parts of the Eastern Ghats and Deccan Plateau. A flood occurred from 
29th September to 2nd October 2009 due to heavy precipitation in the cause of a mesoscale 
system (Kumar et al. 2012). Figure 8e, f represents these rainfall episodes and shows how 
well IMDAA and IMD captured this event. IMD fails in capturing these events properly, 
whereas IMDAA shows higher precipitation values in Andhra Pradesh during these days.

Telangana is a semi-arid state located on Deccan Plateau. Godavari and Krishna are the 
two major rivers in the state. A yearly rainfall of 700–900 mm is received by the southern 
region and 900–1500 mm by the northern region of the state, with major influence by the 
summer monsoon season. About 250 mm of rainfall is received by the north-western parts 
of the state from 23–24 September 2016 (Boyaj et  al. 2020). On 24 September 2016, a 
rainfall of 390 mm was reported at the station Armoor (18.9◦ N, 78.29◦ E). These rainfall 
episodes are accurately estimated by the two products, as seen in Fig. 8g, h.

Karnataka is in the plateau of convergence of the Western Ghats and the Eastern Ghats. 
The topographical features of Karnataka are diverse, with forests, mountains, coastal 
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Fig. 8  Spatial distribution of extreme rainfall episodes estimated by IMDAA over a Kerala, c Tamil Nadu, 
e Andhra Pradesh, g Telangana, i Karnataka, and IMD over b Kerala, d Tamil Nadu, f Andhra Pradesh, h 
Telangana, j Karnataka



1990 Natural Hazards (2023) 117:1969–1999

1 3

plains, and remnant hills. About 80% of the rainfall received by the state is during the 
southwest monsoon season. Depression in the Bay of Bengal caused heavy rainfall of 
around 224 mm in the state on 6–10 August 2019. It is evident from Fig. 8i, j that IMDAA 
and IMD well-captured the precipitation amount.

4.8  Extreme event prediction—utilisation of extreme value distribution

The accuracy of IMDAA in estimating the level of severe rainfall occurrences was exam-
ined in the preceding section. In this section, an extreme value distribution is utilised to 
predict extremes when given precipitation data. Extremes are predicted using precipita-
tion data during each of the rainfall episodes mentioned in Sect. 4.7, so that the effective-
ness of the data may be evaluated. Corresponding to each state’s extreme rainfall days, 
extreme value distribution was used to generate grid points illustrating the extremes on 
the specified days. Gumbel distribution was used to fit the data and examine the extreme 
grid points. On each rainfall episodes, distribution was utilised to find out the grid points 
showing extremes. For the five states, precipitation data predicted by IMDAA and IMD 

Fig. 8  (continued)
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during extreme rainfall episodes happened in each state were observed. The observed rain-
fall during these episodes predicted by IMDAA and IMD were used to determine extremes, 
which in hand presented the difference between the reliability of IMDAA and IMD data in 
predicting extremes. The extreme grid points predicted by IMDAA and IMD are shown in 
Fig. 9.

In Fig. 9a, b, IMDAA is showing overall overestimation when compared to IMD, but 
over Kerala, IMDAA shows more grid points with extremes. Extreme valued grid points 
are similar for both IMDAA and IMD in the case of Tamil Nadu rainfall episodes (Fig. 9c, 
d). IMDAA and IMD are forecasting the same grid points with extreme value during 
the Andhra Pradesh extremes, with the exception of two or three grid points (Fig. 9e, f). 
IMDAA overestimated the number of extreme grid points but showed compatible results 
over Telangana (Fig. 9g, h).

A record amount of rainfall was received by Karnataka during 6–10 August 2019. Still, 
the extreme grid points detected using IMD data are unsatisfactory since no grid points 
exhibit extremes in Karnataka. In contrast, IMDAA spatial plot reveals most of the grid 
points which had extreme precipitation, especially over Karnataka. IMDAA precipitation 
data, as opposed to IMD precipitation data, accurately represents extremes, according to 
the findings. Also, IMDAA being 12 km resolution data available even on an hourly scale, 
utilisation of it for predicting extreme events stands to reason. The unreliable behaviour 
of IMD, since it failed to determine extreme grid points which was correctly predicted by 
IMDAA implies that usage of IMDAA helps in accurately predicting extremes which in 
turn helps assessing the spatiotemporal variability much better.

4.9  Teleconnection of ENSO with SPI rainfall

The interannual variability of tropical climate system is influenced by a large-scale phe-
nomenon known as ENSO (  El Niño-Southern Oscillation). Research suggests that an 
inverse relationship exists between ENSO and Indian summer monsoon rainfall. El Niño is 
referred to as a situation where five consecutive three month moving average Oceanic Nino 
Index Average (ONIA) values exceed 0.5 °C (Azad and Rajeevan 2016).

An attempt is made to investigate the role of ENSO in the interannual variation of rain-
fall over SPI by determining how resonant the extreme years predicted using IMDAA with 
the ENSO signal. In general, El Niño events are associated with dry weather and La Niña 
occurrences are related to wet conditions. Figure 10 represents the interannual variability 
of standardised rainfall time series with depiction of El Niño and La Niña year’s corre-
sponding to IMDAA and IMD from 2000–2020.

El Niño years are shown in red and La Niña years are shown in blue colour. Fig. 10a, b 
implies that IMDAA and IMD behaves similarly considering the variability with respect to 
ENSO. El Niño and La Niña are the warm and cold phases of the climate patterns, respec-
tively. In most of the El Niño years, normalised precipitation has got a negative value and 
for the La Niña years, a positive value can be seen which is in tune with the characteristics 
of El Niño and La Niña events. The La Niña years of 2000, 2007, 2008, 2010 and 2020 
imply a positive normalised precipitation with consistent behaviour in both IMDAA and 
IMD. The wet year 2014 is not associated with La Niña episodes. Over the SPI, the rela-
tively dry year of 2002 is not related to El Niño in case of IMD data, but it is related when 
normalised precipitation is from IMDAA. The wet years of 2006, 2015, 2016 and 2020 is 
not completely account for La Niña episodes. During the year of 2018 and 2019, the south-
ern parts of SPI has experienced flood, though there was El Niño episodes. Even though 
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Fig. 9  Spatial plots of grid points with extreme rainfall events estimated using IMDAA over a Kerala, c 
Tamil Nadu, e Andhra Pradesh, g Telangana, i Karnataka, and IMD over b Kerala, d Tamil Nadu, f Andhra 
Pradesh, h Telangana, j Karnataka
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IMD normalised precipitation is positive, it is far less than IMDAA, which in turn repre-
sent the wet year more efficiently. Conclusively, it is obvious that the interannual variability 
is dependent on the ENSO events but cannot completely rely on the El Niño and La Niña 
episodes to predict extreme years.

5  Summary and conclusions

For the past few decades, South Peninsular India has been facing extreme rainfall events 
causing severe meteorological impacts, including agricultural and infrastructural losses. A 
robust reanalysis product with high resolution is required for predicting future forecasts to 
take adequate measurements and reduce risks of extreme events such as flash floods and 
landslides.

Fig. 9  (continued)
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Fig. 10  Interannual variability of standardised rainfall time series with El Niño and La Niña year’s corre-
sponding to a IMDAA and b IMD from 2000 to 2020
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A high-resolution 12  km gridded rainfall dataset produced by National Centre for 
Medium Range Weather Forecasting (NCMRWF), namely IMDAA, is analysed to esti-
mate rainfall characteristics and extreme events over South Peninsular India during 
2000–2020. IMD daily gridded rainfall dataset is explored for the benchmark of the 
study. The datasets considered are acquired using different assimilation techniques and 
can be utilised for comparison without any overlapping. Proper assessment of monthly, 
seasonal and annual scale precipitation estimation by IMDAA is done with IMD obser-
vations. Investigation of spatial trends of mean precipitation during seasonal and annual 
scale, statewise rainfall episodes, identification of significant differences in precipitation 
using distance metric known as Mahalanobis distance, and prediction of extreme events 
using extreme value distribution is done. Several visual and statistical assessment is also 
implemented, such as calculating several statistical measures and graphical representa-
tion of detection capability using a Performance diagram. The major conclusions of the 
research can be summed up as follows:

1. IMDAA slightly overestimated average precipitation over SPI throughout all the years 
under investigation. Seasonal scale measurements reveal that the IMDAA’s assessment 
varies from season to season. Daily average precipitation obtained by IMDAA over SPI 
during 2000–2020 represents a close correlation with IMD observations.

2. Utilisation of Student’s t test to find the grid points showing significant variations in 
average precipitation over the years implied that the number of grid points indicating 
substantial difference is more prominent in winter and post-monsoon season compared 
to monsoon and pre-monsoon season, according to a spatial plot displaying grid points 
exhibiting significant differences throughout each season and yearly.

3. Correlation values are pretty high for all monthly, seasonal, and annual cases, but RMSE, 
RB, and MAE values vary in a similar pattern. Both seasonal and monthly statistics 
show identical characteristics, such as RMSE, RB, and MAE being smaller for the win-
ter season, with much higher values till starting of the monsoon season and decreasing 
from July to December. Index of Agreement values is close to one in all cases. NSE and 
KGE values are also changing concerning the months or seasons of study. It is clear 
that, even though the statistical metrics show different values based on the seasons, all 
metrics are close to optimal values.

4. Graphical representation of precipitation detection capacity of IMDAA during daily, 
annual, spatial and percentile using Performance diagram indicates that POD and SR 
are close to one in most cases. For the annual scale, yearly and seasonal plots, IMDAA 
exhibits good performance. Daily scale performance of IMDAA is better in annual and 
post-monsoon seasons, whereas over the spatial scale, it performs best during monsoon 
season. 90th and 95th percentile performance diagrams revealed comparable character-
istics.

5. Mahalanobis distance for percentiles implied that monsoon and post-monsoon seasons 
demonstrated strong compatibility between IMDAA and IMD; however, annual and 
pre-monsoon seasons displayed some considerably dissimilar grid points in terms of 
distance.

6. The five states constituting SPI are diverse in their climatology. Each state is impacted 
by rainfall differently due to its unique geographic and climatic characteristics. Spatial 
distributions of rainfall episodes of each state acted differently. For the state of Kerala, 
IMDAA and IMD exhibited similar distributions. A dry bias was shown by IMDAA 
over Tamil Nadu for precipitation from 26th November to 2nd December 2015. On the 
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other hand, IMD could not effectively capture the rainfall episodes from 29th September 
to 2nd October 2009 over Andhra Pradesh, while IMDAA successfully captured the 
rainfall. IMDAA indicated the reported rainfall exactly over Telangana and Karnataka.

7. The extreme value distribution overestimated extreme grid points by IMDAA data in 
the Telangana and Kerala rainfall episodes. Extreme grid points were satisfactorily the 
same for IMDAA and IMD in the case of Tamil Nadu and Telangana. However, IMDAA 
correctly detected extreme grid points in the Karnataka region while IMD failed to do 
so.

8. ENSO phenomenon impacts the tropical climate including Indian monsoon. Interannual 
variability of standardised rainfall time series of IMDAA and IMD with respect to El 
Niño and La Niña years indicated that extreme years are resonant with the ENSO signal 
over the region but cannot completely rely on ENSO to predict extremes.

The results suggest that IMDAA reanalysis dataset is better at estimating accurate pre-
cipitation over SPI. The research study also gives insight into the certainty that IMDAA 
data may be used to forecast extreme rainfall events. The overestimation of rainfall amount 
estimated by IMDAA in some seasons and regions can be corrected using bias correction. 
The future study will include the bias correction of the reanalysis product and consider 
other factors responsible for the extreme events.
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