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Abstract
Earthquakes are natural disasters that threaten human lives and infrastructure, especially in 
seismo-tectonically active regions. Therefore, mapping and assessment of earthquake risks 
are indispensable for disaster preparedness and mitigation. In this study, a novel approach 
has been adopted by integrating the subjective and objective multi-criteria decision-mak-
ing (MCDM) models, i.e. analytical hierarchy process (AHP), entropy, and artificial neural 
network (ANN), to estimate the earthquake risk in the Himalayan tectonic region. Integra-
tion of AHP and Entropy has been applied to assess the vulnerability and the coping capac-
ity, whereas ANN has been used to estimate the earthquake probability. The hazard map is 
generated using earthquake intensity and probability thematic layering information. Sub-
sequently, the earthquake risk was evaluated by combining the hazard, vulnerability, and 
coping capacity maps. The results indicate that more than 31% of the area may be under 
high to very high risk, whereas about 27% of the population and 31% of the buildings may 
be at high to very high risk of earthquake hazards. The receiver operating characteristic 
(ROC) curve indicates good results, with the area under the curve of approximately 0.83. 
The results presented in this study may be helpful for the government agencies involved in 
disaster mitigation to mitigate and prepare strategies for earthquake hazards in the Himala-
yan region.

Keywords  Himalayas · Earthquake risk · Hazard · Vulnerability · AHP-Entropy-ANN

1  Introduction

Natural hazards such as earthquakes are complex phenomena that can occur independently 
or in a sequence that can significantly affect the environment, society, and infrastructures 
(Khatakho et al. 2021). Earthquakes are naturally occurring phenomena of short duration; 
however, their impacts on society, buildings, and infrastructures may persist for years. It is 
estimated that only due to earthquakes that occurred in the twentieth century, more than 
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2 million people died globally (Doocy et  al. 2013). Therefore, proper planning and dis-
aster mitigation steps must protect the society and infrastructure from such  catastrophic 
events (Cruz-Milán et al. 2016). However, in developing southeast Asian countries, uncon-
trolled migration, urbanization, ill-maintained and obsolete infrastructures, and land use 
mismanagement have hindered disaster mitigation efforts against natural hazards such as 
earthquakes (Xu et al. 2010). Therefore, a comprehensive study to understand the impacts 
of such disasters on cities, populations, and infrastructure facilities is required urgently. 
Recent developments in remote sensing, geospatial information system (GIS) techniques, 
and machine learning can help to identify potential risk zones in a much larger area.

The Himalayan region is one of the most seismo-tectonically active zones on the earth. 
The continuous collision of the Eurasian and the Indian plate, which continuously pushes 
the Himalayas higher and higher, increases the chance of large earthquakes with every 
passing day (Bilham et al. 2001). Recent devastating earthquakes in the Himalayan region, 
e.g. the Gorkha earthquake (M ~ 7.8) that occurred on 25th April 2015 in the central Hima-
layan region, caused about 9000 casualties and left nearly 22,000 people injured, besides 
destroying valuable infrastructure, causing considerable economic losses (Bilham 2015). It 
is estimated that a potential earthquake similar to that in the year 1505 may affect millions 
due to multiple times increases in population (Wyss et al. 2018), which is a matter of con-
cern for the inhabitants of that region and the surrounding areas.

Rapid population growth and unplanned urbanization in the Himalayan region have 
enhanced the threat to life and property. It is estimated that between 1961 and 2011, the 
population in the Himalayan region increased by ~ 250%, with an annual growth rate of 
about 3.3%, which is three times higher than the global average. If the population growth 
continues at the same rate, the number of people residing may increase by 13-fold by 2061 
(Apollo 2017), making this region and the population more vulnerable to disasters. The 
unplanned population growth also leads to unplanned urbanization and puts much stress on 
available resources. Besides population density, land use mismanagement, non-engineered 
infrastructures, and poorly constructed buildings are also a threat during an earthquake, 
specifically in metropolitan cities (Asadi et al. 2019). Identifying the vulnerable and risk 
zones, developing an adequate number of hospitals and well-designed infrastructure, edu-
cational and training institutes for the benefit of vulnerable communities, and early warn-
ing systems may help in minimizing the impacts of earthquakes. Hence, a comprehensive 
earthquake study using advanced computing techniques such as machine learning, remote 
sensing and GIS-based techniques is needed.

Over the years, various techniques, such as machine learning and multi-criteria decision 
models, have been used to estimate earthquake-associated hazards. The analytical network 
process (ANP), artificial neural network (ANN), and Technique for Order of Preference by 
Similarity to Ideal Solution (TOPSIS) have been used to assess earthquake vulnerability 
and map the probability (Alizadeh et al. 2018; Jena et al. 2019; Jena and Pradhan 2020). 
Jena et al. (2020) applied the recurrent neural network (RNN) to estimate earthquake prob-
ability in Odisha, India, whereas integrated AHP with a probabilistic neural network (PNN) 
was used for vulnerability mapping (Jena et al. 2021a). Yariyan et al. (2020) evaluated the 
earthquake risk spatially for Sanandaj, Iran, using a fuzzy AHP-ANN model; Yariyan et al. 
(2021) attempted to map the seismic vulnerability for Sanandaj, Iran, using hybrid ANN 
models. Several machine learning techniques have also been successfully implemented for 
geotechnical applications, such as to map potential zones for groundwater, landslide and 
flood susceptibility mapping (de Oliveira et al. 2019; Liu et al. 2021; Chakrabortty et al. 
2020; Kaur et al. 2022; Satarzadeh et al. 2022). For Sikkim Himalaya, earthquake hazard 
was estimated by fuzzy AHP (Pal et  al. 2008), whereas the earthquake vulnerability for 
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the Himalayan region has also been estimated using multi-criteria decision models such as 
AHP-VIKOR, AHP-Grey Relational Analysis (GRA) and fuzzy AHP-fuzzy TOPSIS meth-
ods (Malakar and Rai 2022a, b). Studies on earthquake probability and hazard estimation 
in the Himalayan region that are based on traditional seismological techniques provide an 
idea of risk and hazard in the region (Mahajan et al. 2010; Yadav et al. 2012; Roy et al. 
2012; Chandra et al. 2018; Stevens et al. 2020). To study a larger region, remote sensing 
and GIS-based methods, along with machine learning techniques that can handle various 
spatial data simultaneously, can provide a better estimate of hazard, vulnerability and cop-
ing capacity.

In this paper, we present a comprehensive earthquake risk study for the Himalayan 
region which will help to develop mitigation strategies in this active seismo-tectonic zone. 
However, the assimilation of the dataset for a larger area is a relatively challenging task, 
which is the main reason for studies focusing on smaller areas instead of considering 
large-scale scenarios. As discussed above, a number of studies have integrated the MCDM 
model with ANN to map the earthquake probability and hazard using an MCDM model, 
such as AHP, which provides weights of various datasets based on experts’ opinions and 
previously available literature. However, experts may ignore the information contained in 
the data while calculating weights, which may lead to uncertainty in the result (Bhattacha-
rya et al. 2010; Emrouznejad and Marra 2017; Rodcha et al. 2019). This problem can be 
resolved by integrated MCDM models, as discussed by Malakar and Rai (2022).

Here, we have attempted to integrate subjective and objective MCDM models, i.e. AHP 
and entropy, with ANN to estimate the earthquake risk and integrate the results on a GIS 
platform for large-scale scenarios by using a number of publicly available parameters 
(Table 1). These parameters directly or indirectly influence the earthquake risk assessment. 
This study aims to minimize the impact of a potential earthquake in future by identifying 
the most hazardous zones in the study area. The detailed data sources and methodology are 
discussed in the following sections.

2 � Study area

The study area covers a significant portion of the Himalayan Mountains (Fig. 1), one of 
the most seismo-tectonically active zones. The region extends from the northeastern to 
the north-western border of India and several southeast Asia countries, covering an area 
of more than a million km2 and inhabited by more than 90 million people. The moun-
tain chain has resulted from a continuous collision between the Indian and Eurasian plates 
(Dewey and Bird 1970; Le Fort 1975; Molnar 1984; Dewey et al. 1989). Global position-
ing system (GPS) measurements indicate a convergence rate of 4–5  cm/year (Banerjee 
and Bürgmann 2002), which has resulted in the accumulation of significant strain energy 
that is released from time to time in the form of moderate to large earthquakes (Besse 
and Courtillot 1988). The prominent tectonic features in the region are the Main Central 
Thrust (MCT), the Main Boundary Thrust (MBT), the Indus Tsangpo Suture (ITS), and 
the Himalayan Frontal Arch (HFA) extending from the northwest to the southeast (Sinha 
and Upadhyay 1995). The basement crystalline complex is overthrust by the Precambrian 
to Tertiary rocks from north to south by a series of three- and four-thrust sheets (Sinha 
and Upadhyay 1995). The main axial lineament of the Himalayas is characterized by verti-
cally dipping crystalline rocks, with the southern and northern limbs diverging and being 
intruded by younger granites (Sinha 1992). The MBT separates the para-autochthonous 
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and allochthonous units south of Himalaya from the Siwalik Molasse along the Himalayan 
foothills, whereas the MCT separates the metamorphosed crystalline Vaikrita Complex and 
the carbonate para-autochthonous zone. The ophiolitic Melange results from the obduction 
of oceanic material and subduction of a continental plate (Sinha and Upadhyay 1995). As 
per the seismic hazard zonation map (BIS 2002), the region falls in zone IV and V. The 
peak ground acceleration (PGA) in the region is estimated to vary between 0.10 and 0.40 g, 
with a 10% probability of exceedance in 50 years (Bhatia et al. 1999).

Most earthquakes are shallow-focus earthquakes with depths of less than 30 km. Though 
a few deep-focus earthquakes have also been reported, the classic and recent example is the 
October 2015 Hindu Kush earthquake, besides a few major historical earthquakes (Bilham 
2019). It is almost impossible to theoretically and experimentally predict earthquakes, as 
the stress released along this subducted region is not homogeneous in space and time (Bil-
ham 2015). Therefore, estimating earthquake-associated hazards and risks is essential for 
the mitigation of impacts due to any significant seismo-tectonic event.

3 � Materials and methods

3.1 � Data acquisition 

For the earthquake risk assessment, non-spatial and spatial data collected from various 
sources were used in this study. These data include an earthquake catalogue, geological 
data such as faults and lithology, and data about social and structural information, hospi-
tals, and communication networks (Table 1). The earthquake catalogue was obtained from 
the National Centre of Seismology, India (https://​seismo.​gov.​in/) for the year between 1900 
and 2020, whereas geological data such as the distribution of active faults were obtained 
from the global earthquake model (https://​www.​globa​lquak​emodel.​org/), whereas the litho-
logical data were obtained from the Universitat Hamburg (http://​litho​map.​cen.​uni-​hambu​
rg.​de/). The time-averaged shear wave velocity up to 30 m depth (Vs30) was obtained from 
the USGS (https://​www.​usgs.​gov/), whereas the soft soil thickness was obtained from the 

Fig.1   Location of the study area. Circles show earthquakes with magnitude M > 4.5

https://seismo.gov.in/
https://www.globalquakemodel.org/
http://lithomap.cen.uni-hamburg.de/
http://lithomap.cen.uni-hamburg.de/
https://www.usgs.gov/
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Food and Agricultural Organization, United Nations (https://​www.​fao.​org/​home/​en). The 
Peak Ground Acceleration (PGA) was estimated using the relationship given by Panjamani 
et  al. (2016). The  SRTM  elevation data (SRTM 2013) were used to derive the slope in 
the area. The administrative boundary, buildings, hospitals, communication networks, and 
land use datasets were obtained from various freely available sources such as DIVA-GIS 
(https://​www.​diva-​gis.​org/) and OpenStreetMap (https://​www.​opens​treet​map.​org/). The 
used datasets were last accessed on 25th September 2021. Secondary layers such as Euclid-
ian distance, Inverse Distance Weighting (IDW), and Kernel density were derived using 
multiple algorithms. The datasets were standardized and reclassified into five classes: very 
low, low, moderate, high, and very high, using the quantile classification technique. In the 
subsequent section, we discussed the detailed methodology of the proposed model used in 
this study (Fig. 2).

3.2 � AHP‑entropy integration

Saaty (1980) developed one of the multi-criteria decision-making (MCDM) models, 
known as the analytical hierarchy process (AHP). This model uses a hierarchical structure 
to evaluate the priority of the criteria included in the complex decision-making problem 
through pairwise comparison matrices. These matrices are primarily based on the opin-
ion of the experts or the published literature. The steps included in this method include 
the construction of the pairwise comparison matrix using the criterion scores. The criteria 
score is assigned from 1 to 9 (Saaty 1980) based on the experts’ knowledge derived from 
the published literature. The matrix is then normalized, and the respective weights of each 
criterion are evaluated. To check the consistency of the developed result, we used the terms 
consistency index (CI) and consistency ratio (CR). The CI and CR are given by

where λmax is the principal eigenvalue, n is the number of used criteria, and RI is a random-
ness indicator. The value of RI is predicted by Saaty (1980) for the matrices dimension 
between 1 and 15. If the CR < 0.1, then the consistency level is acceptable for evaluating 
the priority (w�

i
).

On the other hand, entropy measures the degree of disorder in a system or the uncer-
tainty using the probability theory (Shannon 1948). The concept of entropy is that a higher-
weight index value is more valuable than a smaller index value.

Firstly, the matrix is normalized as pij =
xij

∑m

i=1
xij

 , where pij (i = 1,…,m; j = 1,..,n) is the 
standardized value of the non-negative index, xij is the performance measure of the jth 
attribute in the ith alternative. Secondly, the entropy value is computed as

The entropy weight w′′

i
 is estimated as

CI =
�max − n

n − 1
and CR =

CI

RI

Ej = −
1

ln(m)

m
∑

i=1

pijln(pij)

w
��

i
=

1 − Ej
∑n

j=1

�

1 − Ej

�

https://www.fao.org/home/en
https://www.diva-gis.org/
https://www.openstreetmap.org/
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The 
(

1 − Ej

)

 value is called the degree of diversification factor ( Dj ) that describes 
the degree of divergence of each criterion’s inherent information. The weight esti-
mated from the entropy specifies the criterion’s importance in making the decision.

Ultimately, the overall weight of the criteria is estimated. The entropy weight is entirely 
based on the data; in contrast, the AHP weights are obtained from expert opinion and avail-
able literature. Sometimes, the entropy weights are different from reality (Wang et al. 2009; 
Weijs et al. 2010; Cui et al. 2018), whereas the experts usually ignore the data informa-
tion while calculating the weights using AHP, which may lead to uncertainty in the result 
(Bhattacharya et al. 2010; Emrouznejad and Marra 2017; Rodcha et al. 2019). Therefore, 

Fig.2   Flowchart illustrating the method adopted to compute the risk in the study area
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weights determined using AHP ( w′

i
, subjective) and the entropy method ( w′′

i
 , objective) 

can be combined (Chuansheng et al. 2012) to define a new weight given by

The value of α can vary between 0 and 1. In this study, we set the value of α as 0.6 (Chu-
ansheng et al. 2012). The vulnerability and coping capacity have been estimated using the 
AHP-Entropy integration method through GIS (Tables 2 and 3). The earthquake probabil-
ity mapping has also been done by integrating AHP-Entropy with ANN.

3.3 � Artificial neural network

ANN contains layers of nodes or neurons that transform input data into output (Nedic et al. 
2014; Alizadeh et  al. 2018) and has numerous advantages compared to statistical meth-
ods (Zhang et al. 1998), as ANN can handle uncertainty, noise, and incomplete datasets 
(Midilli et al., 2007). Therefore, high accuracy can be achieved while mapping the earth-
quake probability through ANN (Yariyan et al. 2020). For this, an appropriate set of train-
ing parameters and an adequate network architecture need to be defined (Sözen 2009) by 
trial and error (Karapidakis 2007), which still outperforms other methodologies in terms of 
accuracy (Lynch et al. 2001).

The multilayer perceptron (MLP) network is a simple, versatile, and flexible form of 
neural network (Alizadeh et al. 2018; Jena et al. 2019; Yariyan et al. 2020). The network 
consists of an input layer, one or more hidden layers based on the complexity of the prob-
lem, and the output layer (Roy et al. 1993). Each layer of ANN is made up of a number of 
neurons that process information independently and are linked to neurons in other layers 
via weight. The hidden layer neurons initiate networking with the input neurons’ weight 
and process the data by linking to each other (Abraham 2005). We have also trained the 
MLP using the backpropagation algorithm (Fig. 3), which reduces the error in MLP (Sala-
rian et al. 2014).

The neural network learning algorithm utilizes the training set to create suitable network 
weights, which link the input and output layers. Then, the trained network’s performance is 
verified on the test dataset. Hence, we have to efficiently prepare and select the training site 
parameter, which impacts the accuracy of the obtained result (Nedic et al. 2014). We have 
acquired the complete earthquake catalogue from the National Centre of Seismology, Gov-
ernment of India, from 1900 to 2020. Even a large amount of data, however, may be insuf-
ficient for modelling the neural network (Yariyan et al. 2020). Therefore, our focus should 
be to accumulate large datasets to develop a model with the help of the ANN technique, as 
it is a data-intensive technique.

3.4 � Integration of AHP‑Entropy with MLP: Earthquake Probability

A total of ten spatial datasets were used to evaluate the earthquake probability (Nedic et al. 
2014) for the study region (Fig. 3). Implementing the MLP network model required train-
ing and test datasets to examine the model’s performance that helps to select a specific 
training network (Aghazadeh et  al. 2018). Here, we used the AHP-Entropy integrated 
MCDM to generate an appropriate training database for the MLP network, using 70% of 
parameters having the highest weights. Subsequently, 6000 points were selected from the 
training dataset that was characterized as non-earthquake and earthquake points. These 

�
i
= �w

�

i
+ (1 − �)w

��

i
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Table 2   Priority of the parameters used to map vulnerability

1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 2 2 3 3 4 4 5 5 6 7 8 9
2 0.5 1 2 2 3 3 4 4 5 5 6 7 8
3 0.5 0.5 1 2 2 3 3 4 4 5 5 6 7
4 0.33 0.5 0.5 1 2 2 3 3 4 4 5 6 7
5 0.33 0.33 0.5 0.5 1 2 2 3 3 4 4 5 6
6 0.25 0.33 0.33 0.5 0.5 1 2 2 3 3 4 5 6
7 0.25 0.25 0.33 0.33 0.5 0.5 1 2 2 3 3 4 5
8 0.2 0.25 0.25 0.33 0.33 0.5 0.5 1 2 2 3 4 5
9 0.2 0.2 0.25 0.25 0.33 0.33 0.5 0.5 1 2 2 3 3
10 0.17 0.2 0.2 0.25 0.25 0.33 0.33 0.5 0.5 1 2 2 3
11 0.14 0.17 0.2 0.2 0.25 0.25 0.33 0.33 0.5 0.5 1 2 3
12 0.12 0.14 0.17 0.17 0.2 0.2 0.25 0.25 0.33 0.5 0.5 1 2
13 0.11 0.12 0.14 0.14 0.17 0.17 0.2 0.2 0.33 0.33 0.33 0.5 1

Number of comparisons = 78

Consistency Ratio CR = 3.2%
Principal eigenvalue = 13.605

Sl. no. Selected 
layers

Classes (based on vulnerability) Subjec-
tive 
weight 
(AHP)

Objective 
weight 
(entropy)

Overall 
weight

Very 
Low (1)

Low (2) Moderate 
(3)

High (4) Very high 
(5)

1 Population 
density 
(per 
km2)

 < 1094 1094–
3557

3557–
7661

7661–
15,323

 > 15,323 21.20% 05.20% 14.80%

2 Building 
density 
(per 
km2)

 < 13 13–39 39–79 79–138  > 138 16.90% 09.70% 14.00%

3 LULC Classes based on the total covered area 13.60% 10.20% 12.20%
4 Education 

Institu-
tion (per 
degree2)

 < 163 163–
691

691–
1637

1637–
2983

 > 2983 11.00% 11.50% 11.20%

5 Transpor-
tation 
Terminal 
(km)

 > 130.9 130.9–
85.7

85.7–
49.7

49.7–
22.1

 < 22.1 08.70% 10.70% 09.50%

6 Popular 
Places 
(per 
degree2)

 < 344 344–
895

895–
1481

1481–
2135

 > 2135 07.10% 10.50% 08.50%

7 Visiting 
Places 
(per 
degree2)

 < 1103 1103–
4414

4414–
10,791

10,791–
19,498

 > 19,498 05.50% 09.20% 07.00%

8 Stadium 
(km)

 > 166.9 166.9–
123.1

123.1–
79.3

79.3–
38.6

 < 38.6 04.50% 08.40% 06.10%
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points were utilized in the training stage of the feedforward MLP and helped in measuring 
the trained network’s accuracy. Finally, the output is standardized and classified into five 
classes.

A feedforward MLP with a two-layered structure was trained, and the backpropaga-
tion algorithm was applied to minimize the error and estimate the root mean square error 
(RMSE). The feedforward ANN helps to describe the interconnection between the neurons 
in different layers of the model (Jena et al. 2019). We developed a network using the MLP 
classifiers, trained it, and the accuracy of the trained model was measured. After that, we 
predicted the pixel values and achieved the earthquake probability map for the Himalayan 
region. The network topology, data, and training parameters are presented in Table 4. The 
resulting map was transferred to the GIS platform to map the earthquake hazard discussed 
in the following sub-section.

3.5 � Hazard and Risk

Hazard, in general, is the probability of the event occurring during any given time point 
in the temporal and spatial scale (Jena et al. 2019). In this study, we developed the haz-
ard map using spatial information on earthquake probability and intensity variation for 
the Himalayan region. The intensity map was generated by calculating the intensity 
value from the earthquake magnitude, which was then interpolated to understand the 
intensity variation in the study area (Bartier and Keller 1996). Based on the intersection 
theory, the hazard zones were then classified using the quantile classification (Jena et al. 
2019). The hazard map generated in this study is created by integrating two MCDM 
models with ANN through GIS and applied for the first time in the Himalayan region.

Finally, the earthquake risk was estimated using the spatial information of the earth-
quake hazard, vulnerability, and coping capacity for the region (Westen 2013; Jena et al. 
2021b). Mathematically, the earthquake risk is defined as (WHO 2009)

Table 2   (continued)

Sl. no. Selected 
layers

Classes (based on vulnerability) Subjec-
tive 
weight 
(AHP)

Objective 
weight 
(entropy)

Overall 
weight

Very 
Low (1)

Low (2) Moderate 
(3)

High (4) Very high 
(5)

9 Historical 
Places 
(km)

 > 93.2 93.2–
59.3

59.3–
36.5

36.5–
18.2

 < 18.2 03.40% 06.80% 04.80%

10 Museum 
(km)

 > 171.5 171.5–
123.7

123.7–
84.7

84.7–
47.7

 < 47.7 02.70% 05.80% 03.90%

11 Religious 
Places 
(per 
degree2)

 < 51 51–188 188–433 433–780  > 780 02.20% 05.10% 03.40%

12 Park Den-
sity (per 
degree2)

 < 31 31–86 86–166 166–282  > 282 01.70% 04.00% 02.60%

13 Gas Sta-
tion (km)

 > 146.8 146.8–
90.8

90.8–49 49–17.5  < 17.5 01.30% 02.90% 01.90%
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4 � Results and discussion

In this study, we have proposed a novel methodology by integrating the AHP and entropy 
MCDM models with ANN to evaluate earthquake risk. The reason behind integrating AHP 
and entropy has been discussed in previous sections. We used twenty-nine parameters to 
estimate earthquake risk that directly or indirectly influences the region. For our analysis, 

Risk =
Hazard*Vulnerability

Coping Capacity

Table 3   Priority of all the parameters used to map coping capacity

1 2 3 4 5 6

1 1 2 2 3 4 5
2 0.5 1 2 3 4 5
3 0.5 0.5 1 2 3 4
4 0.33 0.33 0.5 1 2 3
5 0.25 0.25 0.33 0.5 1 2
6 0.2 0.2 0.25 0.33 0.5 1

Number of comparisons = 15

Consistency Ratio CR = 2.2%
Principal eigen value = 6.135

Sl. no. Selected 
layers

Classes (based on vulnerability) Subjec-
tive 
weight 
(AHP)

Objective 
weight 
(entropy)

Overall 
weight

Very Low 
(1)

Low (2) Moder-
ate (3)

High (4) Very 
high (5)

1 Hospital 
(km)

 < 20.7 20.7–
47.4

47.4–82 82–
127.6

 > 127.6 33.40% 11.40% 24.60%

2 Educated 
People 
(per 
km2)

 > 11,096 11,096–
5093

5093–
2364

2364–
727

 < 727 26.40% 26.20% 26.30%

3 Road 
Net-
work 
(km)

 < 3.6 3.6–8.3 8.3–14.3 14.3–
22.8

 > 22.8 17.70% 20.70% 18.90%

4 Rail Net-
work 
(km)

 < 42.3 42.3–
98.5

98.5–
154.6

154.6–
210.7

 > 210.7 11.00% 19.00% 14.20%

5 Service 
Centre 
(km)

 < 18.9 18.9–40 40–67.5 67.5–
106.2

 > 106.2 06.90% 14.00% 09.70%

6 Police 
Station 
(km)

 < 14.8 14.8–
40.7

40.7–
73.4

73.4–
118

 > 118 04.60% 08.70% 06.20%



963Natural Hazards (2023) 116:951–975	

1 3

Fig. 3   Architecture of the multi-layered Perceptron (MLP) used for estimating earthquake probability

Table 4   Network, data and 
training parameters used for 
implementing the MLP model

Group Parameter Value

Input specifications Total training points 6000
Total earthquake events 2488
Hidden layers 1

Network topology Nodes 7
Input layers node 10
Output layers node 5
Activation Sigmoid

Training parameters Automatic training Yes
Shuffle Yes
Learning rate initialization 0.001
Momentum factor 0.5
Early stopping Yes

Stopping criteria RMSE 0.1907
Iterations 10,000
Accuracy rate 83
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we have used the mathematical formulation proposed by WHO (2009) to assess the risk, 
which is a function of hazard, vulnerability, and coping capacity.

4.1 � Vulnerability

The parameters used in the estimation of vulnerability are presented in Table  1. The 
weights of the parameters were estimated using the AHP-Entropy integration method dis-
cussed earlier. The comparison matrix and the estimated weights are presented in Table 2. 
The priority of the parameter population density was found to be higher, followed by the 
building density. The least weight was found for the secondary parameter gas station. Our 
analysis indicates that the southern part of the study area is relatively highly vulnerable 
than the northern and eastern parts (Fig. 4). It is also observed that several cities in the 
study area fall under very high vulnerability zones.

The high vulnerability in metropolitan cities may be due to high population density, 
mismanaged land use, lack of resources, and non-homogenized distribution of educational 
institutions and transportation terminals (Fig. 4). The population growth rate between the 
year 1961 and 2011 has been 5.53% in the Sikkim Himalayan region, 5.43% in Arunachal 
and 5.04% in the Kashmir, which are much higher than the global average (Apollo 2017). 
The lowest population growth rate was reported in the Kumaun Himalaya (2.65%), which 
is still more than twice the world average. The average population density in the Himala-
yas (excluding Nepal and Arunachal Himalayas) was over 22 people per square kilome-
tre in 1911, which increased to over 96 people per square kilometre by 2011. Bhutan and 
Arunachal Himalaya are the least dense areas, with 16.31 and 19.23 people per square kilo-
metre, respectively. The Darjeeling Himalaya has the highest population density of 923.57 
people per square kilometre (Apollo 2017). The increasing population, rapid unplanned 
urbanization, and mismanagement of land use lead to a scarcity of resources. Furthermore, 
the metropolitan cities have relatively high building densities compared with the Hima-
layan rural parts. This could be the primary reason for the high vulnerability observed in 
Fig. 4. Areas with a low vulnerability may have good socio-economic conditions, low pop-
ulation and building density. The Tibetan region in the study area also falls under the low 
vulnerability zone, presumably due to low population density resulting from harsh climatic 
conditions and rugged terrain, making it extremely challenging to earn a livelihood.

The numerical value indicates that 19.86% of the study area lies under very low vulner-
ability, 20.61% low, 19.59% moderate, and 20.41% high, and the residual includes very 
high vulnerability. In contrast, about 4% of the population is under very low earthquake 
vulnerability, 5.93% low, 11.05% moderate, and approximately 79.07% of the population 
resides under high to very high threat of earthquakes (Table 5). Therefore, about 4/5th of 
the total Himalayan inhabitants are vulnerable to earthquake hazards, and agencies should 
have more concerned for highly vulnerable regions and communities.

4.2 � Earthquake hazard and risk

As discussed earlier, the earthquake hazard was estimated by integrating the spatial infor-
mation of earthquake probability and variation in the earthquake intensity. The earth-
quake probability is estimated by combining AHP-Entropy with ANN. Historical seismic-
ity, geological features, Vs30, PGA, elevation, and slope were included in estimating the 
earthquake probability. Figure 5 shows areas with high hazards (shown in red), whereas 
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relatively lower hazard areas are shown in green. The hazard map indicates that several 
major cities in the west fall under high-hazard regions, similar to the central Himalayan 
region (Fig. 5). The Indian Himalayan region, including cities such as Dehradun, Ambala, 
and Itanagar, falls in a relatively low-hazardous zone, whereas Dibrugarh town in the east 
is under a high hazardous zone. The degree of hazard varies from very low to high in Bhu-
tan Himalayas.

The high fault and epicentre density and other prominent complex tectonic features con-
tribute to the probability of the eastern Himalayas causing several strike-slip faults (Jena 
and Pradhan 2020). For instance, Darjeeling is characterized by metamorphic rocks with 
narrow fault distances, high Vs30, elevation and slope and frequent near and far source 
events. Furthermore, in the western Himalayas, the regions are primarily hazardous to the 
earthquake. Srinagar falls in the Kashmir basin have several tectonic features, high epicen-
tre and fault density with moderate elevation and slope. The tectonic features include Main 
Boundary Thrust (MBT), Main Crystalline Thrust (MCT), Main Mantle Thrust (MMT), 

Fig. 4   Vulnerability and coping capacity map of the study region. High and low vulnerability and coping 
capacity zones are indicated in red and green
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Panjal Thrust (PT), Kishtwar Fault (KF), Jhelum Fault (JF), Reasi Thrust (RT), Bagh-Bala-
kot Fault (B-BF), Balapur Fault (BF), Hazara Thrust System (HTS), Hazara-Kashmir Syn-
taxis (HKS), Drangbal-Laridora Fault (DL) (Sana 2019). Numerous events have shaken 
Srinagar; for instance, 1885 (M = 6.2) and 2005 (M = 7.6) earthquakes with estimated 
intensity VI-VII (Bilham et  al. 2010) make the region highly hazardous.  Islamabad and 
Rawalpindi area in the western part is also tectonically active with low elevation and slope 
and is dominated by unconsolidated sediments. The Riwat Thrust runs near the southwest 
edge of the Islamabad-Rawalpindi area (Jadoon and Frisch 1997) and is another prominent 
fault associated with some past events. The most recent 2005 Kashmir earthquake caused 
considerable damage to Islamabad. The local earthquake in the northern Potwar near 
Islamabad (M = 5.8) that occurred in February 1977 produced an intensity of VII (Adhami 
et al. 1980). In the central Himalayas, the cities are highly populated and appear to be high 
hazardous regions with high fault and epicentre density. The 2015 Gorkha earthquake is a 
recent devasting shallow-depth earthquake with a magnitude of 7.8 and an epicentre 77 km 
northwest of Kathmandu. This event ruptured a section of the Main Himalayan Thrust, a 
low-angle continental subduction interface between the Indian and Eurasian plates to the 
south and north, respectively (Rupakhety 2018), making the region highly hazardous.

Out of the total area of the study region, ~ 22.43% of the area lies under a very low 
hazard zone, 24.86% as low, 20.76% as moderate, 20.16% as high, and 11.78% as a 
very high hazardous area (Table 5). On the other hand, 19.77% of the total population 
resides under the very low hazard zone, 19.63% low, 34.76% moderate, 18.80% high, 
and the rest live under a very high hazardous region (Table 5). These indicate that more 
than 60% of the population resides under moderate to very high earthquake hazard zone, 
which is a matter of concern for various agencies involved in hazard mitigation.

The risk map (Fig. 6) is estimated using the spatial information of earthquake hazard 
derived from the earthquake probability and intensity variation, earthquake vulnerabil-
ity, and coping capacity. The risk map is further classified into five classes, the high-
risk areas are red, while the low-risk areas are green. Our analysis shows that several 

Table 5   Hazard, vulnerability and risk in terms of areas, population and buildings in the Himalayan region

Classes Area (%) Population (%) Buildings (%)

Vulnerability Very low 19.86 03.95 0.14
Low 20.61 05.93 01.14
Moderate 19.59 11.05 02.86
High 20.41 22.49 12.31
Very high 19.54 56.58 83.55

Earthquake hazard Very low 22.43 19.77 23.48
Low 24.86 19.63 29.06
Moderate 20.76 34.76 25.63
High 20.16 18.80 14.90
Very high 11.78 7.04 06.93

Earthquake risk Very low 08.44 10.88 06.56
Low 20.89 14.79 20.87
Moderate 39.21 47.49 41.94
High 22.90 20.24 23.18
Very high 08.55 06.61 07.44
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cities in the study area fall into very high-risk zones. In the Indian Himalayan region, 
Darjeeling and Srinagar appear to be at high earthquake risk, and Dibrugarh town is at 
moderate risk. The central Himalayan region is relatively at very high earthquake risk 
compared to other parts of the study area.

The results indicate that 8.44% of the Himalayan region falls under very low earth-
quake risk, 20.89% low, 39.21% moderate, 22.90% high, and 8.55% very high earthquake 
risk zones. The earthquake risk as a function of the population shows similar patterns, i.e. 
10.88% of the total population residing in the Himalayan region is under very low earth-
quake risk, 14.79% low, 47.79% moderate, 20.24% high, and 6.61% of the population lives 
in very high earthquake risk zones (Table 5).

Fig. 5   Earthquake probability and hazard map of the study region. High and low probability zones and haz-
ard regions are indicated in red and green, respectively
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4.3 � Coping capacity

The coping capacity is an important factor during an earthquake, as it is generally expected 
that an educated community can cope with hazards effectively. According to the United 
Nations Office for Disaster Risk Reduction, coping capacity is a combination of avail-
able skills and resources within an organization or community that can reduce or man-
age the effects or risk level of a disaster. The coping capacity requires continuous training, 
awareness, and proper management of the available resources during the pre-disaster, the 
disaster, and post-disaster. In this study, we have considered the availability of hospitals, 
communication networks, educated people, police stations, and service centres to estimate 
the coping capacity of the study area. The weights of the factors used to study the coping 
capacity for the study area are calculated using the AHP-Entropy approach. The compari-
son matrix and the estimated weights are presented in Table 3. Our analysis indicates that 
the northern part of the study area has a relatively low coping capacity as compared to the 
southern part (Fig. 4). The central and western Himalayan region comprises some promi-
nent cities that lie under high coping capacity. However, this is not the case throughout the 
western part, and a significant portion falls under moderate to low coping capacity areas.

The development of hospitals, communication networks, and an increase in literacy rate 
are the primary reasons for the cities having high coping capacity (Fig. 4). For instance, the 
average literacy rate of Dibrugarh is 89.5% which is higher than the national average (Cen-
sus 2011), indicating that the education system in the northeastern part of India is improv-
ing. The development of communication networks, hospitals and sanctions of the adequate 
budget for the education sector is always the priority of different government agencies. In 
the central Himalayan region, significant development has been recorded regarding educa-
tion, communication networks and the availability of hospitals and disaster management 
centres after the devastating effects of the 2015 Gorkha earthquake. The average literacy 
rate in the central Himalayas in 2001 was ~ 72.28%, and this number keeps increasing, 
which is a good sign for disaster risk reduction (Apollo 2017). In the western section of the 
Himalayas, the literacy rate is the lowest, with a value of 62.62% (Apollo 2017), making 

Fig. 6   Integrated earthquake risk map for the Himalayan region. High-risk and low-risk zones are shown in 
red and green, respectively
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the area very low to moderate coping capacity. The low coping capacity zone is presum-
ably due to the rugged terrain obstructing the construction of communication networks and 
the low literacy rate. The area having low coping capacity should focus on earthquake miti-
gation strategies.

It is also interesting to note that less than 0.5% of the total population in the study areas 
lives under very low coping capacity, 4.83% low, 14.01% moderate, 41.82% high, and 
38.88% reside with a very high chance of coping with the earthquake hazard. The result 
indicates that all the government agencies focus on developing hospitals with good com-
munication networks and educating people to deal with hazardous situations, which is a 
good sign of development and a fight against disaster. But still, about 27% of the total pop-
ulation is at high risk of seismic hazards. Nevertheless, with proper planning and change in 
mitigation strategies, these areas could be changed into the low-risk zone.

4.4 � Sensitivity analysis and validation of the model

To understand the impact of various parameters used in this study, we performed a sensi-
tivity analysis of the vulnerability and the coping Capacity (Table 6). In sensitivity analy-
sis, we vary the parameter alpha (α) to understand the impact of weights assigned to the 
parameters used. For vulnerability, the ranking of the parameters does not vary for α ≥ 0.6, 
which is consistent with the findings of Chuansheng et al. (2012). Similarly, for the coping 
capacity, the ranking remains the same for values of α between 0.4 and 0.6.

To validate our proposed model, we have estimated the ROC curve, which evaluates the 
sensitivity of the models. Figure 7 represents the ROC curve for the earthquake probability, 
which shows the relationship between the true positive and false positive values. The area 
under the curve (AUC) is a measure of the accuracy of the probability assessment. The 
AUC value of 0.5 indicates no discrimination, whereas an AUC of 0.7–0.8 is classified as 
acceptable, 0.8 to 0.9 as excellent, and an AUC > 0.9 as outstanding (Hosmer and Leme-
show 2000; Mandrekar 2010). Our result derived by the AHP-Entropy-MLP integration 
method shows an AUC value of 0.83, which indicates that our model accuracy is excellent 
(Fig. 7). We have plotted the ROC curve for the earthquake probability using an integration 
of the AHP-MLP and Entropy-MLP to find a better approach to evaluating earthquake risk 
in any region. The results indicate that the AUC value of AHP-MLP is 0.78, and for the 
Entropy-MLP, the value is 0.81, which makes the AHP-Entropy-MLP a better approach for 
mapping the earthquake risk (Fig. 7).

4.5 � Strengths and limitations of the model

The strengths, limitations, and challenges of the proposed model are primarily associated 
with the selection of parameters, data quality, and implementation of the model. This study 
uses a robust technique of integrating subjective and objective MCDM models, i.e. AHP 
and entropy, respectively, with ANN through GIS that could provide accurate earthquake 
risk results. The proposed model may provide the knowledge needed to select the essential 
criteria under each component for hazard, vulnerability, and coping capacity, which finally 
leads to risk assessment. The AHP-Entropy integration is applied in evaluating vulnerabil-
ity and coping capacity, which is effective for prioritizing criteria and helps to deal with 
the uncertainties AHP and entropy developed. This study demonstrates comprehensive 
risk assessment and can be applied at a large scale to evaluate accurate risk information. 
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However, this is the first of its kind model and requires improvement by incorporating miti-
gation measures.

The limitations and challenges of this study are predominantly associated with acquir-
ing the datasets for large-scale scenarios and processing them through machine learning 
approaches. Acquiring datasets for larger study areas distributed in several countries is 

Table 6   Sensitivity analysis for influence levels of the α in the AHP-Entropy method for vulnerability (top) 
and coping capacity (bottom)

Selected layers α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

Population Density 0.0840 (7) 0.1160 (2) 0.1480 (1) 0.1800 (1) 0.2120 (1)
Building density 0.1114 (2) 0.1258 (1) 0.1402 (2) 0.1546 (2) 0.1690 (2)
LULC 0.1088 (3) 0.1156 (3) 0.1224 (3) 0.1292 (3) 0.1360 (3)
Education Institution 0.1140 (1) 0.1130 (4) 0.1120 (4) 0.1110 (4) 0.1100 (4)
Transportation terminal 0.1030 (4) 0.0990 (5) 0.0950 (5) 0.0910 (5) 0.0870 (5)
Popular places 0.0982 (5) 0.0914 (6) 0.0846 (6) 0.0778 (6) 0.0710 (6)
Visiting places 0.0846 (6) 0.0772 (7) 0.0698 (7) 0.0624 (7) 0.0550 (7)
Stadium 0.0762 (8) 0.0684 (8) 0.0606 (8) 0.0528 (8) 0.0450 (8)
Historical places 0.0612 (9) 0.0544 (9) 0.0476 (9) 0.0408 (9) 0.0340 (9)
Museum 0.0518 (10) 0.0456 (10) 0.0394 (10) 0.0332 (10) 0.0270 (10)
Religious places 0.0452 (11) 0.0394 (11) 0.0336 (11) 0.0278 (11) 0.0220 (11)
Park density 0.0354 (12) 0.0308 (12) 0.0262 (12) 0.0216 (12) 0.0170 (12)
Gas station 0.0258 (13) 0.0226 (13) 0.0194 (13) 0.0162 (13) 0.0130 (13)

Selected layers α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

Hospital 0.1580 (4) 0.2020 (2) 0.2460 (2) 0.2900 (1) 0.3340 (1)
Educated people 0.2624 (1) 0.2628 (1) 0.2632 (1) 0.2636 (2) 0.2640 (2)
Road network 0.2010 (2) 0.1950 (3) 0.1890 (3) 0.1830 (3) 0.1770 (3)
Rail network 0.1740 (3) 0.1580 (4) 0.1420 (4) 0.1260 (4) 0.1100 (4)
Service centre 0.1258 (5) 0.1116 (5) 0.0974 (5) 0.0832 (5) 0.0690 (5)
Police station 0.0788 (6) 0.0706 (6) 0.0624 (6) 0.0542 (6) 0.0460 (6)

Fig. 7   Receiver operating characteristic (ROC) curve for the earthquake probability map
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quite challenging, as data may not be available for some countries. Therefore, data from 
secondary sources are used, which may have uncertainty and errors. Similarly, the unavail-
ability of parameters such as liquefaction factors, earthquake precursors, soil characteris-
tics, seismic structure, fault characteristics, and building categories also impacts the study. 
Availability of good quality data and estimating the priority are also challenging due to 
subjectivity. Furthermore, limitations are also due to not considering the diurnal, i.e. day 
and night variations in various parameters for estimating vulnerability. Secondly, the ANN 
is data-dependent, and a large amount of training data is required for an earthquake prob-
ability distribution study; choosing proper parameters is critical to avoid biased results. 
Considerable time is required to design and implement the ANN model. Despite these 
limitations and challenges, the applied model is still effective for assessing earthquake risk 
and could help mitigate and reduce disaster risk. This model can be implemented in other 
larger areas with minimal modification. To minimize casualties, various government agen-
cies could use the results to prevent and implement mitigation plans in the study area dur-
ing a potential earthquake.

In future, high-resolution DEM generated from Light Detection and Ranging (LiDAR) 
and a 3-D city model could be used to achieve better results. Future studies may also con-
sider the role of biodiversity on earthquake risk assessment in a particular area besides 
using other machine learning approaches. Finally, integrating the AHP-Entropy-ANN 
through GIS is a potential application framework which can be explored to understand the 
impacts of other disasters that impact society and infrastructure.

5 � Conclusions

We attempted to integrate objective and subjective MCDM models, i.e. AHP and Entropy 
with ANN. Twenty-nine non-spatial and spatial data accumulated from the publically avail-
able sources were utilized to estimate earthquake risk for the study area.

Our analysis indicates that the southern part of the study area is relatively highly vul-
nerable than the northern and eastern parts. The result also reveals that approximately 
79% of the population resides in high to a very high vulnerable zone. The hazard result 
indicates that several major cities in the western and central areas of the study area fall 
under high-hazard regions. More than 60% of the population resides in moderate to very 
high earthquake hazard zones. The risk is estimated using the spatial information of earth-
quake hazard derived from the earthquake probability and intensity variation, earthquake 
vulnerability, and coping capacity. Our analysis indicates that about 8.55% of the total 
area of the Himalayan region falls under very high earthquake risk, 22.90% high, 39.21% 
moderate, 20.89% low, and the rest comes under very low earthquake risk. 6.61% of the 
inhabitants live under very high earthquake risk, 20.24% high, 47.49% moderate, 14.79% 
low, and 10.88% of the population live under very low earthquake risk. In addition, about 
7.44% of the total number of buildings are at a very high risk of earthquake, 23.18% high, 
41.94% moderate, 20.87% low, and 6.56% very low-risk. Nevertheless, during an event, 
coping capacity may be an important factor. The central and western Himalayan region cit-
ies appear to have high coping capacity. About 80% of the population has a high chance of 
coping with earthquake hazards. However, about 27% of the total population is at high risk 
of seismic hazards. The results may be helpful for different planning and mitigation agen-
cies to identify the earthquake risk zones and plan accordingly for measures to be taken in 
case of a potential earthquake that might affect the region.
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