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Abstract
Exposure is an essential component of risk models and describes elements that are endan-
gered by a hazard and susceptible to damage. The associated vulnerability characterizes 
the likelihood of experiencing damage (which can translate into losses) at a certain level 
of hazard intensity. Frequently, the compilation of exposure information is the costliest 
component (in terms of time and labor) of risk assessment procedures. Existing models 
often describe exposure in an aggregated manner, e.g., by relying on statistical/census data 
for given administrative entities. Nowadays, earth observation techniques allow the collec-
tion of spatially continuous information for large geographic areas while enabling a high 
geometric and temporal resolution. Consequently, we exploit measurements from the earth 
observation missions TanDEM-X and Sentinel-2, which collect data on a global scale, to 
characterize the built environment in terms of constituting morphologic properties, namely 
built-up density and height. Subsequently, we use this information to constrain existing 
exposure data in a spatial disaggregation approach. Thereby, we establish dasymetric meth-
ods for disaggregation. The results are presented for the city of Santiago de Chile, which 
is prone to natural hazards such as earthquakes. We present loss estimations due to seismic 
ground shaking and corresponding sensitivity as a function of the resolution properties of 
the exposure data used in the model. The experimental results underline the benefits of 
deploying modern earth observation technologies for refined exposure mapping and related 
earthquake loss estimation with enhanced accuracy properties.
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1 Introduction

Earthquakes represent a devastating natural hazard that caused more than 1.7 million docu-
mented fatalities in the past 100  years globally (Wyss and Speiser 2022). Prospectively, 
the ongoing continuous increase of the world population (UN 2019) can be expected to 
put more people at risk in both rural (Wyss 2018) and urban environments (Bilham 2009; 
Wyss et al. 2021), respectively, than ever before. For the development of mitigation strate-
gies for these perils, detailed knowledge about affiliated risks is in demand. As an impor-
tant constituent element of natural hazard risk, the exposure and vulnerability need to be 
determined (UNISDR 2009). In particular, it is crucial to have detailed information about 
the spatiotemporal distribution of population as well as about the properties of the build-
ing inventory with respect to an expected level of seismic ground shaking. Especially for 
loss estimation, the collection of highly resolved building inventory information normally 
represents the most time-consuming and expensive aspect. Traditional data collection pro-
cedures foresaw detailed in situ building-by-building analysis by, e.g., structural engineers 
and small-scale population surveying (e.g., Dunbar et al. 2003; Kechidi et al. 2021). This 
may provide very detailed and high-quality information. However, such time-demanding 
and cost-intensive approaches are decreasingly able to cope with the high spatiotempo-
ral dynamics of built environments. Simultaneously, the information provided on a coarser 
spatial level, such as spatially aggregated census data (e.g., Corbane et  al. 2017; Santa 
Maria et  al. 2017; Yepes-Estrada et  al. 2017), hampers the consideration of small-scale 
hazard effects in a downstream risk model (Gomez Zapata et al. 2021; Nievas et al. 2022) 
and frequently shows a high level of uncertainty (Pittore et  al. 2017). Moreover, recent 
empirical works underlined that the accuracy of damage estimates is very sensitive regard-
ing the exposure component (Gomez-Zapata et al. 2022a, b), whereby the coarsest aggre-
gation levels were found to be the most inaccurate (Senouci 2018; Dabbeek et al. 2021).

Recent assessment approaches already identified earth observation (EO) data as a 
valuable source of information for exposure estimation (Geiß and Taubenböck 2013). 
This is especially true for the latest generation optical sensors which enable the detec-
tion and characterization of objects of built environments within hazard-prone areas 
(e.g., Ehrlich and Tenerelli 2013; Geiß et al. 2017a). Related studies aimed at an inte-
grative view on vulnerability and considered numerous parameters for a holistic assess-
ment (e.g., Taubenböck et  al. 2008; Ebert et  al. 2009). Therefore, the derivation of a 
wide variety of vulnerability-related parameters from remote sensing, comprising popu-
lation characteristics (e.g., Dobson et al. 2000; Aubrecht et al. 2013) and properties of 
the built environment (e.g., Mueller et al. 2006; French and Muthukumar 2006; Sahar 
et al. 2010), was explored. Given the nature of remote sensing as a tool for providing 
physical measurements of the earth’s surface, the physical vulnerability of built envi-
ronments, in particular, has been subject to increasing scientific contemplation over the 
course of the last decade. Numerous approaches were postulated for seismic vulnerabil-
ity assessment: Sarabandi and Kiremidjian (2007) estimate the structural type of build-
ings based on remote sensing and ancillary tax assessor information for deployment 
in earthquake loss estimation models. Taubenböck et  al. (2009), Borzi et  al. (2011), 
Polli and Dell’Acqua (2011), and Qi et  al. (2017) characterize the built environment 
with remote sensing data and retrieve specific fragility functions or damage probabil-
ity matrices, respectively. In contrast to that, e.g., Borfecchia et al. (2010), Geiß et al. 
(2015a, 2017b, 2018; 2014), Liuzzi et al. (2019), Liu et al. (2019), Torres et al. (2019), 
and An et al. (2021) combined limited in situ ground truth information characterizing 
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the building inventory with features from remote sensing and use techniques of statisti-
cal inference for a complete labeling of the residual building inventory according to 
specific vulnerability levels or more generic properties such as construction material or 
occupancy, respectively. Related methodological principles were also exploited by, e.g., 
Wieland et al. (2012, 2016), Pittore and Wieland (2013), Geiß et al. (2016), Pittore et al. 
(2020), and Fan et al. (2021) to assess seismic vulnerability or related parameters on a 
coarser spatial level to allow for the use of data with larger spatial coverage. Recently, 
Aravena Pelizari et al. (2021) deployed street-level imagery that was extracted from the 
GoogleStreetView platform and classified various seismic structural types with deep 
learning models to automatically compile relevant in situ data.

At the same time, data requirements for exposure modeling still hamper utilization 
capabilities for large areas of many approaches. This is due to data availability, mon-
etary costs of data, and processing demand of, e.g., very high spatial resolution EO 
imagery and detailed in situ data. Moreover, local idiosyncrasies must not be bypassed 
and transfer of models cannot be carried out in a non-adaptive manner since, e.g., build-
ing structural types may feature a large variability of morphological appearance and 
vulnerability in different parts of the world. As a consequence, population data and 
building inventory information with affiliated vulnerability characteristics are frequently 
still outdated, spatially discontinuous, or aggregated. Thus, affiliated natural hazard risk 
assessment strategies do not provide a picture of risk on large scales such as nations, 
continents, or the entire globe, while enabling a high spatial, thematic, and temporal 
resolution.

In parallel, with the advent of the big earth data epoch, novel data collection mech-
anisms have become available on a global scale. The latest generation EO missions, 
which are highly relevant for characterization of built environments, such as ESA/EU’s 
Copernicus Sentinel-2 mission (Drusch et  al. 2012) and German Aerospace Center’s 
spaceborne radar interferometer TanDEM-X (TDM) (Krieger et al. 2007), collect plan-
etary data with unprecedented spatial and temporal resolution properties. In particular, 
the Sentinel-2 satellites provide multispectral imagery with 10-m spatial resolution and 
high temporal coverage (i.e., 10 days at the equator with one satellite, and 5 days with 
2 satellites; 2–3  days at mid-latitudes), whereas, the TDM provides a digital surface 
model with 12-m spatial resolution.

Consequently, in this paper, we capitalize upon this globally existing EO data to 
derive constituent morphologic properties of the built environment, i.e., built-up den-
sity and height. Subsequently, we develop dasymetric disaggregation techniques to spa-
tially allocate and eventually constrain existing exposure data from administrative enti-
ties based on the derived morphologic properties of the built environment. Finally, we 
align vulnerability information, i.e., fragility functions, to the exposure data and estab-
lish probabilistic seismic hazard analysis-based (PSHA) seismic loss estimations for the 
earthquake-prone city of Santiago de Chile. Thereby, we evaluate the loss estimation 
accuracies as a function of the resolution properties of the underlying exposure data. 
This is done to gain insights regarding how the different aggregation levels of the expo-
sure data propagate into final loss estimates.

The remainder of the paper is organized as follows. We provide a brief description of 
the study site and incorporated datasets in Sect. 2. Section 3 documents the developed 
and implemented methods for hazard assessment, disaggregation of exposure data, and 
loss estimation, whereas Sect. 4 contains affiliated results and discussion. Conclusions 
and future perspectives are outlined in Sect. 5.
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2  Study site and data

2.1  Santiago de Chile

We apply the proposed methods to data that cover Santiago de Chile, the capital of 
Chile. The corresponding metropolitan area is inhabited by more than 7 million people 
and is located in close proximity to the subduction zone where the Nazca Plate subducts 
the South American Plate. However, the seismic hazard for Santiago de Chile is not 
only determined by the offshore subduction zone, but also by shallow crust earthquakes. 
These events emanate from inland faults on the western flank of the Andean Cordil-
lera, i.e., the Western Andean Thrust (Ammirati et al. 2019). Among them is also the 
recently characterized San Ramon Fault. This active North–South oriented west verging 
fault system runs directly along the eastern border of the city (Armijo et al. 2010) and 
represents a likely source for damaging events (Hussain et al. 2020).

2.2  Data

2.2.1  National exposure model for Chile

We built upon the national exposure model for Chile which was developed in the con-
text of the South America Risk Assessment (SARA) project (available online: https:// 
sara. openq uake. org/ risk: expos ure) (GEM 2014; Yepes-Estrada et  al. 2017). The expo-
sure data were predominately generated from census data in combination with plan-
ning permission data and comprises the spatial distribution, number, and living area of 
residential structures, which are classified according to 18 seismic building structural 
types with associated replacement costs. The information is provided on three spatial 
levels, i.e., comuna (corresponding to urban districts or municipalities), provinces, and 
regions. For this work, we deploy the comuna-level data (Fig. 1a). Thereby, the plan-
ning permission data can be considered as the most reliable data source and were com-
piled on comuna level. Consequently, we utilize this level since it provides the most 
favorable tradeoff between spatial resolution and reliability (Santa Maria et  al. 2017; 
Yepes-Estrada et al. 2017).

Additionally, we integrate population information for subsequent casualty estimates 
from the national exposure model for Chile. The population information for the comuna 
level was compiled from national population statistics. In particular, the data reveals the 
average number of dwellers per building type at the legal place of residency, i.e., the 
nighttime population (Yepes-Estrada et al. 2017).

2.2.2  Earth observation data for characterization of the built environment

To derive built-up density and height, we follow an automated workflow. First, “built-
up” and “non-built-up” areas are distinguished by integrating the so-called Global 
Urban Footprint layer (Esch et  al. 2017). We integrate this information in a tailored 
filtering procedure for the TDM digital surface model (DSM) data (Geiß et al. 2015b) to 
extract elevation information for built-up areas, i.e., a normalized DSM (nDSM) (Geiß 
et al. 2020a) for Santiago de Chile (Fig. 1b). Subsequently, the intra-urban land cover is 
mapped under consideration of multispectral Sentinel-2 imagery. Thereby, intra-urban 

https://sara.openquake.org/risk:exposure
https://sara.openquake.org/risk:exposure
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Fig. 1  Input data for the exposure mapping workflow; a administrative entities on comuna level of the 
national exposure model for Chile with corresponding shares of 18 different seismic building structural 
types for Santiago de Chile; b visualization of the normalized digital surface model (nDSM) derived from 
the TanDEM-X DSM which contains heights of objects which are elevated from the earth’s surface such 
as buildings or vegetation; c built-up density (upper map) and height (lower map) estimation based on the 
TanDEM-X nDSM data and additional Sentinel-2 imagery for Santiago de Chile on grid-cell level; color 
coding from low to high corresponds to equally-spaced quantiles and visualizes, thus, the relative distribu-
tion of built-up density and height values, respectively; d visualization of the SPOT nDSM with very high 
spatial resolution used for validation purposes
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vegetation is pruned and the residual elevated areas, i.e., elevated built-up areas, serve 
as the basis to compute built-up densities and heights. These two measures were com-
bined for a morphologic characterization of the built environment for spatial entities, 
i.e., rectangular grid cells, with a side length of 500 m (Fig. 1c) (Geiß et al. 2019). It is 
here where it can be noted that those grid-cell-level estimates can be also produced by 
means of supervised learning techniques, i.e., learning from an area where both TDM 
and Sentinel-2 are available and establishing an estimation for areas where solely Sen-
tinel-2 is available. Despite existing globally, the TDM DSM is frequently solely acces-
sible for up to 100 000  km2 for scientific applications (Geiß et al. 2019), whereas the 
Sentinel-2 imagery is accessible without any restrictions. A suite of corresponding tech-
niques was recently proposed in Geiß et al. (2022a, b; 2020b).

Finally, we obtained a very high resolution (VHR) DSM for validation purposes, 
which was derived from panchromatic tri-stereo images with a geometric resolution of 
2 m acquired by the SPOT-7 satellite (d’Angelo et al. 2008). From it, also an nDSM was 
derived (Fig. 1d).

2.2.3  Fragility functions for earthquake loss estimation and empirical conversion 
factors for casualty estimation

Subsequently, we align vulnerability information, i.e., existing analytical fragility func-
tions (Villar-Vega et  al. 2017), to the seismic structural types contained in the exposure 
model for Santiago de Chile. The fragility functions establish the likelihood of damage 
conditional on a certain level of ground shaking, i.e., earthquake intensity. We mainly rely 
on functions that were specifically developed for the South American building inventory 
and local regional dataset of strong ground motion records. The structural capacity of each 
building class was computed from 150 single-degree-of-freedom oscillators which enable 
the propagation of building-to-building variabilities. In addition, the seismic demand was 
considered by over 300 ground motion records to account for record-to-record variabilities. 
The structural capacity for each building class was determined based on several existing 
studies, outcomes from two workshops organized in South America, and expert judgment 
by multiple local practitioners (GEM 2014). Thereby, ductility levels, damage schemes, 
and response behaviors were considered. Finally, each fragility function was modeled 
as a cumulative lognormal distribution, and the representative intensity measures (PGA, 
SA—0.3  s, SA—1.0  s) were selected based on the correlation between ground shaking 
and damage distribution. Four damage states are discriminated, i.e., “slight,” “moderate,” 
“extensive,” and “destroyed” (Villar-Vega et al. 2017). The set of fragility functions was 
completed by integrating functions from HAZUS (FEMA 2015) for the types MCF MCF 
4–5, MCF MR 4–5, and MR 4–5, respectively. The fragility functions were harmonized 
and aligned to the structural types of Santiago de Chile as documented in detail in Fig. 2.

To anticipate the possible effects of damaging earthquakes on the exposed population, 
we further integrate empirical conversion factors for the building-related damage states 
for casualty estimation. We built upon conversion factors from HAZUS (FEMA 2015). 
Thereby, four degrees of injury are distinguished, which are all caused by direct conse-
quences of an earthquake such as collapsing buildings, and falling debris (Spence and So 
2021). The degrees of injury comprise: “slightly injured,” “moderately injured,” “heavily 
injured,” and “deadly injured.” The degrees of injury are aligned to the damage states as 
documented in detail in Table  1. It can be noted that the damage state “destroyed” was 
further distinguished according to “destroyed—with collapse” and “destroyed—without 
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collapse.” The latter describes cases where a structure faces substantial damage which 
prevents repairing it. However, without a collapse, the number of deadly injured inhabit-
ants will be substantially reduced compared to a structure that faces the damage pattern 
“destroyed—with collapse.”

3  Implemented methods

A flowchart of the implemented methods is given in Fig. 3. First, we carry out PSHA with 
four probabilities of occurrence for Santiago de Chile (Sect. 3.1). Section 3.2 details the 
developed dasymetric disaggregation techniques to spatially disaggregate and eventually 
constrain the existing exposure data from the national model on comuna level. Finally, 
Sect. 3.3 contains the description of implemented damage state computation and casualty 
estimation procedures.

3.1  Probabilistic seismic hazard assessment

For the characterization of the seismic hazard, we capitalize upon the SARA seismic haz-
ard model according to Garcia et al. (2017), which follows the well-known PSHA approach 
(Cornell 1968). The input data for the model encompasses a database of seismically active 
faults, as well as seismological, geological, and geophysical information. Additionally, focal 

Fig. 2  Deployed fragility functions which establish a relationship between the intensity of an earthquake 
(x-axis) and corresponding degree of damage (y-axis) for four damage states, i.e., green = “slight,” yel-
low = “moderate,” orange = “extensive,” and red = “destroyed,” respectively, for the seismic building struc-
tural types of Santiago de Chile
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mechanisms for the Nazca subduction zones are integrated along with a harmonized earth-
quake catalog for South America, and a selection of ground motion prediction equations 
(GMPEs). These input data allow for modeling of the near-surface seismic properties in South 
America, the subduction zones, and the processes within the continental plate. (i) The shallow 
seismicity is approximated by both an integrated model of distributed seismicity and crus-
tal fault sources; (ii) the subduction interface seismicity is modeled as large 3D fault sources 
geometry; (iii) the subduction in-slab seismicity is considered via 3D volumes of ruptures 
describing the spatial location of events within the area of interest (Garcia et al. 2017). Mod-
eling results, in combination with the GMPEs (the epistemic uncertainty is accounted for by 
using a Logic Tree-based procedure), allow for a probabilistic determination of the expected 
earthquake intensity. For the actual seismic hazard computations for Santiago de Chile we 
used the OpenQuake Engine (Pagani et al. 2014). The model reveals peak ground accelera-
tion (PGA) and spectral acceleration (SA—0.3  s, SA—1.0  s). We consider four probabili-
ties of occurrence to analyze a broad spectrum of events, i.e., earthquakes with a probabil-
ity of occurrence of 50%, 30%, and 10% within 50 years, and an extreme event with 10% in 
475 years, respectively. Lastly, we spatially refine the modeled intensity values with an exact 
interpolation technique, i.e., inverse distance weighting (Shepard 1968), to obtain an intensity 
value every 300 m (Fig. 4).

Fig. 3  Overview of the implemented methods for hazard characterization, exposure modeling, damage state 
computation, and casualty estimation, respectively
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3.2  Spatial disaggregation methods for exposure estimation

Generally, disaggregation methods establish a mapping that foresees transforming data 
from one set of coarse spatial units (i.e., source zone) to one set of finer spatial units (i.e., 
target zone) (Wu et  al. 2005). We used for all disaggregation approaches exposure data 
from the comuna level as source zone and deployed EO-based datasets as target zone.

As an initial means, we implemented a linear disaggregation approach with respect to 
the settlement area. Thereby, the living areas per building type on comuna level are disag-
gregated proportionally regarding the settlement area on grid-cell level (Fig.  5). Conse-
quently, the linear disaggregation corresponds to a so-called binary dasymetric mapping 
approach, since the redistribution of the living areas per building type is solely established 
according to the binary expression of a variable (i.e., presence or absence of “built-up 
areas”). In our application context, such a disaggregation scheme is, in particular, helpful 
to establish a more differentiated consideration of the hazard intensity, since each grid cell 
will be assigned an individual hazard intensity value instead of solely considering one haz-
ard intensity value per comuna.

Fig. 4  PGA with a probability of occurrence of a 50%, b 30%, and c 10% within 50 years, and d an extreme 
event with 10% in 475 years. The white contour line represents the settlement area under study of Santiago 
de Chile

Fig. 5  Linear disaggregation approach for exposure estimation. The living areas per building type (pie 
chart) on comuna level are disaggregated proportionally regarding the settlement area on grid-cell level
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However, to establish a more differentiated mapping, we incorporate the derived mor-
phologic properties of the built environment for disaggregation. Figure  6 illustrates the 
dasymetric disaggregation approaches on grid-cell level with both absolute and relative 
height constraints.

First, the EO-based built-up height measurements are classified into up to six distinct 
building height classes as defined by the height classes of the building structural types. 
Here, the classification according to absolute height thresholds (Fig. 6a) follows the num-
ber of floors of the respective height classes (Table 2), whereby we apply a value of three 
meters per floor. In contrast, the classification according to relative height thresholds 
(Fig. 6b) reproduces the distribution of the height classes on comuna level exactly. Gener-
ally, the classifications determine which structural types can occur in a certain grid cell 
(i.e., one up to nine types per cell) (Table 2).

Fig. 6  Disaggregation methods for exposure estimation which take the urban morphology into account: dis-
aggregation approaches on grid-cell level with a absolute and b relative height constraints
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Additionally, the living areas per building height class are summed up on comuna level. 
The sum per specific building height class is redistributed over the grid cells which cor-
respond to that specific building height class while preserving the characteristic shares of 
individual structural types of that specific building height class. Finally, the built-up den-
sity is deployed to disaggregate the living areas in a weighted manner, i.e., the living areas 
per building height class are redistributed proportionally regarding the corresponding built-
up densities. For subsequent usage, we divide the mapped living area per building type by 
corresponding average living areas per building type (according to the numbers included in 
the national exposure model) to obtain the absolute number of buildings per type.

Figure 7 illustrates the disaggregation approaches on sub-grid-cell level. We follow the 
same aforementioned methodological principles. However, here we deploy the TanDEM-X 

Fig. 7  Disaggregation methods for exposure estimation which take the urban morphology into account: dis-
aggregation approaches on sub-grid-cell level with a absolute and b relative height constraints
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Fig. 8  a Results of the different mapping techniques regarding the number of buildings per type. Color bars 
for individual building types correspond to absolute number of buildings per grid cell (or area equivalent 
for each comuna). b Results of the different mapping techniques regarding the number of buildings per 
type. Color bars for individual building types correspond to absolute number of buildings per grid cell (or 
area equivalent for each comuna)

▸

nDSM values of the elevated built-up areas, i.e., elevated intra-urban areas, whereby veg-
etation has been pruned, in order to consider all eventually existing building height classes 
within a grid cell. Consequently, the absolute and relative classification reveals a distribu-
tion of the different building height classes on grid-cell level. In detail, the classification 
according to absolute height thresholds (Fig. 7a) follows the number of stories per building 
height class (Table 2). Analogous to the grid-cell-level approach, the classification accord-
ing to relative height thresholds (Fig. 7b) reproduces the distribution of the building height 
classes on comuna level exactly.

In addition to that, for subsequent casualty estimation, the mapped number of buildings 
per type is also deployed to compute the population per building, since the comuna-level 
data also carries the average number of dwellers per building type.

3.3  Damage state computation and casualty estimation

To assess the likely distribution of damage levels on the exposed building portfolio after 
the occurrence of an earthquake, the estimated ground shaking intensity is assigned to 
each spatial entity. Given the spatial resolution properties of the hazard assessment with an 
intensity value every 300 m, it is possible that multiple intensity values are located within a 
spatial entity of an exposure model. If this is the case, we compute the mean intensity value 
per spatial entity. Consequently, we can determine the intensity which affects a certain 
number of buildings of a certain type at a certain location. In conjunction with the type-
specific fragility functions, the overall distribution of damage states for a spatial entity can 
be computed. Population data per building and affiliated damage states are combined with 
the empirical conversion factors for the building-related damage states. Finally, the num-
bers across the buildings are summed up to obtain the number of affected people according 
to the four degrees of injury per spatial entity.

4  Experimental results and discussion

4.1  Exposure data

The results of the five different disaggregation techniques along with the comuna-level data 
regarding the number of buildings per type are visualized in Fig.  8a, b. Additionally, to 
establish a reference mapping, we deploy the VHR nDSM (which can be considered as 
a proper measurement) on sub-grid-cell level while reproducing the building height class 
distributions on comuna level, since this configuration corresponds to the highest level of 
prior knowledge deployment. Moreover, the building types are ordered according to their 
frequency, i.e., “MR 1–2” corresponds to the most frequent type in Santiago de Chile, 
whereas “CR 25–40” represents the least frequent type.

From these figures, it can be first noted that distributions of buildings per type within 
a comuna are less uniform for the grid-cell-level methods compared to the sub-grid-cell 
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Fig. 8  (continued)
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methods. This is intrinsically related to the fact that solely a single building height class per 
grid cell can be inferred on grid-cell level for disaggregation. However, also the estimates 
at the sub-grid-level allocate the different building types to specific parts of the comunas. 
These mappings reflect the reference spatial distributions frequently very well. This under-
lines the importance of spatially refined mappings compared to linear disaggregations, 
which solely provide uniform estimates within a comuna.

To study the accuracy properties of the different disaggregation methods in detail in this 
empirical setup, scatter plots (Fig. 9) provide a comparison per grid cell for both the number 
of buildings and the living area (since it varies per building type). Notably, grid-cell-level and 
sub-grid-cell-level estimates, which are based on relative height constraints, allow obtaining 
consistently moderate to high positive levels of agreement (R > 0.6) for both the number of 
buildings and living area. These estimates are substantially better aligned than linear alloca-
tions. In contrast, the methods that build upon absolute height thresholds are hardly capable 
of reproducing the reference mapping. This stresses the necessity to extract proper distribu-
tions of building height classes from the initial exposure model since those can hardly be 
estimated directly with the presented data and without further prior knowledge.

As mentioned in Sect. 2.2.2, the grid-cell-level estimates can be also produced by means 
of supervised learning techniques, i.e., learning from an area where both TDM and Senti-
nel-2 are available and establishing an estimation for areas where solely Sentinel-2 is avail-
able. Consequently, the accuracy difference of the grid-cell level and sub-grid-cell level 
can be interpreted as an error cost related to the integration of both TDM DSM data and 
Sentinel-2 imagery compared to the ubiquitously available Sentinel-2 imagery.

Additionally, Fig. 10 provides median absolute errors (MAEs) both in terms of the num-
ber of buildings per grid cell and living area  (m2) per grid cell for the different building 
types. Analogous to previous observations, the grid-cell-level estimates based on absolute 
height thresholds (light blue) do not provide superior accuracy properties compared to lin-
ear allocations (black). In contrast, both grid-cell-level-relative (dark blue) and sub-grid-
cell-level-absolute (light red) estimates provide substantial benefits for buildings of the 
lowest building height class (which corresponds to the vast majority of buildings in this 
empirical setting, i.e., 99.0% of the number and 68.6% of the living area). Moreover, the 

Fig. 9  Scatter plots for estimated a number of buildings and b corresponding living area  (m2) for the dif-
ferent disaggregation techniques, i.e., linear, grid-cell-level-absolute, grid-cell-level-relative, sub-grid-cell-
level-absolute, and sub-grid-cell-level-relative, respectively
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sub-grid-cell-level-relative approach (dark red) allows the establishment of more accurate 
estimates for each building type compared to a linear disaggregation which unambiguously 
underlines the usefulness of the presented data and methods.

Fig. 10  Median absolute errors for a the number of buildings per grid-cell and b the living area  (m2) per 
grid-cell regarding the different disaggregation techniques and seismic building structural types, respec-
tively
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4.2  Damage state computation and casualty estimation

Figure  11 provides the damage states for the spatial entities according to the four con-
sidered PSHA results. It can be visually traced how the number of damaged buildings 
increases with increasing intensity of shaking. Thereby, large parts of the business and 
financial areas, which expand northeastwards from the city center, feature a comparatively 
low concentration of damaged buildings. This is more pronounced for the grid-cell-level 
approaches compared to the sub-grid-cell-level approaches due to a denser spatial pool-
ing of high-rise buildings (cf. Fig.  8b). Generally, the underlying mechanism relates to 
the existence of high-rise buildings in the city center, which are typically compliant with 
seismic design provisions and thus, having low fragility. In contrast, particularly for the 
considered severe events, i.e., earthquakes with a probability of occurrence of 10% within 
50 years and with 10% in 475 years, respectively, we observe that large areas at the fringes 
of the city might feature a high concentration of damaged buildings, which relates to the 
existence of numerous low-rise building types with a comparative higher seismic fragil-
ity (e.g., informal, non-engineered structures). Overall, different damage is estimated for 
different parts of the city, which allow for anticipation of the situation based on possible 
events.

Figure 12 shows MAEs, which describe the deviation regarding the estimated number 
of buildings per grid cell in relation to the reference number of buildings per grid cell, for 
the four damage states and PSHA results. Thus, MAEs indicate the numerical deviation 
that relates to the majority of grid cells, i.e., area. Except for the grid-cell-level-absolute 

Fig. 11  Results of the different mapping techniques regarding the four damage states and PSHA results. 
The color bars indicate the absolute number of buildings per grid cell according to a certain damage state 
and PSHA result, respectively
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approach, the proposed disaggregation techniques all provide substantial benefits in terms 
of their accuracy properties compared to linear disaggregation which confirms the benefits 
of the presented data and methods. Thereby, the sub-grid-cell-level approaches are more 
favorable than the grid-cell-level-relative method, whereby the relative height constraints 
on the sub-grid-cell level reveal the most favorable results overall.

Finally, Figs. 13 and 14 provide the percentages of the population in the respective casu-
alty state for the spatial entities according to the four PSHA results and the corresponding 
MAEs of the different disaggregation techniques, respectively. Analogous to the disaggre-
gated damage state mappings, large parts of the center and areas in the Northeast feature 
a comparatively low concentration of people in the respective casualty states. In contrast, 
various areas arranged in a concentric manner around the core of the city represent par-
ticular hot spots for casualties. Thereby, sub-grid-level-relative estimates provide superior 
MAEs. The casualty estimates can serve as a metric for prioritizing rescue activities and 
further mitigation efforts after an earthquake.

5  Conclusion and outlook

In this paper, we established a workflow for the derivation of constituent morphologic 
properties of the built environment and subsequent utilization for spatial disaggregation of 
exposure information based on globally existing EO data, i.e., TDM DSM data and Sen-
tinel-2 imagery. Hereby, we proposed five different disaggregation techniques to allocate 
various seismic building structural types. Moreover, we aligned building fragility func-
tions and conversion factors for casualty estimation and utilized the compiled data for 

Fig. 12  Median absolute errors regarding the number of buildings per grid cell for the four damage states 
and PSHA results
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PSHA-based earthquake loss estimations. The proposed disaggregation methods turned 
out to be beneficial for a fine-grained mapping of various seismic building structural types 
and refined estimates of both building damage and casualties. Based on our estimates of 

Fig. 13  Results of the different mapping techniques regarding the four damage states and PSHA results. 
The color bars indicate the percentage of the population in the respective casualty state

Fig. 14  Median absolute errors regarding the percentage of the population in the respective casualty state 
and PSHA results
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damage and casualties, resulting from a variety of accelerations, one may formulate an 
informed mitigation program.

In the future, we aim to integrate machine learning techniques (Geiß et  al. 2020b, 
2022a, b) in the workflow to overcome restrictions related to the accessibility of the 
TDM DSM data and apply the workflow on a country scale for Chile. Thereby, it can be 
expected that the relevance of the proposed disaggregation techniques will be increased 
given that some comunas particularly in rural areas expand over comparatively small 
settlement areas, i.e., solely a minor fraction of the area of a comuna is covered by 
settlements, and, thus, fail to allow for a spatially differentiated consideration of small-
scale hazard effects. Consequently, with a refined exposure mapping, we aim to better 
quantitatively describe risks from various earthquakes, especially in rural areas.

Funding Open Access funding enabled and organized by Projekt DEAL. The work of Christian Geiß was 
supported by the Helmholtz Association under the grant “pre_DICT” (PD-305). This study has been con-
ducted as part of the projects RIESGOS (Grant No. 03G0876A-D) and RIESGOS 2.0 (03G0905A-B), 
funded by the German Federal Ministry of Education and Research (BMBF). The authors have no relevant 
financial or non-financial interests to disclose. All authors contributed to the study conception and design. 
Majority of material preparation, data collection and analysis were performed by Christian Geiß, Peter 
Priesmeier, Patrick Aravena Pelizari, and Angélica Rocio Soto Calderon. The first draft of the manuscript 
was written by Christian Geiß and Peter Priesmeier and all authors commented on previous versions of the 
manuscript. All authors read and approved the final manuscript.

Declarations 

Conflict of interest The authors have not disclosed any competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Ammirati JB, Vargas G, Rebolledo S, Abrahami R, Potin B, Leyton F, Ruiz S (2019) The crustal seismic-
ity of the western andean thrust (Central Chile, 33°–34° S): implications for regional tectonics and 
seismic hazard in the Santiago Area. Bull Seismol Soc Am 109(5):1985–1999. https:// doi. org/ 10. 1785/ 
01201 90082

An J, Nie G, Hu B (2021) Area-Wide estimation of seismic building structural types in rural areas by using 
decision tree and local knowledge in combination. Int J Disaster Risk Reduct 60:102320. https:// doi. 
org/ 10. 1016/j. ijdrr. 2021. 102320

Aravena Pelizari P, Geiß C, Aguirre P, Santa Maria H, Merino Peña Y, Taubenböck H (2021) Automated 
building characterization for seismic risk assessment using street-level imagery and deep learning. 
ISPRS J Photogramm Remote Sens 180:370–386

Armijo R, Rauld R, Thiele R, Vargas G, Campos J, Lacassin R, Kausel E (2010) The West Andean thrust, 
the San Ramon fault, and the seismic hazard for Santiago, Chile. Tectonics 29:TC2007. https:// doi. org/ 
10. 1029/ 2008T C0024 27

Aubrecht C, Özceylan D, Steinocher K, Freire S (2013) Multi-level geospatial modeling of human expo-
sure patterns and vulnerability indicators. Nat Hazards 68:147–163. https:// doi. org/ 10. 1007/ 
s11069- 012- 0389-9

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1785/0120190082
https://doi.org/10.1785/0120190082
https://doi.org/10.1016/j.ijdrr.2021.102320
https://doi.org/10.1016/j.ijdrr.2021.102320
https://doi.org/10.1029/2008TC002427
https://doi.org/10.1029/2008TC002427
https://doi.org/10.1007/s11069-012-0389-9
https://doi.org/10.1007/s11069-012-0389-9


801Natural Hazards (2023) 119:779–804 

1 3

Bilham RG (2009) The seismic future of cities. Bull Earthq Eng 7:839–887. https:// doi. org/ 10. 1007/ 
s10518- 009- 9147-0

Borfecchia F, Pollino M, De Cecco L, Lugari A, Martini S, La Porta L, Ristoratore E, Pascale C (2010) 
Active and passive remote sensing for supporting the evaluation of the urban seismic vulnerability. 
Italian J Remote Sens 42(3):129–141

Borzi B, Dell’Acqua F, Faravelli M, Gamba P, Lisini G, Onida M, Polli D (2011) Vulnerability study on a 
large industrial area using satellite remotely sensed images. Bull Earthq Eng 9:675–690. https:// doi. 
org/ 10. 1007/ s10518- 010- 9211-9

Corbane C, Hancilar U, Ehrlich D, Dr Groeve T (2017) Pan-European seismic risk assessment: a proof of 
concept using the Earthquake Loss Estimation Routine (ELER). Bull Earthq Eng 15(3):1057–1083. 
https:// doi. org/ 10. 1007/ s10518- 016- 9993-5

Cornell C (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606. https:// doi. org/ 
10. 1785/ BSSA0 58005 1583

d’Angelo P, Lehner M, Krauss T, Hoja D, Reinartz P (2008) Towards automated DEM generation from high 
resolution stereo satellite images. The International Archives of the Photogrammetry, Remote Sensing 
and Spatial Information Sciences, XXXVII (B4)

Dabbeek J, Crowley H, Silva V, Weatherill G, Paul N, Nievas CI (2021) Impact of exposure spatial resolu-
tion on seismic loss estimates in regional portfolios. Bull Earthq Eng. 19:5819-5841. https:// doi. org/ 
10. 1007/ s10518- 021- 01194-x

Dobson JE, Bright EA, Coleman PR, Durfee RC, Worley BA (2000) LandScan: a global population data-
base for estimating populations at risk. Photogramm Eng Remote Sens 66(7):849–857

Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Mar-
timort P, Meygret A, Spoto F, Sy O, Marchese F, Bargellini P (2012) Sentinel-2: ESA’s optical high-
resolution mission for GMES operational services. Remote Sens Environ 120:25–36. https:// doi. org/ 
10. 1016/j. rse. 2011. 11. 026

Dunbar PK, Bilham RG, Laituri MJ (2003) Earthquake loss estimation for india based on macroeconomic 
indicators. Risk Sci Sustain 112:163–180. https:// doi. org/ 10. 1007/ 978- 94- 010- 0167-0_ 13

Ebert A, Kerle N, Stein A (2009) Urban social vulnerability assessment with physical proxies and spatial 
metrics derived from air- and spaceborne imagery and GIS data. Nat Hazards 48:275–294. https:// doi. 
org/ 10. 1007/ s11069- 008- 9264-0

Ehrlich D, Tenerelli P (2013) Optical satellite imagery for quantifying spatio-temporal dimension of 
physical exposure in disaster risk assessments. Nat Hazards 68:1271–1289. https:// doi. org/ 10. 1007/ 
s11069- 012- 0372-5

Esch T, Heldens W, Hirner A, Keil M, Marconcini M, Roth A, Zeidler J, Dech S, Strano E (2017) Break-
ing new ground in human settlements from space—the Global Urban Footprint. ISPRS J Photogramm 
Remote Sens 134:30–42. https:// doi. org/ 10. 1016/j. isprs jprs. 2017. 10. 012

Fan X, Nie G, Xia C, Zhou J (2021) Estimation of pixel-level seismic vulnerability of the building environ-
ment based on mid-resolution optical remote sensing images. Int J Appl Earth Obs Geoinf 101(161–
175):102339. https:// doi. org/ 10. 1016/j. jag. 2021. 102339

FEMA (2015) Hazus—MH 2.1. Multi hazard loss estimation methodology: technical manual. earthquake 
model. Department of Homeland Security; Federal Emergency Management Agency; Mitigation Divi-
sion. Washington D.C.

French SP, Muthukumar S (2006) Advanced technologies for earthquake risk inventories. J Earthq Eng 
10(2):207–236. https:// doi. org/ 10. 1080/ 13632 46060 93505 94

Garcia J, Weatherill G, Pagani M, Rodriguez L, Poggi V (2017) Building an open seismic hazard model for 
South America: The SARA PSHA Model. SARA Hazard Working Group. In: 16th world conference 
on earthquake engineering, pp 1–13

Geiß C, Taubenböck H (2013) Remote sensing contributing to assess earthquake risk: from a literature 
review towards a roadmap. Nat Hazards 68:7–48. https:// doi. org/ 10. 1007/ s11069- 012- 0322-2

Geiß C, Taubenböck H, Tyagunov S, Tisch A, Post J, Lakes T (2014) Assessment of seismic building vul-
nerability from space. Earthq Spectra 30(4):1553–1583. https:// doi. org/ 10. 1193/ 12181 2EQS3 50M

Geiß C, Aravena Pelizari P, Marconcini M, Sengara W, Edwards M, Lakes T, Taubenböck H (2015a) Esti-
mation of seismic buildings structural types using multi-sensor remote sensing and machine learning 
techniques. ISPRS J Photogramm Remote Sens 104:175–188. https:// doi. org/ 10. 1016/j. isprs jprs. 2014. 
07. 016

Geiß C, Wurm M, Breunig M, Felbier A, Taubenböck H (2015b) Normalization of TanDEM-X DSM data 
in urban environments with morphological filters. IEEE Trans Geosci Remote Sens 53(8):4348–4362. 
https:// doi. org/ 10. 1109/ TGRS. 2015. 23961 95

https://doi.org/10.1007/s10518-009-9147-0
https://doi.org/10.1007/s10518-009-9147-0
https://doi.org/10.1007/s10518-010-9211-9
https://doi.org/10.1007/s10518-010-9211-9
https://doi.org/10.1007/s10518-016-9993-5
https://doi.org/10.1785/BSSA0580051583
https://doi.org/10.1785/BSSA0580051583
https://doi.org/10.1007/s10518-021-01194-x
https://doi.org/10.1007/s10518-021-01194-x
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.1007/978-94-010-0167-0_13
https://doi.org/10.1007/s11069-008-9264-0
https://doi.org/10.1007/s11069-008-9264-0
https://doi.org/10.1007/s11069-012-0372-5
https://doi.org/10.1007/s11069-012-0372-5
https://doi.org/10.1016/j.isprsjprs.2017.10.012
https://doi.org/10.1016/j.jag.2021.102339
https://doi.org/10.1080/13632460609350594
https://doi.org/10.1007/s11069-012-0322-2
https://doi.org/10.1193/121812EQS350M
https://doi.org/10.1016/j.isprsjprs.2014.07.016
https://doi.org/10.1016/j.isprsjprs.2014.07.016
https://doi.org/10.1109/TGRS.2015.2396195


802 Natural Hazards (2023) 119:779–804

1 3

Geiß C, Jilge M, Lakes T, Taubenböck H (2016) Estimation of seismic vulnerability levels of urban struc-
tures with multisensor remote sensing. IEEE J Sel Top Appl Earth Observ Remote Sens 9(5):1913–
1936. https:// doi. org/ 10. 1109/ JSTARS. 2015. 24425 84

Geiß C, Schauß A, Riedlinger T, Dech S, Zelaya C, Guzmán N, Hube MA, Arsanjani JJ, Taubenböck H 
(2017a) Joint use of remote sensing data and volunteered geographic information for exposure esti-
mation: evidence from Valparaíso. Chile Natl Hazards 86(1):81–105. https:// doi. org/ 10. 1007/ 
s11069- 016- 2663-8

Geiß C, Thoma M, Pittore M, Wieland M, Dech S, Taubenböck H (2017b) Multitask active learning for 
characterization of built environments with multisensor earth observation data. IEEE J Sel Top Appl 
Earth Observ Remote Sens 10(12):5583–5597. https:// doi. org/ 10. 1109/ JSTARS. 2017. 27483 39

Geiß C, Thoma M, Taubenböck H (2018) Cost-sensitive multitask active learning for characterization of 
urban environments with remote sensing. IEEE Geosci Remote Sens Lett 15(6):922–926. https:// doi. 
org/ 10. 1109/ LGRS. 2018. 28134 36

Geiß C, Leichtle T, Wurm M, Aravena Pelizari P, Standfuß I, Zhu XX, So E, Siedentop S, Esch T, Tauben-
böck H (2019) Large-area characterization of urban morphology: mapping built-up height and den-
sity with the TanDEM-X mission and Sentinel-2. IEEE J Sel Top Appl Earth Observ Remote Sens 
12(8):2912–2927. https:// doi. org/ 10. 1109/ JSTARS. 2019. 29177 55

Geiß C, Aravena Pelizari P, Bauer S, Schmitt A, Taubenböck H (2020a) Automatic training set compilation 
with multisource geodata for DTM generation from the TanDEM-X DSM. IEEE Geosci Remote Sens 
Lett 17(3):456–460. https:// doi. org/ 10. 1109/ LGRS. 2019. 29216 00

Geiß C, Schrade H, Aravena Pelizari P, Taubenböck H (2020b) Multistrategy ensemble regression for map-
ping of built-up height and density with Sentinel-2 data. ISPRS J Photogramm Remote Sens 170:57–
71. https:// doi. org/ 10. 1016/j. isprs jprs. 2020. 10. 004

Geiß C, Brzoska E, Aravena Pelizari P, Lautenbach S, Taubenböck H (2022a) Multi-target regressor 
chains with repetitive permutation scheme for characterization of built environments with remote 
sensing. Int J Appl Earth Obs Geoinf 106:102657. https:// doi. org/ 10. 1016/j. jag. 2021. 102657

Geiß C, Rabuske A, Aravena Pelizari P, Bauer S, Taubenböck T (2022b) Selection of unlabeled source 
domains for domain adaptation in remote sensing. Array 15:100233. https:// doi. org/ 10. 1016/j. array. 
2022. 100233

GEM (2014) Report on the SARA exposure and vulnerability workshop in Medellin, Colombia (Report 
produced in the context of the GEM South America integrated Risk Assessment (SARA) project 
No. Version 1.0-May 2014)

Gomez-Zapata JC, Brinckmann N, Harig S, Zafrir R, Pittore M, Cotton F, Babeyko A (2021) Variable-
resolution building exposure modelling for earthquake and Tsunami scenario-based risk assess-
ment. An application case in Lima, Peru. Natl Hazard Earth Syst Sci 21:3599–3628. https:// doi. org/ 
10. 5194/ nhess- 21- 3599- 2021

Gomez-Zapata JC, Pittore M, Cotton F, Lilienkamp H, Shinde S, Aguirre P, Santa Maria H (2022a) Epis-
temic uncertainty of probabilistic building exposure compositions in scenario-based earthquake loss 
models. Bull Earthq Eng 20:2401–2438. https:// doi. org/ 10. 1007/ s10518- 021- 01312-9

Gomez-Zapata JC, Zafrir R, Pittore M, Merino Y (2022b) Towards a sensitivity analysis in seismic risk 
with probabilistic building exposure models: an application in Valparaiso, Chile using ancillary open-
source data and parametric ground motions. ISPRS Int J Geo-Inf 11(2):113. https:// doi. org/ 10. 3390/ 
ijgi1 10201 13

Hussain E, Elliott JR, Silva V, Vilar-Vega M, Kane D (2020) Contrasting seismic risk for Santiago, 
Chile, from near-field and distant earthquake sources. Nat Hazard 20:1533–1555. https:// doi. org/ 
10. 5194/ nhess- 20- 1533- 2020

Kechidi S, Castro JM, Monteiro R, Marques M, Yelles K, Bourahla N, Hamdache M (2021) Develop-
ment of exposure datasets for earthquake damage and risk modelling: the case study of northern 
Algeria. Bull Earthq Eng. 19:5253-5283. https:// doi. org/ 10. 1007/ s10518- 021- 01161-6

Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M, Zink M (2007) TanDEM-X: a satellite 
formation for high-resolution SAR interferometry. IEEE Trans Geosci Remote Sens 45(11):3317–
3341. https:// doi. org/ 10. 1109/ TGRS. 2007. 900693

Liu Y, Li Z, Wie B, Li X, Fu B (2019) Seismic vulnerability assessment at urban scale using data mining 
and GIScience technology: application to Urumqi (China). Geomat Nat Haz Risk 10(1):958–985. 
https:// doi. org/ 10. 1080/ 19475 705. 2018. 15244 00

Liuzzi M, Aravena Pelizari P, Geiß C, Masi A, Tramutoli V, Taubenböck H (2019) A transferable remote 
sensing approach to classify building structural types for seismic risk analyses: the case of Val 
d’Agri area (Italy). Bull Earthq Eng 17(9):4825–4853. https:// doi. org/ 10. 1007/ s10518- 019- 00648-7

https://doi.org/10.1109/JSTARS.2015.2442584
https://doi.org/10.1007/s11069-016-2663-8
https://doi.org/10.1007/s11069-016-2663-8
https://doi.org/10.1109/JSTARS.2017.2748339
https://doi.org/10.1109/LGRS.2018.2813436
https://doi.org/10.1109/LGRS.2018.2813436
https://doi.org/10.1109/JSTARS.2019.2917755
https://doi.org/10.1109/LGRS.2019.2921600
https://doi.org/10.1016/j.isprsjprs.2020.10.004
https://doi.org/10.1016/j.jag.2021.102657
https://doi.org/10.1016/j.array.2022.100233
https://doi.org/10.1016/j.array.2022.100233
https://doi.org/10.5194/nhess-21-3599-2021
https://doi.org/10.5194/nhess-21-3599-2021
https://doi.org/10.1007/s10518-021-01312-9
https://doi.org/10.3390/ijgi11020113
https://doi.org/10.3390/ijgi11020113
https://doi.org/10.5194/nhess-20-1533-2020
https://doi.org/10.5194/nhess-20-1533-2020
https://doi.org/10.1007/s10518-021-01161-6
https://doi.org/10.1109/TGRS.2007.900693
https://doi.org/10.1080/19475705.2018.1524400
https://doi.org/10.1007/s10518-019-00648-7


803Natural Hazards (2023) 119:779–804 

1 3

Mueller M, Segl K, Heiden U, Kaufmann H (2006) Potential of high-resolution satellite data in 
the context of vulnerability of buildings. Nat Hazards 38:247–258. https:// doi. org/ 10. 1007/ 
s11069- 005- 8637-x

Nievas CI, Pilz M, Prehn K, Schorlemmer, Weatherill G, Cotton F (2022) Calculating earthquake dam-
age building by building: the case of the city of Cologne, Germany. Bull Earthq Eng 20:1519–
1565. https:// doi. org/ 10. 1007/ s10518- 021- 01303-w

Pagani M, Monelli D, Weatherill G, Danciu L, Crowley H, Silva V, Henshaw P, Butler L, Nastasi M, Panz-
eri L, Simionato M, Vigano D (2014) OpenQuake engine: an open hazard (and risk) software for the 
global earthquake model. Seismol Res Lett 85(3):692–702. https:// doi. org/ 10. 1785/ 02201 30087

Pittore M, Wieland M (2013) Toward a rapid probabilistic seismic vulnerability assessment using sat-
ellite and ground-based remote sensing. Nat Hazards 68(1):115–145. https:// doi. org/ 10. 1007/ 
s11069- 012- 0475-z

Pittore M, Wieland M, Fleming K (2017) Perspectives on global dynamic exposure modelling for geo-
risk assessment. Nat Hazards 86(1):7–30. https:// doi. org/ 10. 1007/ s11069- 016- 2437-3

Pittore M, Haas M, Silva V (2020) Variable resolution probabilistic modeling of residential exposure 
and vulnerability for risk applications. Earthq Spectra 36(S1):321–344. https:// doi. org/ 10. 1177/ 
87552 93020 951582

Polli D, Dell’Acqua F (2011) Fusion of optical and SAR data for seismic vulnerability mapping of build-
ings. In: Prasad S, Bruce LM, Chanussot J (eds) Optical remote sensing: advances in signal pro-
cessing and exploitation techniques. Springer, Heidelberg, pp 329–341

Qi W, Su G, Sun L, Yang F (2017) Wu Y (2017) ‘“Internet+”’ approach to mapping exposure and seis-
mic vulnerability of buildings in a context of rapid socioeconomic growth: a case study in Tang-
shan, China. Nat Hazards 86:107-S139. https:// doi. org/ 10. 1007/ s11069- 016- 2581-9

Sahar L, Muthukumar S, French P (2010) Using aerial imagery and GIS in automated building footprint 
extraction and shape recognition for earthquake risk assessment of urban inventories. IEEE Trans 
Geosci Remote Sens 48(9):3511–3520. https:// doi. org/ 10. 1109/ TGRS. 2010. 20472 60

Santa Maria H, Hube MA, Rivera F, Yepes-Estrada C, Valcarcel JA (2017) Development of national and 
local exposure models of residential structures in Chile. Nat Hazards 86:55–79. https:// doi. org/ 10. 
1007/ s11069- 016- 2518-3

Sarabandi P, Kiremidjian A (2007) Development of algorithms or building inventory compilation 
through remote sensing and statistical inferencing. The John A. Blume Earthquake Engineering 
Center, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 
USA, Report No 158, p 419

Senouci A, Bard PY, Beck E, Farsi MN, Cartier S (2018) Mapping seismic vulnerability at urban scale: 
discussion on relevant cartography representations and smoothing for urban planning purposes on the 
Oran case study. Soil Dyn Earthq Eng 115:545–563. https:// doi. org/ 10. 1016/j. soild yn. 2018. 08. 034

Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Blue RB, 
Rosenberg AM (ed) Proceedings of the 1968 23rd ACM national conference. ACM Press, New York, 
pp 517–524

Spence R, So E (2021) Why do buildings collapse in earthquakes?: Building for safety in seismic areas. 
Wiley. ISBN: 978-1-119-61942-0

Taubenböck H, Post J, Roth A, Zosseder K, Strunz G, Dech S (2008) A conceptual vulnerability and risk 
framework as outline to identify capabilities of remote sensing. Nat Hazard 8:409–420. https:// doi. org/ 
10. 5194/ nhess-8- 409- 2008

Taubenböck H, Roth A, Dech S, Mehl H, Münich JC, Stempniewski L, Zschau J (2009) Assessing build-
ing vulnerability using synergistically remote sensing and civil engineering. In: Kreck A, Rumor M, 
Zlatanova S, Fendel E (eds) Urban and regional data management. Taylor & Francis Group, London, 
pp 287–300

Torres Y, Arranza JJ, Gaspar-Escribanoa JM, Haghia A, Martínez-Cuevasa S, Benitoa B, Ojedab JC (2019) 
Integration of LiDAR and multispectral images for rapid exposure and earthquake vulnerability esti-
mation. Application in Lorca, Spain. Int J Appl Earth Obs Geoinf 81:161–175. https:// doi. org/ 10. 
1016/j. jag. 2019. 05. 015

UN (2019) World Population Prospects 2019: Highlights. United Nations, Department of Economic and 
Social Affairs, Population Division. ST/ESA/SER.A/423

UNISDR (2009) Terminology on disaster risk reduction, united nations international strategy for disaster 
reduction; UNISDR-20-791 2009. Switzerland, Geneva

Villar-Vega M, Silva V, Crowley H, Yepes C, Tarque N, Acevedo A, Hube M, Coronel D, Santa Maria H 
(2017) Development of a fragility model for the residential building stock in South America. Earthq 
Spectra 33(2):581–604. https:// doi. org/ 10. 1193/ 01071 6EQS0 05M

https://doi.org/10.1007/s11069-005-8637-x
https://doi.org/10.1007/s11069-005-8637-x
https://doi.org/10.1007/s10518-021-01303-w
https://doi.org/10.1785/0220130087
https://doi.org/10.1007/s11069-012-0475-z
https://doi.org/10.1007/s11069-012-0475-z
https://doi.org/10.1007/s11069-016-2437-3
https://doi.org/10.1177/8755293020951582
https://doi.org/10.1177/8755293020951582
https://doi.org/10.1007/s11069-016-2581-9
https://doi.org/10.1109/TGRS.2010.2047260
https://doi.org/10.1007/s11069-016-2518-3
https://doi.org/10.1007/s11069-016-2518-3
https://doi.org/10.1016/j.soildyn.2018.08.034
https://doi.org/10.5194/nhess-8-409-2008
https://doi.org/10.5194/nhess-8-409-2008
https://doi.org/10.1016/j.jag.2019.05.015
https://doi.org/10.1016/j.jag.2019.05.015
https://doi.org/10.1193/010716EQS005M


804 Natural Hazards (2023) 119:779–804

1 3

Wieland M, Pittore M (2016) Large-area settlement pattern recognition from Landsat-8 data. ISPRS J Pho-
togramm Remote Sens 119:294–308. https:// doi. org/ 10. 1016/j. isprs jprs. 2016. 06. 010

Wieland M, Pittore M, Parolai S, Zschau J, Moldobekov B, Begaliev U (2012) Estimating building inven-
tory for rapid seismic vulnerability assessment: towards an integrated approach based on multi-source 
imaging. Soil Dyn Earthq Eng 36:70–83. https:// doi. org/ 10. 1016/j. soild yn. 2012. 01. 003

Wu S-S, Qiu X, Wang L (2005) Population estimation methods in GIS and remote sensing: a review. Gisci 
Remote Sens 42(1):58–74. https:// doi. org/ 10. 2747/ 1548- 1603. 42.1. 80

Wyss M (2018) Rural Populations suffer most in great earthquakes. Seismol Res Lett 89(6):1991–1997. 
https:// doi. org/ 10. 1785/ 02201 80236

Wyss M, Speiser M (2022) Earthquake fatalities and potency. Nat Hazards
Wyss M, Rosset P, Triveno L (2021) The ratio of rural/urban people killed in earthquakes needs to be 

assessed for countries separately, the example of Colombia. Seismol Res Lett 92(2A):1036–1051. 
https:// doi. org/ 10. 1785/ 02202 00252

Yepes-Estrada C, Silva V, Valcárcel J, Acevedo AB, Tarque N, Hube MA, Coronel G, Santa Maria H (2017) 
Modeling the residential building inventory in South America for seismic risk assessment. Earthq 
Spectra 33(1):299–322. https:// doi. org/ 10. 1193/ 10191 5eqs1 55dp

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Christian Geiß1  · Peter Priesmeier2 · Patrick Aravena Pelizari1 · 
Angélica Rocio Soto Calderon3 · Elisabeth Schoepfer1 · Torsten Riedlinger1 · 
Mabé Villar Vega4 · Hernán Santa María5,6 · Juan Camilo Gómez Zapata7,8 · 
Massimiliano Pittore7,9 · Emily So10 · Alexander Fekete2 · Hannes Taubenböck1

1 German Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Weßling, 
Germany

2 TH Köln – University of Applied Sciences, Cologne, Germany
3 Technical University of Munich, Munich, Germany
4 UME School, IUSS, Pavia, Italy
5 National Research Center for Integrated Natural Disaster Management (CIGIDEN), 

Santiago de Chile, Chile
6 Department of Structural and Geotechnical Engineering, Pontifical Catholic University of Chile, 

Santiago de Chile, Chile
7 Seismic Hazard and Risk Dynamics, GFZ German Research Centre for Geosciences, Potsdam, 

Germany
8 Institute for Geosciences, University of Potsdam, Potsdam, Germany
9 EURAC Research, Institute for Earth Observation, Bolzano, Italy
10 Centre for Risk in the Built Environment, University of Cambridge, Cambridge, UK

https://doi.org/10.1016/j.isprsjprs.2016.06.010
https://doi.org/10.1016/j.soildyn.2012.01.003
https://doi.org/10.2747/1548-1603.42.1.80
https://doi.org/10.1785/0220180236
https://doi.org/10.1785/0220200252
https://doi.org/10.1193/101915eqs155dp
http://orcid.org/0000-0002-7961-8553

	Benefits of global earth observation missions for disaggregation of exposure data and earthquake loss modeling: evidence from Santiago de Chile
	Abstract
	1 Introduction
	2 Study site and data
	2.1 Santiago de Chile
	2.2 Data
	2.2.1 National exposure model for Chile
	2.2.2 Earth observation data for characterization of the built environment
	2.2.3 Fragility functions for earthquake loss estimation and empirical conversion factors for casualty estimation


	3 Implemented methods
	3.1 Probabilistic seismic hazard assessment
	3.2 Spatial disaggregation methods for exposure estimation
	3.3 Damage state computation and casualty estimation

	4 Experimental results and discussion
	4.1 Exposure data
	4.2 Damage state computation and casualty estimation

	5 Conclusion and outlook
	References




