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Abstract
In landslide susceptible mountainous regions, the precondition for avoiding and alleviat-
ing perilous dangers is the susceptibility mapping of the landslide. In northern Pakistan, 
landslides due to vigorous seismic zones, monsoon rainfall, extremely sheer slopes, and 
unfavorable geological conditions present a considerable threat to the mountain areas. This 
study targets and advances the research in mapping landslide susceptibility in northern 
Pakistan (Mansehra and Muzaffarabad districts). The central objective of the analysis is 
to analyze different convolutional neural network (CNN) frameworks and residual network 
(ResNet) that were constructed by developing distinct data representation algorithms for 
landslide susceptibility assessment and compare the results. This study considers sixteen 
landslide conditioning factors related to the incident of landslides centered on the literature 
review and geologic attributes of the pondered area. The marked historical landslide posi-
tions in the deliberated area were arbitrarily split into training and testing datasets, with the 
earlier containing 70% and the former having 30% of the total datasets. Several commonly 
exploited measures were used to validate the CNN architectures and ResNet by compar-
ing them with the most prevalent machine learning (ML) and deep learning (DL) tech-
niques. The outcomes of this study revealed that the proportions of regions having very 
high susceptibility in all the landslide susceptibility maps of the ResNet model and CNN 
models are considerably alike and less than 20%, which implies that the CNN models are 
significantly helpful in managing and preventing landslides as to the orthodox techniques. 
Moreover, the suggested CNN architectures and ResNet attained greater or similar predic-
tion accuracy than other orthodox ML and DL techniques. The values of OA (overall accu-
racy) and MCC (Matthew’s correlation coefficient) of proposed CNNs and ResNet were 
greater than those of the optimized SVM (support vector machine) and DNN (deep neural 
network).
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1  Introduction

Landslides are one of those devastating natural disasters that cause property and human life 
loss in many countries worldwide (Maqsoom et al. 2021). It is critical to assess landslide-
prone areas to manage and mitigate landslide disasters (Hong et al. 2016a). Assessing land-
slide susceptibility is a vital way to identify the most vulnerable regions to landslides and 
the critical areas for preventing and managing landslides (Guzzetti et al. 2006, Flentje et al. 
2007); thus, it is a valuable method and way to avoid landslides (Guzzetti et al. 2012).

Different statistical-based methods were frequently employed for mapping landslide 
susceptibility in areas around the world. The existing studies on landslide susceptibility 
analysis primarily utilized the following conventional regression analysis methods: logisti-
cal regression (LR) (Martinović et  al. 2016, Tanyas et  al. 2019, Nefeslioglu and Gorum 
2020), fisher discriminant analysis (FDA) (He et  al. 2012, Gupta et  al. 2018, Pham and 
Prakash 2019a, Wang et  al. 2020), index of entropy models (Youssef et  al. 2015, Wang 
et al. 2016b, Mondal and Mandal 2019), frequency ratio (Lee et al. 2015, Li et al. 2017, 
Mandal et al. 2018b), weights of evidence (WOE) (Wang et al. 2016a, Tsangaratos et al. 
2017, Bacha et al. 2018, Pamela et al. 2018).

In 25 earthquake-induced landslide (EQIL) areas, Tanyas et al. (2019) studied 64 EQIL 
inventories and implemented LR along with a slope unit for assessing landslide suscepti-
bility. In one earthquake event area (Wenchuan event), the model obtained the area under 
curve (AUC) accuracy of 0.88. Nefeslioglu and Gorum (2020) used LR to reveal the land-
slide hazards through landslide susceptibility assessment of Melen Dam reservoir and 
achieved better results of landslide spatial probability. Gupta et  al. (2018) employed an 
information value technique for computing the weights of different influencing factors and 
afterward utilized the weights in FDA and binary LR to assess landslide susceptibility. The 
prediction precision of the practiced methods was evaluated through Heidke skill score, 
and the obtained scores of FDA and LR were 0.89 and 0.90, correspondingly.

Furthermore, for evaluating landslide susceptibility, Barella et  al. (2019) contrasted 
seven statistical techniques: likelihood ratio, Bayesian model, landslide density, discrimi-
nant analysis, information value, WOE, and LR, and in the accuracy assessment, the WOE 
technique outperformed the other methods. A landslide inventory is typically utilized as the 
predictive variable by the orthodox regression analysis techniques, and statistical regres-
sion models are established to project the possibility of landslide incidence. Nevertheless, 
the factor selection and weigh assignment processes are partial to some extent, so these 
techniques partly depend on expert experience (Kanungo et al. 2011, Gupta et al. 2018).

Moreover, conventional machine learning (ML) and ensemble techniques have also been 
used to evaluate landslide susceptibility. These techniques include support vector machine 
(SVM) (Tien Bui et al. 2019, Yu et al. 2019, Pham et al. 2019b), artificial neural network 
(ANN) (Chen et al. 2017a, Polykretis and Chalkias 2018, Sevgen et al. 2019, Aslam et al. 
2022), genetic algorithm-SVM (Ramachandra et  al. 2013, Niu et  al. 2014) and random 
forest (RF) (Kim et  al. 2018, Sevgen et  al. 2019, Aslam et  al. 2022). Dou et  al. (2020) 
used four techniques, namely SVM, SVM-Bagging, SVM-Stacking, and SVM-Boosting, 
for evaluating landslide susceptibility. The SVM-Stacking model showed the poorest func-
tioning while the SVM-boosting model topped all the models. Aslam et al. 2022 assessed 
and compared the proficiencies of six advanced ML techniques for mapping landslide sus-
ceptibility, including linear discriminant analysis, quadratic discriminant analysis, ANN, 
naive Bayes, multivariate adaptive regression spline, and RF, and discovered that ANN 
outperformed other techniques.
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Zhao and Chen (2020) implemented four ensemble approaches for modeling land-
slide susceptibility: bagging-functional trees, functional trees, dagging-functional 
trees, and rotation forest-functional trees. They observed that the bagging-functional 
trees with an AUC accuracy of 0.804 outperformed the other techniques. Tien Bui 
et al. (2019) utilized an SVM classifier in combination with four ensemble techniques, 
namely rotation forest (RF), bagging (BA), random subspace (RS), and AdaBoost (AB), 
to formulate novel ensemble models for evaluating landslide susceptibility and discov-
ered that the RS-SVM model is superior in the prediction accuracy as compared to the 
models of SVM, RF-SVM, AB-SVM, and BA-SVM. The orthodox ML techniques can 
assist the comprehensive analysis of numerous conditioning factors and comparatively 
illustrate the nonlinear correlation among the conditioning factors and landslide suscep-
tibility satisfactorily; hence, they can obtain high accuracies (Bui et al. 2016).

More recently, various deep learning (DL) techniques have been practiced for evalu-
ating landslide susceptibility. However, this research area is still going through many 
developments and advancements as presently, more research is focused on DL tech-
niques to determine landslide susceptibility. Wang et  al. (2020) assessed landslide 
susceptibility using recurrent neural networks (RNNs) in Yongxin County, China, and 
indicated that the RNN system is helpful for mapping landslide susceptibility. Wang 
et  al. 2019 utilized convolutional neural networks (CNNs) for mapping landslide sus-
ceptibility in Yanshan County, China, showing that CNNs are better than conventional 
ML methods.

Compared to traditional ML techniques, DL techniques have more sophisticated struc-
tures (Ronoud and Asadi 2019). They thus are more capable of explaining a complex non-
linear problem, such as a landslide system (Cao et al. 2019). Moreover, due to the compe-
tent study approach, a DL technique can achieve superior generalization capabilities to an 
orthodox ML technique (Duo et al. 2019, Liu et al. 2019). Therefore, several researchers 
have integrated the DL techniques with ML techniques to enhance the performance of ML 
techniques. For instance, Aslam et  al. 2021 recently combined a CNN with three tradi-
tional ML classifiers, SVM, LR, and RF, to assess landslide susceptibility of Mansehra and 
Muzaffarabad districts in northern Pakistan. The authors established that the integration of 
CNN with RF, SVM, and LR could efficiently enhance the prediction performances of the 
ML classifiers. Nevertheless, the accuracy of a technique for evaluating landslide suscep-
tibility is highly dependent on a specific area, and the accuracy of a technique may differ 
when used for various areas, which still needs to be illustrated (Lagomarsino et al. 2017).

Moreover, several studies (Wang et  al. 2019, Wang et  al. 2020a, b, Yi et  al. 2020, 
Youssef and Pourghasemi 2021, Aslam et  al. 2021, Aslam et  al. 2022) have established 
that performing feature selection plays a vital role in landslide susceptibility assessment 
as it helps to remove redundant features and only to retain the valuable features. Yi et al. 
(2020) conducted a study for mapping landslide susceptibility utilizing multiscale sam-
pling strategy and CNN in Jiuzhaigou region, China, and used information gain ratio and 
multicollinearity analysis for shortlisting useful features for the modeling process. Youssef 
and Pourghasemi (2021) used RF techniques to assess the importance of individual condi-
tioning factors while mapping landslide susceptibility for Abha Basin, Asir Region, Saudi 
Arabia using ML algorithms. Aslam et al. (2022) have also used RF for feature selection 
when mapping the landslide susceptibility in Pakistan. Wang et  al. 2019 have used gain 
ratio (GR) and multicollinearity for selecting useful features when performing landslide 
susceptibility mapping in China. Moreover, CNN has also been used for choosing useful 
features by Wang et al. (2020a, b) and Aslam et al. (2021) during the landslide susceptibil-
ity mapping in China and Pakistan, respectively.
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The geographical attributes, monsoon rains, and earthquakes (Dai  et al. 2002, Crosta 
2004) triggered by the active faults vigorously endanger the mountainous regions of Paki-
stan to landslide problems. This fact was truly witnessed during the October 8, 2005, 
Kashmir earthquake that jolted the region of Kashmir and northern areas of Pakistan. The 
region affected by this earthquake was more than 30,000 km2, and it caused thousands 
of landslides, resulting in 25,500 fatalities (Kamp et al. 2008, Owen et al. 2008). Various 
researchers have carried out different studies evaluating the induced landslides due to this 
earthquake (Owen et al. 2008, Saba et al. 2010, Shafique, van der Meijde et al. 2016) and 
to map the landslide susceptibility of the October 8, 2005, earthquake-affected or adja-
cent areas (Kamp et al. 2008, Basharat et al. 2016, Bibi et al. 2016, Torizin et al. 2017, 
Khan et  al. 2019). However, these studies, which targeted October 8, 2005, earthquake-
affected or adjacent areas, have some limitations as they have primarily used conventional 
decision-making and quantitative techniques, which are not as accurate as orthodox ML 
or novel DL techniques. Recently, Aslam et al. (2021) and Aslam et al. (2022) made an 
effort to map landslide susceptibility in the Mansehra and Muzaffarabad districts in north-
ern Pakistan and fill the existing research gap. In contrast to the previous studies, Aslam 
et al. (2021), and Aslam et al. (2022) used conventional ML and novel DL techniques and 
achieved promising results. Moreover, Aslam et al. (2021), and Aslam et al. (2022) used a 
broad range of landslide conditioning factors and well-known feature selection techniques 
to select useful features for assessing landslide susceptibility. However, several researchers 
are presently exploring multiple DL techniques to assess landslide susceptibility; as this 
field is progressing day by day, the authors efforted to extend the research in this direction 
further.

The present study aims to further explore the potential of different DL techniques by 
performing landslide susceptibility mapping for the Mansehra and Muzaffarabad districts 
in northern Pakistan using multiple CNN frameworks and residual network (ResNet). The 
current work has subsequent developments to the existing work on landslide susceptibility 
mapping in the area. First, it uses different advanced DL techniques to obtain high pre-
cision in landslide susceptibility assessment. It compares these techniques with orthodox 
DL and ML techniques to establish the most superior model for the desired objective. The 
used novel DL techniques were ResNet and different architectures of CNN. In contrast, for 
comparison purposes, the used orthodox DL technique was DNN, and conventional ML 
techniques were SVM and LR. Second, it uses two feature selection techniques to select 
the more valuable features and eliminate redundant features. All these developments are 
significant contributions of the present study to the current work in the proposed area.

2 � Study area

The study area is enclosed by the administrative borders of the Mansehra and Muzaffa-
rabad districts and encompasses an area of around 6220 km2. The Mansehra district is 
situated in Khyber Pakhtunkhwa province, whereas the Muzaffarabad district is located 
in Pakistan’s administrated territory of Azad Jammu and Kashmir. The epicenter of the 
October 8, 2005, earthquake was detected in the vicinity of Muzaffarabad city, the regional 
capital of Azad Jammu and Kashmir. On the southern side, the area is characterized by 
hilly relief. On the southwestern side, primarily by plane to mountainous areas and by an 
elevated mountain range area on the eastern side. Most prominently, the mountainous areas 
around the Kaghan and Naran valleys in the Mansehra district are incredibly elevated. The 
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area’s elevation ranges from around 360 m in the plains to approximately 5276 m in the 
hills. The map of the study area showing the elevation of the area and the past landslide 
points is presented in Fig. 1.

The Indus River, with its two major tributaries, the Kunhar River and the Siran River, 
is the primary drainage of the Mansehra district. The Indus River crosses the Mansehra 
district from north to south along the western edge. In contrast, the Jhelum River is the 
primary drainage of the Muzaffarabad district and has two tributaries, specifically the Kun-
har River and the Neelum River. Creating deep antecedent valleys, these rivers flow west-
ward before gushing southward beside wider valleys to the Indo-Gangetic Plain. During 
the monsoon spell in the summer, the temporary variations in the river discharge regime 
often trigger sporadic instant floods in the area.

The area’s weather conditions are pretty variable, owing to its topography. The area has 
a subtropical highland climate. During the summer, the weather is warm, while it is cold 
in the winter. Nevertheless, the northeastern side of the Mansehra district, primarily the 
Kaghan valley, has cold weather in summer and extremely cold in winter due to heavy 
snowfall in the mountains. In this area, the warmest month of June is the highest in the 
Muzaffarabad district, with average maximum and minimum conditions of 37.6 and 22.1 
and 35 and 21 °C, respectively, in the Mansehra district. For the county of Muzaffarabad 
and Mansehra, January is the coolest month, with a high and a minimum mean temperature 
of 15.9 and 3.2 °C, respectively.

The rainfall in the area is significant; what is more, it receives rainfall even through the 
driest month. The average yearly rainfall in the Muzaffarabad district is about 1500 mm, 
whereas the Mansehra district receives between 1400 and 1800  mm rainfall on average 
per year. Out of the average yearly rainfall, almost one-third happens through the monsoon 
season, which lasts from the end of June until late August. This extensive rainfall often 

Fig. 1   Map of the study area with past landslide points and elevation of the area
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causes severe flooding and landslides, particularly debris flows. Through the winter, the 
elevated mountainous areas receive rainfall as snow. The area receives little rain during the 
spring, but the slopes get plentiful surface water through snowmelt. This infiltrating water 
increases the groundwater table height, thus resulting in erosion.

Geologically this region contains the Hazara-Kashmir Syntax, which borders on the 
Main Thrust and is an area of significant reduction and elevation of crustaceans (Kazmi 
and Jan 1997; Hussain and Yeats 2009). Overall, the terrain steepness, along with extreme 
rainfall through monsoon spells, constant swift river slitting, intermittent earthquake jolt-
ing, and anthropogenic impacts as destabilizing of slopes during the construction process, 
make this area extremely prone to slope failures.

3 � Materials and methods

The detailed methodology is presented with the help of a flow chart in Fig.  2 and is 
explained in the following sections.

4 � Landslide inventory mapping

A landslide inventory map comprises past and previously occurred landslide locations 
(Pham et  al. 2016). It contains information regarding landslides’ type, locality, move-
ment, and physical attributes (Rosi et al. 2018). Moreover, it is an important data source 
for spatial prediction of landslides (Pham et al. 2016) and for understanding the association 

Fig. 2   Flowchart of the methodology for landslide susceptibility mapping through the proposed CNN 
framework
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between landslide incidence and the association with influencing factors (Jiao et al. 2019). 
High-resolution remotely sensed images could be visually inspected for interpreting land-
slide inventory mapping (Tsangaratos et al. 2017, Pham et al. 2017b, Pham et al. 2017c). 
Therefore, for this analysis, LANSAT-8 images were taken to prepare the region’s landslide 
inventory map with 3251 previous locations. All of these landslides represent the geo-envi-
ronmental situation of landslide zones. 2276 locations (70%), including the outstanding 
975 (30%) locations, were arbitrarily selected for training and testing purposes. The split-
ting was based on previous studies from the literature (Wang et al. 2019, Wang et al. 2020a, 
b, Yi et al. 2020, Youssef and Pourghasemi 2021, Aslam et al. 2021, Aslam et al. 2022).

Moreover, 3251 non-landslide locations were randomly selected to maintain the class 
balance and were split into the same proportions (70 and 30%) for particular purposes. The 
polygon outlines were drawn for clearly visible landslides on the satellite imagery. These 
polygons were then used for the measurement of the space and the validation of the final 
susceptibility maps. The polygons were transformed and displayed as points on the study 
area map shown in Fig. 1 because they had unusually low visibility due to the limited size 
of the inventory map.

5 � Landslide conditioning factors

In order to map the susceptibility to landslides, it is typically presumed that future land-
slides would take into account the same environmental factors which have caused previous 
landslides. These landslide environmental factors are essential to mapping the susceptibil-
ity to landslides. This study uses thematic maps of several landslide factors that influence 
the susceptibility of landslides in the considered region. In addition to the environmental 
conditions and available data for the area under discussion, the conditioning factors in the 
current analysis have been based on the literature review and existing landslide susceptibil-
ity studies in the area under consideration (Kamp et al. 2008, Owen et al. 2008, Basharat 
et al. 2016, Bibi et al. 2016, Shafique et al. 2016, Torizin et al. 2017, Tsangaratos et al. 
2017, Pham et al. 2017b, Khan et al. 2019, Fang et al. 2020a, b, Wang et al. 2020). The 
selected landslide conditioning factors include road density, stream power index (SPI), top-
ographic wetness index (TWI), slope, fault density, elevation, lithology, sediment transport 
index (STI), aspect, profile curvature, earthquake, normalized difference vegetation index 
(NDVI), land cover classification system (LCCS), soil data, and plan curvature.

ASTER GDEM (DEM) data with a spatial resolution of 30 m were used to obtain geo-
morphological factors of elevation, slope, SPI, TWI, aspect, profile curvature, STI, and 
plan curvature. Data from LANDSAT-8 satellite images with a spatial resolution of 30 m 
were used to obtain the maps of NDVI and LCCS. The factor of NDVI was obtained using 
the Infrared (IR) and Red (R) bands in the following formula: NDVI = (IR−R)/(IR + R), 
(Hong, Pourghasemi et al. 2016b). The annual average rainfall data for the last decade was 
acquired from the Pakistan Meteorological Department (PMD) for preparing the rainfall 
map. The seismicity map of Pakistan was used for the earthquake map.

The geological and topographical factors were obtained from the geological and topograph-
ical maps of Pakistan correspondingly. The fault density and lithology factors were obtained 
using the scale of 1:500,000 from the geological maps. The road density factor was defined 
using the scale of 1:200,000 from the topographical maps. The soil data were acquired from 
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the Soil Survey of Pakistan. All the prepared maps of the considered factors were adapted to 
the same scale as the obtained DEM (30 m of spatial resolution) for further assessment.

Moreover, we have tried our utmost to eliminate all the possible error-causing factors by 
taking protective measures such as for the datasets which are geo-temporal and have a sea-
sonal effect, such as rainfall (rainfall data for a decade) and NDVI (NDVI data for one year); 
we have taken the mean to reduce the ambiguity. Additionally, for those datasets which are 
standard, we have used the best available datasets to minimize the error. All these efforts were 
in the wake of obtaining efficient prediction results and producing reliable susceptibility maps.

6 � Selection of conditioning factors

The selection of conditioning factors as various conditioning factors affect landslides is one of 
the main steps in landslide susceptibility mapping. Therefore, it is important to choose suit-
able features in order to yield a comprehensible landslide susceptibility map. The modeling 
process might become intricate owing to the extreme dimensionality linked with the training 
and testing datasets. In the meantime, poor modeling precisions always occur due to the curse 
of dimensionality. The process of selecting features is useful as it uses recognized selection 
techniques and provides high-quality information. In addition, the unnecessary and surplus 
characteristics of the selected features can be eliminated during this stage. In the current study, 
two feature selection techniques, namely GR and multicollinearity analysis, are employed. The 
details about these techniques are provided next.

6.1 � GR

For selecting an ideal subset to enhance the prediction performance for mapping the land-
slide susceptibility, the feature selection technique of GR (Dash and Liu 1997) was utilized. 
A feature at every node of the decision tree is selected by using the information gain measure. 
Subsequently, to avoid bias, GR, which is an augmentation of information gain, is anticipated. 
For better understanding, the GR method is presented followingly. Assuming that S is a train-
ing data plus n is the overall dataset, then the projected statistics are offered by the following 
comparison.

where pi signifies the possibility that class Ci holds a sample, the feature F has m values, 
and the mean entropy related to it is provided by the following equation.

then the information gain on feature F is

The prospective information attained by distributing S into m parts relating to m out-
comes on feature F is represented by the split information, and it can be obtained by using 
the following formula.

H(S) = −

n
∑

i=1

pilog2
(

pi
)

E(F) = −

n
∑

i=1

piH(S)

Gain(F) = H(S) − E(F)
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Lastly, the GR is characterized by the following equation:

The important association of conditioning factors with landslide incidence is revealed 
by the average merit (AM) derived from this technique. A factor is regarded as an irrel-
evant feature if the AM value is equal to or less than 0, and it should be excluded from the 
further modeling process prediction. On the contrary, the remaining factors are suitable to 
be used for further assessment.

7 � Multicollinearity analysis

In order to measure the relationship between the landslide conditioning factors, multicol-
linearity analysis was employed. Multicollinearity is a statistical phenomenon that exhibits 
an excessive correlation among two or more predictor variables in a multiple regression 
model (O’brien 2007). This research uses the multicollinearity of conditioning factors to 
classify resistance (TL) and inflation variance factor (VIF). Assume that the x = (x1, x2…., 
xn) symbolizes a particular separate variable set and that the R2

j
 is the code for the inde-

pendent jth variable xj that is reverted to all of the remaining variables of the model. The 
VIF value is computed by utilizing the following relation:

The extent of linear relation among independent variables is represented by the TL 
value, which is the multiplicative inverse of the VIF value. If a factor exhibits a VIF value 
of more than 10 or a TL value of less than 0.1, it exhibits multicollinearity and ought to be 
eliminated from the further modeling process.

8 � Methods

Prior to employing DL methods for landslide susceptibility mapping, all the condition-
ing factors were initially assembled collectively, so the whole considered region can be 
regarded as a “multi-channel image.” Every single factor signifies a particular channel, and 
the final objective is to categorize every pixel in this “image.” The primary stage is to build 
and train an original DL model. The input layer of an original DL model comprises numer-
ous neurons. Each neuron indicates a landslide conditioning factor. A DL can automati-
cally extract valuable features from the original data, and then these futures are used to get 
the final modeling output. It is a two-stage process of feature extraction and classification. 
The structure of the model is first built and is trained by exploiting the initial training data-
set. The trained model is then used for modeling purposes.

Split Info
A(S) = −

m
∑

i=1

X
i

(

S
i

S

)

log2

(

S
i

S

)

Gain Ratio =
Gain(F)

Split Info
A(S)

VIF =
1

1 − R2
j
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9 � ResNet

Convolutional networks utilized by the computer vision fraternity have been increasing 
deeper every year since Krizhevsky et al. (2012) suggested AlexNet in 2012. Here, depth 
describes the sum of layers in a network, while width describes the sum of kernels of each 
layer. Recently proposed ResNets get state-of-the-art performance and permit training of 
exceedingly deep networks up to over 1000 layers (He et al. 2016). ResNet is the deepest 
network in the literature, with 1202 trainable layers (He, Zhang et al. 2016). Tiny images 
in the CIFAR-10 dataset were used to train this 1202-layer ResNet (Krizhevsky and Hinton 
2009). The image size here is vital, as it indicates that the size of subsequent feature maps 
is comparatively small, which is crucial in practice to train exceptionally deep models. Like 
highway networks, ResNets make use of identity shortcut connections that facilitate the 
movement of information through layers devoid of attenuation that would be instigated by 
various stacked nonlinear transformations, producing enhanced optimization (Srivastava 
et  al. 2015). Shortcut connections in ResNets are not gated, and untransformed input is 
constantly spread. He et al. 2016 have established an awe-inspiring empirical performance 
of ResNets.

9.1 � CNN

CNNs are proficient in visual recognition and have many coalescents, maximum pooling, 
and fully linked layers. A CNN model is a class of feedforward NN (artificial neurons of 
this NN respond to a fraction of the adjacent elements), demonstrating vigorous execu-
tion in visual image assessment (Girshick 2015). This indicates that a CNN is a variant of 
a multilayer perceptron containing one or more convolution, max pooling, and fully con-
nected layers (Shin et al. 2016). The structure of a conventional CNN is presented in Fig. 3. 
A conventional CNN always contains input, convolutional, max pooling, fully connected, 
and output layers. The input layer is basically an m × n matrix, and each element in this 
matrix has a feature value.

Consequently, the input parameter can be characterized as a 2D plot. There are sev-
eral convolutionary units in every convolutionary layer. In order to optimize the param-
eters of every unit, a backpropagation algorithm is used. Overall usage aims to attain 

Fig. 3   The generalized architecture of CNN
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various input layer characteristics (Sharif Razavian et  al. 2014). The initial convolu-
tion layer could give only some low-level characteristics such as corners, edges, and 
lines. Other convolutionary layers can learn more complex representations from these 
low-level characteristics. Pooling is a grave operation in the CNN strategy (Szegedy 
et  al. 2015). The dimensionality of feature maps is reduced without modifying their 
depth. This reduces sampling. Max pooling is the most common manipulation in dif-
ferent approaches to pooling. It seeks to separate the feature maps and generate the 
maximum value for each region into several quadrangular areas. In addition, the dimen-
sionality of the data can be continuously reduced, thereby reducing calculation cost and 
the number of parameters. This avoids the problem of overfitting. The fully connected 
layer arranges the achieved representations, and the output layer produces classification 
results to reduce the loss of feature information. The position of detected characteristics 
to other characteristics should be noted to be more significant than the actual position, 
which is unique to CNN.

10 � The proposed CNN architectures

This work seeks to create a CNN system to map landslide susceptibility. The present 
landslide data may not be well adapted to the CNN architectures because of the various 
representations that may influence the susceptibility outcomes. Consequently, different 
architectures of CNN were designed to match multiple data representations. The follow-
ing subparagraphs describe the four different ways of data representation for construct-
ing CNN architectures. The CNN and the data representation algorithms 1D, 2D, and 
3D are referred to as CNN-1D, CNN-2D, and CNN-3D.

11 � LeNet‑5

LeNet-5 is a CNN structure that can be used to recognize a handwritten digit and can 
solve several visual problems effectively (LeCun et  al. 1995). However, LeNet-5 can-
not be used directly to measure landslide susceptibility. In this study, we, therefore, 
proposed multiple CNN architectures that would evaluate landslide susceptibility and 
afterward compare it to the landslide susceptibility from the orthodox LeNet-5 CNN 
structure.

A commonly employed LeNet-5 consists of eight layers (LeCun et al. 1998). Given an 
input data as n × n, followed by a convolutional layer C1 with six (n – 4) × (n – 4) feature 
maps and a 5 × 5 neighborhood in the input map is linked to every element in the feature 
maps. Having six (n−4)

2

22
 feature maps, a max pooling layer S2 is for subsampling. The ker-

nel size of max pooling is 2 × 2, and every element in the feature maps is linked to the 
preceding layer. With sixteen (n−12)

2

22
 feature maps, C3 is another convolutional layer, and 

each element of the layer is linked to a 5 × 5 neighborhood in the former layer. With sixteen 
(n−12)2

42
 feature maps, S4 is another layer that performs the max pooling process. F5 and F6 

are fully connected layers with correspondingly 120 and 84 neural units. Lastly, two neural 
units are produced in the output layer to show the binary classification outcomes as land-
slide and non-landslide. The architecture of LeNet-5 for n = 24 is shown in Fig. 4.
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11.1 � CNN‑1D

The input data can be considered an example of mapping landslide susceptibility such that 
each pixel possesses many landslide conditions. As a consequence, each input data grid 
cell with a length defined by the number of conditioning factors is described by a column 
vector. Each element of this vector also refers to a landslide conditioning function. A 1D 
CNN structure has been created to analyze landslide susceptibility based directly on land-
slide conditioning factors’ knowledge. One of any convolution, max pooling, and com-
pletely linked layers includes the 1D CNN architecture. When n landslide conditioning fac-
tors are present in the data input, the convoluted layer of m to 1 size N kernels filters the 
data input, then N feature vectors of length (n – m + 1). This layer is often used. Each ele-
ment in the vector function is connected in the input vector to an m of the 1 neighborhood. 
The size of the max pooling layer is a × 1, and the consequent outcomes are composed of 
N vectors having a length of 

[

n−m+1

a

]

 . To represent the extracted features, the fully con-
nected layer having k neural units comprehends the preceding layer. Lastly, two neural 
units are produced in the output layer to solve a binary classification problem. For n = 15, 
N = 20, m=3, a= 2 and k=50, the architecture of CNN-1D is illustrated in Fig. 5.

11.2 � CNN‑2D

The CNN technique was efficient in the processing of images. Still, the start should be by 
transforming a 1D input grid cell (vector) composed of several features into a 2D matrix in 
order to use this technique for mapping landslide susceptibility. The number of landslide 
conditioning factors was compared in the present study with characteristic values of each 
factor, and the highest of both was the 2D matrix dimension. For example, neither factor 
exceeds the overall number of factors by its characteristic values (16). Consequently, for 
each grid cell, we generated a matrix of 16 to 16. Figures 6 and 7 show the conversion 
handling of a 1D grid (vector) into a 2D matrix. Explicitly the item value in this matrix is 
assigned a value of 1 for each column vector. The rest of the vector unit values are given 0 
for the associated characteristic value.

Fig. 4   Architecture of LeNet-5
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Fig. 5   Architecture of CNN-1D

Fig. 6   Input data for conversion into a 2D data form
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The 2D CNN structure proposed consists of one convolutionary and one max pooling 
layer. A dropout layer follows every layer of convolution. A transformation from n to n 
matrix is supposed to take place from every cell unit in the grid landslide. In the initial con-
volutionary layer, the input data are tested using N kernels m to m, and thus this layer 
includes 20 (n – m + 1) corresponding maps. (n – m + 1) function maps. Each grid cell in 
the function maps is associated with the m to the area around the input map. The dropout 
manipulation briefly leaves the NN groups, depending on a particular probability, through 
the training of CNN. This process resolves the over-fitting problem and enhances classifi-
cation precisions. A drop manipulation is employed following every convolutional phase. 
The max pooling layer has a size of a × a. Consequently, the outcomes of this layer contain 
N matrices with a size of 

[

n−m+1

a

]

×

[

n−m+1

a

]

 , followed by a dropout manipulation, were 
subsequently assigned to the second convolutional layer having M kernels with a size of m 
× m. The outcomes of this convolutional layer contain M matrices having a size of 
[

n−(a+1)(m−1)

a

]

×

[

n−(a+1)(m−1)

a

]

 . These outcomes were later uninterruptedly assigned to the 
second max pooling layer with M kernels having a size of a × a. This max pooling layer 
produces resultant M feature maps having a size of 

[

n−(a+1)(m−1)

a2

]

×

[

n−(a+1)(m−1)

a2

]

 . The 
extracted features were reorganized by a fully connected layer having k neural units 

Fig. 7   The conversion of a 1D grid cell to a 2D matrix
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following the previous layer. Ultimately, the binary classification outcomes in the form of 
“landslide” and “non-landslide” are indicated by the produced two neural units by the out-
put layer. The architecture of CNN-2D when n = 24, m = 3, N = 20, M = 15, a = 2 and k = 78 
is presented in Fig. 8.

11.3 � CNN‑3D

The input data for the pondered region can be represented by a size 3D matrix (c = n + n), 
where n means the row and column of every data layer and c refers to the number of land-
slide conditioning factors. Figure 9, for example, shows the 3D data representation of each 
grid cell neighborhood with a scale of 7 × 7.

We designed a 3D CNN architecture under these conditions to obtain details and the 
spatial relation of the conditions of landslide incidence. The 3D CNN network contained 
one convolutional layer of N kernels with a size of m × m × m, one max-pooling layer, and 
one fully connected layer. With a size of (c – m + 1) × (n – m + 1) × (n – m + 1), the convo-
lutional layer has N feature maps, given the c × n × n input data. Every grid cell is linked 
to an m × m × m neighborhood in the input data. The subsequent hidden layer with a size 
of a × a is a max-pooling layer. Consequently, the outcomes from the max-pooling layer 
have N feature maps with a size of 

[

c−m+1

a

]

×

[

n−m+1

a

]

×

[

n−m+1

a

]

 . After the max-pooling 
layer, there is a fully connected layer with k neural units, and it pursues the former layer to 
learn the extracted features. Ultimately, two neural units are positioned in the output layer 
to signify “landslide” and “non-landslide” prediction. The architecture of CNN-3D for 
c = 15, n = 7, N = 20, m = 3, a = 2, and k = 78 is presented in Fig. 10.

12 � The related parameters

The parameter settings greatly influence the performance of prediction/classification tech-
niques. In the present study, we also incorporated related parameters in the proposed CNN 
architectures to improve the performance. This effort was made to enhance the prediction 
performance of the models and achieve superior susceptibility maps. The effects of loss 
and activation functions are highly important for CNN architecture. The effects of any 

Fig. 8   Architecture of CNN-2D
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Fig. 9   3D data form

Fig. 10   Architecture of CNN-3D
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successor layer are a linear feature of its predecessor layer as far as the ANN techniques are 
concerned. But the actual scenario through this linear association is challenging to embody 
(Huang and Babri 1998). The activation function approach has been used to overcome the 
appropriate problem of the output data. It can effectively form nonlinear ties from linear 
ties using predefined (nonlinear) activation functions (Dahl et al. 2011).

The current research incorporated the CNN architectures with the rectified linear unit 
(ReLU) function (Dahl et al. 2013). The ReLU function, with two major benefits, is among 
CNN’s most popular and effective activation functions. The first benefit is that this func-
tion facilitates overcoming the dilemma of gradient disappearance. Secondly, it is more 
economical as well as useful for training prediction techniques compared to the additional 
activation functions (Maas et al. 2013). The loss function was a categorical cross-entropy 
function, and its optimizer was an advanced adaptive gradient (AdaGrad) algorithm (Anthi-
mopoulos, Christodoulidis et al. 2016). The AdaGrad technique can limit the learning rate 
and use various learning rates per iteration for individual learning parameters (Duchi et al. 
2011). The adaptive moment estimation (Adam) (Kingma and Ba 2014) was used as an 
optimizer for ResNet. It is a first-order gradient-based algorithm of stochastic objective 
functions based on adaptive estimates of lower-order moments. The posterior probability 
was produced for each grid cell using the softmax function (Lawrence, Giles et al. 1997). 
The prediction output is greatly improved by dropping manipulation since the neural net-
work units corresponding to a given possibility can be momentarily abandoned during 
training (Hinton et al. 2012). Explicitly, the dropout manipulation obliges a nerve unit, in 
addition to overfitting between secret units, to work with other arbitrary neural units (Sriv-
astava et al. 2014). Furthermore, this manipulation will improve the generalization of pre-
diction techniques (Dahl et al. 2013).

13 � Model evaluation methods

The performance of the suggested methodology was evaluated using the measurements of 
OA and ROC (Tsangaratos and Ilia 2016, Pham et al. 2017b, Chen et al. 2017c). The pro-
portion of the number of grid cells, either landslide or non-landslide that were classified 
accurately (represented by a) to the entire grid cells (represented by b) gives the OA value, 
which is calculated using the following formula:

A higher OA value embodies superior classification precision. For evaluating the func-
tioning of landslide prediction techniques, the ROC curve is a standard practiced approach 
(Bradley 1997). The TP (true positive) rate, which is described as “sensitivity,” is plot-
ted against the FP (false positive) rate, which is described as “100-specificity,” at differ-
ent threshold values to produce the curve. Furthermore, for quantitatively evaluating the 
performance of landslide susceptibility mapping techniques, the measurement of AUC has 
been applied broadly (Wang et al. 2017; Mandal and Mandal 2018a). In particular, if the 
AUC value is in the proximity of 1, the prediction approach is deemed outstanding (Tsan-
garatos et al. 2017, Pham et al. 2017a, Zhu et al. 2018).

The Matthews correlation coefficient (MCC) (Matthews 1975) has also been practiced 
in various ML techniques, even though the two assortments are of very distinct volumes. 
The following expression characterizes the MCC:

OA =
a

b
× 100%
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 where the number of non-landslide and landslide locations classified precisely is repre-
sented by TN (true negative) and TP, and the number of non-landslide and landslide loca-
tions classified wrongly are represented by FN (false negative) and FP, respectively. Addi-
tionally, this measure is a correlation coefficient among the observed and predicted classes. 
Usually, the MCC value equal to 1 portrays a perfect prediction for the final result. On the 
other hand, the MCC value of 0 and − 1 signifies an arbitrary prediction and a complete 
disparity between the prediction and observation.

Furthermore, the significant difference among suggested techniques was evaluated using 
the Chi-square test (Kuncheva 2004). It is based on a former proposition that the tech-
niques used to map landslide susceptibility have no substantial change (Tallarida and Mur-
ray 1987). For the validation purpose, the Chi-square and p-values were designated and 
computed. Generally, a p-value less than 0.05 and a Chi-square value greater than 3.841 
indicates that between the two techniques, there exists a significant difference (Pham et al. 
2017a).

14 � Results and analysis

The training set designated was used to determine the predictive potential of the landslide 
conditioning factors by analyzing multicollinearity and using the GR method. The results 
of the landslide conditioning factor multicollinearity study are summarized in Table 1. The 
VIF value of SPI and STI is observed to be 9.772 and 9.43, which are very near the thresh-
old value of 10. Thus, their contribution to the model is quite less. As far as the GR method 
is concerned, the factors with higher weights are additionally meaningful to the practiced 
techniques, while factors with weights equivalent to zero cannot contribute to the modeling 
process; therefore, they should be omitted from further analysis. Figure 11 shows the AM 
value of the respectively conditioning factor. The land use factor has the highest AM value 
of 0.0525 compared to the other factors, which means that it is comparatively significant as 
the other factors.

The AM values of aspect, lithology, elevation, slope, rainfall, soil, NDVI, and SPI are 
between 0.0474 and 0.0151. Furthermore, the AM values of plan curvature, fault density, 
road density, profile curvature, and TWI are positive but less than 0.01, which implies that 
their contribution to the models is very little. All the outstanding landslide conditioning 
factors with more than zero AM values participate in the models. Still, their contribution 
is very small, and they must be considered for the modeling process because they still have 
impact on landslides have high frequency ration as far as landslide is concern (Table 2). 
The reclassified maps of all the landslide conditioning factors are presented in Fig. 12a–p.

15 � Model validation and comparison

The trial-and-error method was used to optimize all the parameter settings to develop the 
CNNs. Table 3 displays the parameter settings for all CNNs and ResNet. Every grid cell 
in the zone in question was designated a susceptibility index after the formulation of the 
models through training datasets. The weights obtained were then allocated for each factor 

MCC =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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class, and the final susceptibility maps were drawn up in an ArcGIS setting for each model. 
The natural breaking technique has been used to reclassify the higher vision indices in five 
very low, medium, medium, and very high classes. The obtained susceptibility maps for 
landslides from different CNN frameworks and ResNet are shown in Fig. 13.

In contrast, for each of the models, the distribution of percentages for each of the sus-
ceptibility classes is shown in Fig.  14. All the maps show that the northeast portion of 
both districts was classified as high and very highly susceptible areas. The outcomes of 

Table 1   Outcomes of 
multicollinearity analysis

Landslide conditioning factors Statistics

TOL VIF

Elevation 0.262 3.95
Aspect 0.948 1.126
Fault density 0.878 1.213
LCCS 0.708 1.495
Lithology 0.789 1.346
NDVI 0.713 1.485
Plan curvature 0.582 1.813
Profile curvature 0.739 1.435
Rainfall 0.573 1.752
Earthquake 0.811 1.177
Road density 0.835 1.144
Slope 0.293 3.191
Soil 0.334 2.816
SPI 0.085 9.772
STI 0.079 10.65
TWI 0.426 2.228

Fig. 11   AM value of each landslide conditioning factor obtained through the GR method
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Table 2   Spatial relationship between past landslides and different classes of landslide conditioning factors 
using the FR model

Factor Class No. of land-
slides

Percentage 
of Land-
slide

No. of pixels in 
domain

Percentage 
of domain

FR

Road density < 100 163 0.05 5,344,183 0.43 0.116279
100–200 455 0.14 2,858,517 0.23 0.608696
200–300 748 0.23 1,739,967 0.14 1.642857
300–400 845 0.26 1,367,117 0.11 2.363636
> 400 1,040 0.32 1,118,550 0.09 3.555556

SPI < 400 358 0.11 2,237,100 0.18 0.611111
400–1000 260 0.08 2,609,950 0.21 0.380952
1000–4000 585 0.18 1,367,117 0.11 1.636364
4000–8000 878 0.27 3,231,367 0.26 1.038462
> 8000 1170 0.36 2,982,800 0.24 1.5

TWI < 0 228 0.07 3,231,367 0.26 0.269231
0–0.2 358 0.11 1,864,250 0.15 0.733333
0.2–0.4 488 0.15 2,982,800 0.24 0.625
0.4–0.6 1138 0.35 869,983 0.07 5
> 0.6 1040 0.32 3,479,933 0.28 1.142857

Slope < 5 98 0.03 745,700 0.06 0.5
5–10 228 0.07 372,850 0.03 2.333333
10–15 358 0.11 1,118,550 0.09 1.222222
15–20 618 0.19 497,133 0.04 4.75
> 20 1951 0.6 9,694,100 0.78 0.769231

Fault density < 5 358 0.11 5,841,317 0.47 0.234043
5–10 293 0.09 2,361,383 0.19 0.473684
10–15 683 0.21 1,739,967 0.14 1.5
15–20 845 0.26 1,367,117 0.11 2.363636
> 20 1073 0.33 1,118,550 0.09 3.666667

Elevation 360–1177 650 0.2 3,231,367 0.26 0.769231
1177–1660 780 0.24 2,734,233 0.22 1.090909
1660–2455 585 0.18 2,485,667 0.2 0.9
2455–3638 845 0.26 1,864,250 0.15 1.733333
3638–5276 390 0.12 2,112,817 0.17 0.705882

Lithology Granite 325 0.1 1,615,683 0.13 0.769231
Limestone 228 0.07 621,417 0.05 1.4
Quartzite 358 0.11 1,491,400 0.12 0.916667
Sandstone 878 0.27 2,982,800 0.24 1.125
Slate 1105 0.34 4,722,767 0.38 0.894737
Unconsolidated 358 0.11 994,267 0.08 1.375

STI < 10 943 0.29 2,858,517 0.23 1.26087
10–50 748 0.23 2,112,817 0.17 1.352941
50–100 683 0.21 1,864,250 0.15 1.4
100–200 260 0.08 3,728,500 0.3 0.266667
> 200 618 0.19 1,864,250 0.15 1.266667
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Table 2   (continued)

Factor Class No. of land-
slides

Percentage 
of Land-
slide

No. of pixels in 
domain

Percentage 
of domain

FR

Aspect < 70 325 0.1 497,133 0.04 2.5

70–140 845 0.26 3,355,650 0.27 0.962963

140–210 293 0.09 2,485,667 0.2 0.45

210–280 1463 0.45 4,225,633 0.34 1.323529

> 280 325 0.1 1,864,250 0.15 0.666667
NDVI < 0 715 0.22 2,609,950 0.21 1.047619

0–0.3 813 0.25 1,615,683 0.13 1.923077
0.3–0.6 683 0.21 1,367,117 0.11 1.909091
0.6–0.9 585 0.18 2,485,667 0.2 0.9
> 0.9 455 0.14 4,349,917 0.35 0.4

Profile curva-
ture

<− 1 845 0.26 2,858,517 0.23 1.130435
−1 – −0.5 455 0.14 1,118,550 0.09 1.555556
− 0.5–0 1463 0.45 6,338,450 0.51 0.882353
0–0.5 130 0.04 1,242,833 0.1 0.4
> 0.5 358 0.11 869,983 0.07 1.571429

Earthquake High 3251 1 12,428,333 1 1
LCCS Bare area 618 0.19 372,850 0.03 6.333333

Built up 228 0.07 869,983 0.07 1
Agriculture 455 0.14 1,864,250 0.15 0.933333
Forest 813 0.25 2,112,817 0.17 1.470588
Range lands 1008 0.31 6,338,450 0.51 0.607843
Snow 130 0.04 869,983 0.07 0.571429

Soil data Clay 325 0.1 372,850 0.03 3.333333
Clay loam 553 0.17 4,349,917 0.35 0.485714
Loam 1073 0.33 4,847,050 0.39 0.846154
Sandy clay 

loam
683 0.21 1,615,683 0.13 1.615385

Sandy loam 585 0.18 994,267 0.08 2.25
Water bodies 33 0.01 248,567 0.02 0.5

Rainfall 715–790 455 0.14 2,734,233 0.22 0.636364
790–874 845 0.26 1,491,400 0.12 2.166667
874–935 683 0.21 1,864,250 0.15 1.4
935–1084 618 0.19 3,355,650 0.27 0.703704
1084–1331 650 0.2 2,982,800 0.24 0.833333

Plan curvature < 0 845 0.26 2,858,517 0.23 1.130435
0–0.2 358 0.11 1,118,550 0.09 1.222222
0.2–0.4 1723 0.53 6,089,883 0.49 1.081633
0.4–0.6 228 0.07 1,367,117 0.11 0.636364
> 0.6 98 0.03 994,267 0.08 0.375
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ResNet, CNN-1D, and CNN-2D were very much alike. In Fig.  13b, the high and very 
high-class concentration is more intense than the concentration in other obtained maps. 
The high and very high classes in Fig. 13a and c, and 13d were quite similar and more 
intense than the SVM model in Fig. 13 f. However, in the outcome of CNN-3D in Fig. 13e, 
the high and very class in the deliberated area was more than the outcome of the SVM 
model in Fig. 13 f. The result of DNN in Fig. 13 g demonstrated that the very high and 

Fig. 12   Thematic maps of landslide conditioning factors: road density (a), SPI (b), TWI (c), slope (d), fault 
density (e) elevation (f), lithology (g), STI (h), aspect (i), NDVI (j), profile curvature (k), earthquake (l), 
LCCS (m) soil data (n), rainfall (o) and plan curvature (p)
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high susceptible zones in the study area are less than those in the maps obtained through 
ResNet, LeNet-5, CNN-1D, CNN-2D, CNN-3D, and SVM but are more than LR. The map 
obtained through LR has the least proportion of high and very high class, as seen from 
Fig. 13 h.

For the proposed multiple CNN frameworks and the ResNet technique, the OA and 
MCC values are listed in Table 4. The OA values of ResNet were higher than that of the 

Fig. 12   (continued)
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suggested CNN frameworks. In particular, the OA value (83.52%) of ResNet was higher 
than other methods, which is almost 1% greater than that of CNN-3D (82.54%), which 
has the second-highest OA value. However, CNN-2D obtained an OA value of 81.71%, 
followed by CNN-1D with an OA value of 79.32%. Moreover, ResNet also obtained the 
highest MCC value (0.596) compared to other techniques. Secondly, it was CNN-3D which 
obtained the highest MCC value (0.582), followed by CNN-1D, LeNet-5 plus CNN-2D 
with MCC values of 0.535, 0.526, and 0.514, correspondingly.

The obtained ROC curves using the testing set for all the used CNN frameworks are 
presented in Fig. 15. It can be witnessed from the figure that the CNN-3D method has the 
maximum AUC value of 0.874, which specifies that it has a superior predictive capac-
ity to the other CNN methods. Moreover, the CNN-1D and CNN-2D methods attained 
comparable AUC values of 0.871 and 0.872, respectively, whereas the LeNet-5 technique 
attained the AUC value of 0.864. The significant difference between the proposed predic-
tion techniques was evaluated using a Chi-square test. A Chi-square value greater than 
3.841, whereas a significant level value (p) less than 0.05 indicates a significant difference 
among the prediction techniques. For the different proposed CNNs and ResNet, the Chi-
square values plus the significant levels are listed in Table 5. It shows that ResNet and all 
the CNNs are quite distinct as their Chi-square and the significant level values comply with 
the threshold conditions.

For further validation of the efficacy of the proposed models, the best performing model 
(ResNet) in the preceding experiments was chosen to be compared with different common 
ML and DL techniques. DNNs are typically feedforward networks, where data flow from 
the input layer to the output layer without looping back (CireşAn et al. 2012). First, a simu-
lated neural unit map is generated by DNN, then links these neural units by assessing their 
weights. Subsequently, a probability between 1 and 0 is produced by multiplying the input 
data with the weights. The chosen DNN has a network architecture composed of five layers 
containing four hidden, fully connected layers. The number of neural units in the four hid-
den layers is 50, 30, 20, and 10. The prediction outcomes in the output layer are obtained 
with two neural units, corresponding to landslide and non-landslide units. For comparison 
with an ML technique, the SVM classifier with a radial basis function kernel was utilized. 
For SVM, the γ (2− 9) and optimal C (27) were obtained through five-fold cross-valida-
tion varying from 2− 5 and 2− 15 to 215 and 25, correspondingly. The landslide susceptibility 
maps obtained from SVM and DNN methods are presented in Fig. 12f g, respectively.

The OA as well as the MCC values of the orthodox DL and ML techniques are listed 
in Table 6. ResNet achieved the highest OA value of 83.52%. However, CNN-3D achieved 
an OA value of 82.54%, almost 4% more than the optimized SVM (78.43%). Followingly, 

Table 3   Parameter settings of the CNNs

Model Parameter settings

Convolutional 
kernel size

Max pooling 
kernel size

Number of 
iterations

Activation 
function

Optimizer Dropout rate

CNN-1D 3 × 1 2 × 1 300 ReLU AdaGrad 0.4 and 0.3
CNN-2D 3 × 3 2 × 2 100 ReLU AdaGrad
CNN-3D 3 × 3 × 3 2 × 2 × 2 300 ReLU AdaGrad
LeNet-5 5 × 5 2 × 2 15 ReLU AdaGrad
ResNet 5 × 5 2 × 2 20 ReLU Adam
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Fig. 13   Landslide susceptibility maps for different CNN and orthodox ML and DL methods: ResNet (a), 
LeNet-5 (b), CNN-1D (c), CNN-2D (d), CNN-3D (e), SVM (f), DNN (g), and LR (h)
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Fig. 14   Proportions of various landslide susceptibility classes for different CNNs

Table 4   Performance comparison 
of different methods

Model OA value (%) MCC

CNN-1D 79.32 0.535
CNN-2D 81.71 0.514
CNN-3D 82.54 0.582
LeNet-5 78.12 0.526
ResNet 83.52 0.596

Fig. 15   ROC curves for different CNNs using the validation set
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it is LeNet-5 plus DNN, which have quite comparable OA values of 78.12 and 77.3%, 
correspondingly. Moreover, ResNet also accomplished the highest MCC value (0.596). 
However, as compared to the optimized SVM, CNN-3D also accomplished a consider-
ably greater MCC value. The obtained MCC value of CNN-3D is 0.514, followed by the 
LeNet-5 (0.526), DNN (0.511), and SVM (0.427).

For comparison, the ROC curves using the validation set for ResNet, CNN-3D, LeNet-
5, DNN, and SVM are shown in Fig. 16. The predictive power as per the AUC of ResNet 
was observed to be better than the optimized SVM and DNN. However, CNN-3D obtained 
an AUC value greater than SVM and DNN but less than ResNet. Moreover, the CNN-3D, 
and LeNet-5, correspondingly attained AUC values of 0.881, 0.874, and 0.864, whereas 
DNN and SVM likewise achieved AUC values of 0.849 and 0.825.

16 � Discussion

The susceptibility mapping of landslides is of immense importance as it assists in visu-
ally examining landslide-prone areas. Previously, various models have been established for 
mapping the landslide susceptibility of a specific region, and their functioning has been 
contrasted. Yet, the prediction precision of these developed techniques is still under dis-
cussion (Akgun 2012, Martinović et al. 2016, Chen et al. 2017b). Hence, it is essential to 
explore novel techniques and approaches for assessing landslide susceptibility (Bui et al. 

Table 5   Chi-square values and 
significant levels of different 
CNNs

Comparative pairs Chi-square value P-value Sig-
nificance 
level

CNN-1D vs. CNN-2D 204.55 < 0.0001 Yes
CNN-1D vs. CNN-3D 193.74 < 0.0001 Yes
CNN-1D vs. LeNet-5 265.87 < 0.0001 Yes
CNN-1D vs. ResNet 212.44 < 0.0001 Yes
CNN-2D vs. CNN-3D 194.54 < 0.0001 Yes
CNN-2D vs. LeNet-5 276.43 < 0.0001 Yes
CNN-2D vs. ResNet 248.52 < 0.0001 Yes
CNN-3D vs. LeNet-5 247.76 < 0.0001 Yes
CNN-3D vs. ResNet 213.55 < 0.0001 Yes
LeNet-5 vs. ResNet 195.85 < 0.0001 Yes

Table 6   Performance comparison 
of different methods

Model OA value (%) MCC

CNN-3D 82.54 0.582
ResNet 83.52 0.596
LeNet-5 78.12 0.526
DNN 77.63 0.511
SVM 78.43 0.427
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2016). In landslide susceptibility evaluation studies, significant progress has been accom-
plished using orthodox regression analysis or ML techniques. Comparatively, simple struc-
ture prediction models are constructed through these techniques.

Lately, numerous ML techniques have been utilized for the spatial prediction of land-
slides and compared with each other for a given area. These techniques include SVM 
(Chen et al. 2018), LR (Tsangaratos and Ilia 2016), decision tree (Chen et al. 2017c), and 
ANN (Chen et al. 2017a). Moreover, various ensemble techniques have been built and used 
for the same purpose. These include rotation forest (Pham, Shirzadi et al. 2018), bagging 
(Pham et al. 2017a), and AdaBoost (Hong, Liu et al. 2018). The raw data are not processed 
outstandingly by the orthodox ML methods because they have a limited ability to do so 
(LeCun, Bengio et al. 2015).

To some extent, these models have flaws in defining the intricate nonlinear landslide 
systems and in avoiding the overfitting problem. Modern DL techniques such as ResNet, 
CNNs, and DNN have essential improvements to the above problems compared to the 
orthodox methods. Two significant characteristics of DL techniques are their nonlinear and 
multilayer structures, which enable them to depict an intricate nonlinear landslide system 
influenced by several conditioning factors. Nevertheless, the DL techniques have a robust 
enhancement over ML techniques and play a progressively significant role in natural lan-
guage processing, image processing, and computer vision. The DL techniques are smart 
enough to automatically study the representation from the raw data required for prediction. 
Thus, it is favorable to discover the possibility of using potent DL techniques for assessing 
landslide susceptibility (Wang, Fang et al. 2019).

Furthermore, valid algorithms, such as “batch” or “dropout,” are incorporated in DL 
techniques to prevent overfitting effectively. Thus, DL techniques are likely to enhance the 
assessment precision of landslide susceptibility. Nevertheless, comparatively limited stud-
ies performed landslide susceptibility assessments using DL techniques.

The pondered area (Mansehra and Muzaffarabad districts) for this study is in the north-
ern part of Pakistan. As this region has suffered numerous landslides due to seismic activi-
ties and extensive rainfall and is expected to experience these types of events in the future; 

Fig. 16   ROC curves for CNNs, DL, and ML methods using the validation set
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thus, it is vital to map landslide susceptibility for preventive measures. In the current 
study, an effort has been made to address this issue with the assessment and comparison 
of ResNet and multiple CNN architectures. The DL techniques: ResNet and CNN have 
superior fitting power, and they are comparatively effective in feature extraction, which 
enhances the prediction ability of the models, thus generating efficient susceptibility maps. 
Moreover, we used multiple activation functions and optimizers to enhance the prediction 
results and found that the models showed superior performance with ReLU (activation 
function) and AdaGrad (optimizer). Thus, we incorporated these functions into the mod-
els for better prediction results. These techniques were also compared with DNN, LR, and 
SVM classifiers to compare and show the performance differences.

The purpose of comparing DL and ML techniques was to establish the best-performing 
model among the multiple proposed conventional and modern models. Therefore, the best-
performing CNN and the ResNet models were compared with the state-of-the-art ML tech-
nique (SVM) and DL technique (DNN) to establish the superiority of the best-performing 
model. Among the two used ML techniques, SVM was selected for comparison purposes 
because several studies have established its superiority over other conventional ML tech-
niques for landslide susceptibility mapping (Wu et al. 2016, Tien Bui et al. 2019, Yu et al. 
2019, Pham et al. 2019b).

Landslides are highly complex and organized progressions through many environmental 
and topographical variables known as landslide conditioners. Sixteen conditioning factors 
were analyzed based on previous research, available evidence, and environmental condi-
tions in the region to map landslide susceptibility in the current investigation. Each con-
sidered factor was translated into spatially delimited layers or maps of 30 m to 30 m grid 
size, corresponding to the DEM data obtained within an ArcGIS setting. In order to map 
the landslide susceptibility, the choice of an effective terrain mapping unit is also essential. 
A standard grid cell model was used to assess landslide susceptibility because it is the most 
common approach to spatially represent this form of a dataset (Tsangaratos and Ilia 2016).

The predictive ability of all the conditioning factors must be assessed before investigat-
ing landslide susceptibility. For this purpose, multicollinearity analysis was used to assess 
correlations among the factors considered. Moreover, the GR technique ranked these fac-
tors based on their importance. The outcomes of the multicollinearity analysis disclosed 
that the STI has intense multicollinearity and ought to be eliminated from the additional 
process. On the contrary, the outcomes of the GR technique revealed that land use and 
NDVI have greater AM values as compared to the other factors, demonstrating that these 
two factors are additionally crucial for landslide incidence. NDVI can precisely display 
the surface vegetation coverage. It can be seen from Fig. 12j that those regions where the 
NDVI value is less have a higher potential for landslides and fall under the class of high 
and very high susceptibility in produced susceptibility maps (Fig. 13). Furthermore, it must 
be noted that in mountainous areas like the one under consideration, landslides, in addi-
tion to external forces, occur continuously because of precipitation, even on slopes overlaid 
with considerable vegetation.

After the feature selection process, the selected features were then used to build the 
multiple CNN architectures and ResNet model. Moreover, various data representations 
transformed from initial landslide data are introduced as well as incorporated in the sug-
gested CNN architectures. The spatial information can be efficiently extracted by CNN 
through local connections and can considerably decrease the required network parameters 
by distributing weights. The local link can easily be used by the architecture of CNN-1D, 
which enables this CNN to learn the more convoluted representations from factor vectors 
progressively. As CNN-2D at first demonstrated outstanding performance in visual image 
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analysis, we transformed every 1D factor vector into a 2D matrix to adequately obtain the 
important hidden features. Although the CNN-1D and CNN-2D can be considered the 
same regarding the convolution operation, and their outcomes are also very similar, the 
point of considering the two different designs and calling them two different models is to 
have more results for comparison purposes. Moreover, we intended to maintain the order 
rather than jumping directly to CNN-3D after CNN-1D. The only difference lies mainly in 
the data representation instead of the mechanism of landslide modeling. Besides learning 
factor representations, the CNN-3D also gets local spatial information.

The results disclosed that the total percentages of high and very high classes are approx-
imately comparable for CNN-1D, CNN-2D, and ResNet. Moreover, the high and very high 
classes of the ResNet, CNN-1D, CNN-2D, as well as CNN-3D are comparatively less than 
the LeNet-5 method but greater than SVM, DNN, and LR. ResNet accomplished higher 
corresponding values than the OA plus the MCC values of the projected CNNs. Further-
more, the ResNet and CNN-3D obtained superior prediction performance in the succeed-
ing experiments compared to the well-known DNN and SVM classifiers. Lastly, using the 
testing dataset, the AUC value (0.881) turned out to be the highest for ResNet, followed 
by CNN-3D (0.874), which shows that ResNet and the proposed 3D structure can effec-
tively improve the prediction performance, and they may prove to be a good technique for 
upcoming investigations. Therefore, it can be asserted that the suggested techniques are 
more feasible for managing and preventing landslides.

The outcomes of this study exhibited that ResNet is better than the proposed CNN 
frameworks. However, CNN-3D is better than the conventional DL technique, namely 
DNN, and the orthodox ML techniques, namely LR and SVM, which indicates that the 
suggested data representation forms of CNNs might be favorable vigorous approaches 
for mapping the landslide susceptibility. Different CNN frameworks for mapping the sus-
ceptibility to landslides have also been used in Yanshan County, China, by Wang, Fang 
et al. 2019. The results showed that the CNN frameworks performed better as compared to 
orthodox ML and DL techniques. Finally, the proposed CNN architectures offer a new way 
of handling raw landslide data in the present analysis. Moreover, the produced landslide 
susceptibility maps through the employed techniques can essentially be used as a guide by 
the planners and policymakers to avert and alleviate the landslide risk by positing future 
land use zones appropriately and ascertaining and establishing alleviation urgencies for the 
endangered areas.

17 � Conclusion

The core objective of this work was to examine the application of different convolutional 
neural network (CNN) frameworks and residual network (ResNet) for mapping landslide 
susceptibility in northern Pakistan (Mansehra and Muzaffarabad districts). The considered 
area is among those regions in the world which are severely prone to landslides due to 
the geological and environmental settings of the region. The practiced frameworks turned 
out to be a valuable approach, and they can be utilized for other regions around the globe 
with comparable attributes. The ResNet and intended CNNs were validated centered on 
the evaluation of sixteen conditioning factors that were obtained from several supplemen-
tary sources. The ResNet and the proposed CNNs were employed to produce landslide sus-
ceptibility maps of the deliberated area and were contrasted to the orthodox deep learn-
ing (DL) and machine learning (ML) techniques of DNN and SVM, and LR, respectively. 
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Different objective measures such as OA, MCC, ROC, and AUC were utilized to confirm 
the outcomes. The obtained landslide susceptibility maps using ResNet and the suggested 
CNNs are more effective for managing and preventing landslides as compared to those 
from orthodox techniques, as confirmed by the investigational outcomes. The prediction 
results of the ResNet model outperformed all the other used models as per OA, MCC, and 
AUC values. However, the CNN-3D model was found to be better among the proposed 
CNNs. Thus, these models can be applied to generate definitive susceptibility maps. Lastly, 
when using a DL technique such as ResNet or the multiple CNN frameworks in the pre-
sent study, the prediction precisions of susceptibility maps can be efficiently enhanced by 
following two strategies during the construction of the model’s architecture by including 
dropout manipulation and by selecting an activation function. In conclusion, ResNet and 
CNNs are very favorable for the spatial prediction of landslides and can be used for future 
research. Moreover, these techniques can also be compared with more efficient DL tech-
niques in the future for mapping landslide susceptibility.
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