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Abstract
In recent years, there has been an increasing interest in spatial modeling, and flood hazard 
prediction is a major area of interest within the field of hydrology. It is necessary to con-
sider return periods for identifying the flood hazard zones. In hydraulic modeling such as 
HEC-RAS, this is usually done, but in spatial modeling by machine learning (ML) models, 
this has not been taken into account so far. This study seeks to obtain data that will help to 
address this research gap. The Sentinel-1 Radar images have been used for identifying the 
flooded locations in different return periods. An embedded feature selection algorithm (i.e., 
recursive feature elimination random forest; RFE-RF) was used in the current research for 
key feature selection. Then, three ML models of neural networks using model averaging, 
classification and regression tree, and support vector machine were employed. The flood 
hazard prediction demonstrated a great performance for all the applied models (i.e., accu-
racy and precision > 90%, Kappa > 88%). Sensitivity analysis disclosed that the variables 
of elevation and distance from stream are in the first importance order, the variables of 
precipitation, slope, and land use are in the second importance order, and other variables 
are in the third importance order in all return periods. The modeling results indicated that 
among man-made land uses the irrigated area between 17.7 and 31.4%, dry farming from 
0.5 to 2.4%, and residential areas between 8.3 and 25.1% are exposed to high and very high 
flood hazard areas. The current findings add to a growing body of literature on the spatial 
modeling of floods.
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1 Introduction

Among natural disasters, floods cause the most damage to agriculture, fisheries, housing, 
and infrastructure and strongly affect economic and social activities (Madadi et al. 2015; 
Heidarpour et al. 2017; Mosavi et al. 2018). Improper human intervention in ecosystems, 
uncontrolled exploitation of forests, and excessive grazing of livestock are the most impor-
tant factors exacerbating this natural hazard, which reduces soil holding capacity, wastes 
fertile soils, and increases surface runoff (Olorunfemi et al. 2020; Minea et al. 2022; Sarkar 
et al. 2022). Over the past several decades, floods have led to many economic losses and 
human losses in different parts of the world (Guo et  al. 2014; Mehta and Yadav 2020; 
Rahim et al. 2022). In 2010 alone, more than 178 million people worldwide were affected 
by floods; also, from 1960 to 2017, 34% of natural disasters were related to floods, which 
resulted in on average 1254 deaths and $ 2.5 billion economic damages per year (Petit-Boix 
et al. 2017). The world population has reached more than 7 billion in 2018 (UNFPA 2018; 
Gutierrez et al. 2014); this increase in population leads to the development of urbanization 
and consequently to the impact on the environment (Djalante 2012; Udomchai et al. 2018).

One of the basic steps to reduce the harmful effects of floods is to identify flood-prone 
areas and to grade and classify these areas in terms of flood hazard (Patial et  al. 2008). 
Hence, in recent years, there has been an increasing interest in spatial modeling, and flood 
hazard prediction has been a major area of interest within the field of hydrology. For iden-
tifying the flood hazard zones, it is necessary to consider return periods; which is usually 
done in hydraulic modeling such as HEC-RAS (e.g., Khattak et al. 2016; Khalfallah and 
Saidi 2018; Romali et al. 2018), but in the spatial modeling with machine learning models 
this has not been taken into account so far.

Considering that in the spatial modeling and identification of flood hazard zones in 
watersheds using machine learning models, the dependent variable is flooded locations 
during previous events; the lack of selection of these locations based on the return periods 
is one of the main research gaps (as recommended for future studies by Hosseini et  al. 
2020). In this regard, many studies around the world have used machine learning mod-
els for flood hazard modeling, but the flood locations have not been selected based on the 
return period for hazard map extraction. For instance, in the study of Nandi et al. (2016), 
the location of flood events from 1904 to 2012 was used to extract a hazard map with-
out considering the return period of floods, while each flood has a different return period 
and the area affected by each of them will be different. Likewise, other studies such as 
Mojaddadi et al. (2017) by collecting 110 flood events from 2010 to 2015, Gigović et al. 
(2017) using the analytic hierarchy process (AHP), Popa et  al. (2019) by providing the 
historical flood locations from 1970 to 2012, Khosravi et  al. (2020) by collecting 2769 
historical flood records, Eini et  al. (2020) and Norallahi and Seyed Kaboli (2021) using 
117 flooding points in 2016–2019 in the same study area, Janizadeh et al. (2021b) using 
118 historic flood locations, Pourghasemi et  al. (2020) by obtaining the location of 365 
floods, Janizadeh et al. (2021a) by 256 flood locations, and Luu et al. (2021) using flood 
events during 2007, 2010, and 2016, have not considered return periods in flood hazard 
assessment.

In reviewing the literature as mentioned above, the hazard maps have been presented 
without considering return periods in spatial modeling of the flood, because the selec-
tion of training and validation points has not been based on the return periods. However, 
a major problem with spatial modeling of floods in previous studies is the lack of hazard 
maps for each return period. Therefore, this study seeks to obtain data that will help to 
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address this research gap. Since this type of data is not recorded by any organization, so the 
radar images have been used for identifying the flooded locations in different return periods 
to fill this research gap. Therefore, the foremost objective of the present research was to 
predict the hazard maps for different return periods by machine learning models.

2  Material and methods

2.1  Study area

The present study was conducted to determine the hazardous zones of floods in the Simineh 
River Basin located in the West Azerbaijan Province, Iran. The area of the watershed is 
about 3841 square kilometers, which lies between the eastern longitudes of 45 degrees and 
31 min to 46 degrees and 24 min, and the northern latitudes of 36 degrees and 40 min to 37 
degrees and 5 min (Fig. 1). The length of the Simineh River is about 180 km which origi-
nates from the mountains of Mahabad, Saqez, and Baneh toward Lake Urmia, after joining 

Fig. 1  Location of the Simineh River Basin
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several tributaries of small rivers on its way and passing through the city of Bukan and 
around the city of Miandoab (Ahmadaali et al., 2017). The average discharge in the outlet 
of the watershed is about 15.5 cubic meters per second according to the Pole Miandoab 
hydrometric station from the year of 1964 to 2019.

The Simineh River is among the most water-rich rivers in the country that have high 
flooding intensity (Kazemi et al., 2016; Ahmadaali et al., 2017). For example, in the flood 
that occurred in Murch 2019, about 4000 hectares of agricultural lands in Miandoab city 
were inundated and more than 320 billion rials damages were estimated (Miandoab Press, 
2019). Therefore, to manage such areas due to their extent and susceptibility, researchers 
and managers must make more efforts to know about them as much as possible.

2.2  Prediction of flood hazard zones

Hazard is anything that can cause harm. It is attributed to natural, physical and environ-
mental elements (Pelling, 2003). In this study, the following measures have been taken to 
determine high-hazard areas in the Simineh River Basin: (i) extracting the location of flood 
areas for each return period, (ii) collection and preparation of effective factors on flood 
occurrence, (iii) feature selection, (iv) flood hazard modeling, and (v) validation. Each of 
the above steps is described below:

2.2.1  Radar images and flood location extraction

Since the location of flooded points in the study area is not recorded by any organization, 
Sentinel 1 radar images were used to identify the flood pixels. The steps are as follows:

 (i) Collection of the occurred flood statistics: date of flood events, mean daily discharge, 
and instantaneous maximum discharge from 1965 to 2019 for the outlet of the water-
shed were received from the West Azerbaijan Regional Water Company. The location 
of the hydrometric station (i.e., Miandoab station) on the Simineh River is shown in 
Fig. 1.

 (ii) Selection of the best statistical distribution: Miandoab station (located at the basin 
outlet) which had long-term data (55 years, 1965–2019) was used to calculate flood 
return periods. The instantaneous maximum flow for this station was used to select 
the best statistical distribution. Then, using two goodness-of-fit tests including the 
Kolmogorov–Smirnov (KS) and Anderson–Darling (AD), the best statistical dis-
tribution among the distributions of Gamma, Log-Gamma, Gamble, Pearson 3P, 
Log-Pearson 3P, Normal, Log-Normal 3P were selected using the EasyFit software. 
The KS and AD tests are based on the comparison of experimental cumulative 
distribution function (CDF) with fitting distributions. The KS test statistics show 
the largest difference between CDF of experimental and fitted distributions, while 
the AD test gives more value to tails of CDF than the KS test (Kolmogorov 1933; 
Smirnov 1948; Anderson and Darling 1954).

 (iii) Calculation of flood return period: After selecting the best statistical distribution, 
flood discharge values for return periods of 2, 5, 10, 25, 50, 100, and 200 years were 
calculated using the EasyFit software.

 (iv) Determining the return period of the occurred floods: By comparing the values of 
the instantaneous maximum discharge that occurred in the watershed outlet with 
the estimated flood values by the best statistical distribution, the return period of 
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the occurred floods in the watershed was determined. Since Sentinel 1 radar images 
have been available since 2014, floods from this year onwards were assessed.

 (v) Selection of pair images from flood and non-flood date: After determining the return 
period of floods, the presence of Sentinel 1 radar images on the date of flood events 
was investigated. In such a way that for each return period, radar images were inves-
tigated by the Google Earth Engine system in flood dates, and the image capture and 
coverage of the basin were checked. After determining the presence of the image in 
the flood dates, the image for non-flood days was selected, too. The post-flood and 
pre-flood images were selected in the same month to avoid variations in baseline 
river flow due to the seasonal conditions.

 (vi) Attributes of radar images and required processing: The Sentinel-1 satellite has 
two sensors, Sentinel-1 A and Sentinel-1 B, which are located at a distance of 180 
degrees from each other. The Sentinel-1 A was launched on 3 April 2014 and the 
Sentinel-1 B on 25 April 2016 by the European Space Agency. These sensors oper-
ate in the C-band range and are called synthetic aperture radar (SAR). The spatial 
resolution of these sensors is 10 m, and the temporal resolution is 6 days (Kussul 
et al. 2011; Bayik et al. 2018).

   The above-mentioned features cause this satellite to capture images from the 
ground during the day and night and in all atmospheric conditions. Sentinel-1 radar 
images are sensitive to soil moisture and, contrary to optical data, are not affected 
by cloudy and rainy weather; therefore, it is possible to extract water areas during 
floods (Tholey et al. 1997; Kussul et al. 2011; Kuenzer et al. 2013).

   The attributes of the images used in this research are presented in Table 1. Images 
downloaded from Google Earth Engine (GEE) (COPERNICUS/S1_GRD). All 
required pre-processing on Sentinel-1 images in the GEE system is done by the 
Sentinel-1 Toolbox, which includes applying orbit file, GRD border noise removal, 
thermal noise removal, radiometric calibration, and terrain correction. However, 
to reduce speckle noise, which causes fine and coarse grains and interferes with 
reflected signals, a 3 × 3 filter was used (Clement et al. 2018; Cao et al. 2019).

 (vii) Extraction of flooded pixels:
   After receiving the flood and non-flood images, flood pixels were identified based 

on the change detection and thresholding (CDAT) method provided by Long et al. 
(2014). Based on this, the difference between flood (F) and non-flood/reference (R) 
images is first calculated using Eq. 1: 

   In the difference (D) image, the flooded pixels are in dark color. Since permanent 
water bodies (such as lakes, wetlands, and river base flow) are dark in both flood 
and non-flood images, they take a gray color in the D image, meaning no change 
occurred in the pixels. Therefore, only water levels caused by floods are shown in 
the D image as dark.

   Then, filtering was performed to remove the detected false points. Errors such 
as shadowing and changes in brightness due to different signal return angles from 
hills and slopes cause false flood pixels (Long et al., 2014; Clement et al. 2018; Cao 
et al. 2019). To eliminate such errors, combined filtration was used by two layers 
of slope and height above nearest drainage (HAND). In this sense, surfaces that are 
not topographically likely to be flooded but radar images have mistakenly detected 
flooding were filtered. Therefore, areas with a slope above 15° and a HAND above 

(1)D = float(F) − float(R)
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10 m were excluded from the difference image (calculated by Eq. 1) (Clement et al. 
2018; Cao et al. 2019).

   After filtering, thresholding was performed. Long et al. (2014) determined the 
best threshold for identifying flood levels as follows: 

   PF represents the flooded pixels, μ and σ represent the mean and standard devia-
tion of the remaining pixels from the D after filtration, respectively. Also, kf is a 
coefficient with an optimal value of 1.5 (Long et al. 2014).

After extracting the flood pixels by the above-mentioned steps, non-flood pixels are also 
required. Therefore, equal to the number of flood pixels, non-flood pixels were randomly 
considered at non-flood areas for each return period. Non-flooded pixels were extracted 
using the Create Random Points tool in ArcGIS software. Finally, the values of zero and 
one were considered for non-flood and flood pixels, respectively, as the dependent variable.

2.2.2  Flood influencing factors

The influencing factors include topographic, hydro-climatic, geology, land use, soil, and 
vegetation (Fig. 2), which were collected and prepared as follows:

Elevation: Elevation changes at the watershed level, directly and indirectly, affect floods. 
The hydrological behavior of the basins, such as runoff speed, runoff volume, and losses, 
is directly affected by floods. Indirectly, elevation changes cause changes in other effective 
factors of flood such as soil order, land use, climate, geology, and vegetation. In this study, 
the ALOS PALSAR digital elevation model (DEM) with a pixel size of 12.5 × 12.5 m was 
received from the Alaska satellite facilities (https:// vertex. daac. asf. alaska. edu) (Fig. 2a).

Slope: The amount of slope affects flow velocity, volume, and accumulation. The slope 
is an effective factor both in flood generation and in flood inundation. Areas with high 
slopes increase the velocity and movement of runoff and flood generation, while low-slope 
areas are effective in catching and flood inundation. In this study, the slope of the water-
shed was extracted using the DEM digital layer in ArcGIS software (Fig. 2b).

Aspect: Different weather conditions (rainfall, temperature, and sunlight) in different 
aspects affect soil conditions, vegetation, etc., which all affect hydrological conditions and 
floods. Therefore, it is expected that the hydrological reaction of different aspects be differ-
ent. In this study, the aspect layer was extracted using the DEM in ArcGIS (Fig. 2c).

Curvature: The curvature of the earth shows the shape of the earth, which includes con-
vex, flat, and concave shapes that are effective in the production and accumulation of run-
off. In this study, the earth curvature map was extracted using the DEM in ArcGIS soft-
ware (Fig. 2d).

(2)PF < �(D) − kf × [�(D)]

Table 1  Attributes of Sentinel-1 radar images used in this research

Product type Sensor mode Orbit Polarization Spatial 
resolution

Ground range 
detected (GRD)

Interferometry wide 
swath (IW)

Ascend-
ing

VV: Single co-polarization, vertical 
transmit/vertical receive

10 × 10 m

https://vertex.daac.asf.alaska.edu
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Topographic position index (TPI): This index indicates the elevation of each cell in a 
digital elevation model relative to the average elevation of the surrounding cells (Fig. 2e). 
In other words, this index is calculated from the difference in elevation between each pixel 
relative to the average of the neighborhoods of that pixel (Eq. 3):

where Z0 is the elevation of the desired pixel, 
−

Z is the average elevation of the neighbor-
ing pixels with the desired pixel, n is the number of pixels around Z0, Zi is the elevation of 
each adjacent pixel, and R is the radius to consider the neighboring points.

Topographic roughness index (TRI): This index is presented by Riley et al. (1999) and 
provides a quantitatively objective measure of topographic heterogeneity. In other words, 
the difference in elevation of a pixel with 8 adjacent pixels shows:

where Zn is the elevation of the desired pixel, Zi is the neighboring pixel elevation, N is the 
number of surrounding pixels, which is usually considered eight. SAGA GIS software was 
used to calculate this index (Fig. 2f).

Topographic wetness index (TWI): This index shows the spatial variation of soil mois-
ture, which was first introduced in the TOPMODEL rainfall–runoff model by Beven 
and Kirkby in 1979. Using this index, the effect of topography on runoff production is 
quantified and the areas of surface saturation and spatial distribution of soil moisture are 
approximated:

where As is the upstream area per special catchment area, tan(β) is the slope angle of the 
site for estimating the hydraulic angle (Beven and Kirkby 1979). This index is extracted by 
SAGA GIS software (Fig. 2g).

Drainage density: In a watershed, the higher density of the canal network, the greater 
and certainly the greater the role in collecting rainwater. The higher density of the canals, 
the shorter the time it takes for the flow to reach its peak. For this reason, in high-den-
sity basins, severe floods appear shortly after rainfall. In this study, drainage density was 
extracted using the Line Density tool in ArcGIS using the streams map (Fig. 2h).

Flow accumulation: It shows the cumulative number of cells upstream of a cell and how 
many cells flow from the upstream areas to that cell. The amount of flow accumulation 
increases from the upstream of the basin to the downstream, and the higher the value of 
this criterion, the greater the potential for flooding and accumulation of water. To calculate 
this index, the flow direction map was used in the ArcGIS environment (Fig. 2i).

Distance from stream (DFS): It is an important factor in identifying hazardous areas. 
Naturally, areas closer to waterways and rivers are more prone to flooding. In this study, 
the distance map of the streams was extracted using the Euclidean distance tool in ArcGIS 
using the streams map (Fig. 2j).

(3)TPI = Z0 − Z

(4)Z =
1

nR

∑

Zi ∈ Rzi

(5)TRI =

(

1

N

N
∑

i=1

(

Zn − Zi
)2

)0.5

(6)TWI = Ln

(

As

tan(�)

)
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Precipitation: Precipitation is the main factor for the onset of runoff and floods. In this 
study, the total precipitation of the previous seven days of each flood event for meteorologi-
cal stations inside and outside the basin (20 stations) was considered for flood modeling 
(Fig. 2k, l). The reason for considering seven-day precipitation is its effect on river flow 
and flood discharge on pre-event hydrological conditions. In other words, previous precipi-
tations affect hydrological factors such as soil moisture, infiltration, and basal flow, which 
all affect the volume of floods. Using the kriging method, interpolation and preparation of 
precipitation maps were performed for each flood event. The location of the meteorological 
stations is shown in Fig. 1.

Normalized difference vegetation index (NDVI): This index shows the amount of veg-
etation in the area. The value of this index is between + 1 and − 1, that it for dense vegeta-
tion tends to be one, and the clouds, snow, and water are characterized by negative values. 

Fig. 2  Flood influencing factors
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Barren lands are found in values close to zero. This index is calculated by the reflectance in 
the near-infrared (NIR) and red (RED) bands by Eq. 5:

In this study, the NDVI index for the month of occurred floods was prepared by Sentinel 
2 images in the Google Earth Engine system (Fig. 2m, n).

Soil order: Different soil conditions affect the permeability and runoff. In this study, 
other soil data were not available, so the soil order prepared by the Institute of Soil and 
Water (with a scale of 1: 250,000) was used (Fig. 2o).

Landuse: Different land uses create different amounts of runoff and different hydrologi-
cal conditions depending on the type of soil, vegetation cover, permeability, etc. There-
fore, the type of land use affects the occurrence of floods. Rangelands, irrigated areas, dry 
farming, residential, forest, barren land, and water are the main land uses of the watershed 
(Fig. 2p) that is extracted by Sentinel-2 images in May 2018.

Lithology: Different units of lithology have different effects on runoff due to different 
conditions such as permeability. In this study, the geological map was obtained from the 
Geological Survey and Mineral Exploration of Iran (with a scale of 1:250,000) (Fig. 2q).

2.2.3  Feature selection

After preparing the flood influencing factors mentioned in the previous step, the selection 
of key features was done in two steps: (i) multicollinearity of factors was investigated using 
the variance inflation factor (VIF), and the nonlinear factors were selected, (ii) using the 
recursive feature elimination (RFE) method, redundant features were removed and key 
features for modeling were identified. In the RFE method, first, the classification is done 
based on all the attributes and for each attribute a value of importance (rank) is determined. 
Then, the classification is done using the most important features and the accuracy of the 
classification is calculated. This is repeated for different quantities of the most important 
features, and finally, the number of the most important features with the highest classifica-
tion accuracy is selected (Guyon et al., 2002).

To perform the RFE, the k-fold cross-validation method was used and the data were 
classified into K = 10 sections. Then, during the different stages of K, each time one part of 
K is considered as a test set, and K − 1 of parts is considered as training data. Finally, the 
average evaluation results are reported. The RFE is a wrapper and model-based approach 
in which the random forest (RF) as an estimator was used in this study (Feng et al., 2017). 
Therefore, the embedded feature selection algorithm (i.e., recursive feature elimination 
random forest; RFE-RF) was used in the current research. The selection of key features is 
done in the R software environment.

2.2.4  Modeling approach

According to the dependent variable (location of flood and non-flood points) and independ-
ent variables obtained from the feature selection approach, flood hazard modeling was per-
formed for those return periods that the flood locations were identified by the radar image 
processing. Data (including independent and dependent variables) are randomly divided 
into two groups calibration (70%) and validation (30%). The ‘createDataPartition’ func-
tion in the CARET library of R software was used for random sampling and balanced 

(7)NDVI =
NIR − RED

NIR + RED
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distribution of data. Balanced means that if the variable y is a class (such as zeros and 
ones), random sampling is performed in each class and the overall distribution of the 
classes in each group is maintained. The models were trained based on the training group, 
and the relationships between independent and dependent variables were identified. For 
this purpose, the capabilities of machine learning (ML) models such as support vector 
machine (SVM), classification and regression tree (CART), and averaged neural networks 
(avNNet) were used in R software:

• Support vector machine (SVM)
  In its simplest form, SVM is a super plan that separates a set of positive and nega-

tive samples with a maximum distance. The use of SVM, which is proposed by Vapnik 
(1963), has expanded as one of the solutions in machine learning and pattern recog-
nition. SVM makes its predictions using a linear combination of the kernel function 
that operates on a set of training data called backup vectors. The method provided by 
SVM is different from comparable methods such as neural networks; SVM training 
always finds the global minimum. The characteristics of an SVM are largely related to 
its kernel selection. SVM training leads to a quadratic programming problem that can 
be very difficult to solve for large volumes of samples with numerical methods. There-
fore, to simplify the solution to this optimization problem, several methods have been 
proposed that can be used and implemented according to the needs. In the learning 
process, the system needs to be trained first and then tested for new input values. Math-
ematically, the machine learning problem can be thought of as a mapping in which 
xi → yi. A machine is defined by a set of possible mappings as x → f (x, α) in which the 
functions f (x, α) can be adjusted by the α. It is assumed that the system is definite and 
always gives a specific output equal to f (x, α) for a particular input x and the choice of 
α. Choosing the right α is the same thing that the trained machine does. The prediction 
y (x, w) is expressed by the linear combination of the basic function Φm (x) (Eq. 8):

where Wm are model parameters called weights. In SVM, basic functions are used as 
kernel functions, for each Xm in the training set we have Φm (X) = K (X, Xm), where k 
(0,0) is the kernel function. Weight estimation in the SVM is achieved by optimizing 
criteria that simultaneously try to minimize the y (x, w) function. As a result, some 
weights are zeroed, resulting in a sparse model whose prediction management is based 
on Eq.  8 and depends only on a subset of the kernel function (Bishop and Tipping 
2013).

• Classification and regression tree (CART)
  Decision trees are widely used in computer science and software engineering. These 

trees also have a special place in data mining and classification, and many classification 
algorithms are based on these trees. This is why they are called decision trees because 
they can make a specific decision based on a set of actual information. Meanwhile, 
one of the most popular decision tree algorithms is the CART decision tree, which is 
developed by Breiman et  al. (1984), that has many applications in classification and 
regression studies. CART is based on binary trees, so to build a decision tree it divides 
the data into binary parts and builds a binary tree based on them. The CART proce-
dure consists of three phases: i) creation of maximum tree; ii) selection of the optimum 

(8)y(x,w) =

M
∑

m=0

WmΦm(x) = WTΦ
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tree size; and iii) construction or classification of new data using the constructed tree 
(Timofeev 2004).

• Averaged neural networks (avNNet)
  The avNNet is a type of feedforward neural network with a hidden layer. In NNET, 

the connection between the constituent units does not form a cycle. Unlike recursive 
neural networks, in these types of networks, information travels in only one direction 
which is the forward direction (Ripley and Venables 2016). In this model, modeling is 
done using different random numbers, and the results of all models are used for predic-
tion. For regression modeling, the output of each network is averaged. For classifica-
tion, the performance of the models is averaged and then translated to the predicted 
classes (Ripley 2007). The avNNet has two parameters: hidden units (number of neu-
rons in the hidden layers of the network) and weight decay (penalty parameter for the 
error function to avoid over-modeling). The optimal values of parameters were obtained 
through the tuneLength function in the CARET library in R software (Ripley and Vena-
bles 2016).

2.2.5  Validation

In each of the ML models, after constructing and ensuring the training of the models, vali-
dation was performed. The validity of the trained models was assessed using the excluded 
data (30% of the total data) through evaluation criteria. The models were evaluated by Hit 
and Miss analysis using a contingency table (Johnson and Olsen 1998). The contingency 
matrix contains true and false (so-called binary) classifications of modeling data versus 
observations. The criteria used to evaluate the models in the training and validation stages 
include accuracy (Eq. 9), precision (Eq. 10), and kappa coefficient (Eq. 11), which were 
calculated from the contingency table information:

where H, FA, M, and CN are the number of hits, false alarms, misses, and correct nega-
tives, respectively, in the contingency table (Sokolova et  al., 2006). The values of the 
accuracy and precision statistics are between zero and one, the closer to one the better 
the prediction of the model. The kappa coefficient is a numerical measure between − 1 
and + 1, and the values closer to + 1 indicate a proportional and direct agreement. Values 
close to − 1 indicate the existence of an inverse agreement and values close to zero indicate 
disagreement.

In addition to the above statistics, the visual method of receiver operating characteristic 
(ROC) graph was used to evaluate the models. In this diagram, the area under curve (AUC) 
is the performance criterion of the model. The higher AUC, the better the performance of 
the model.

(9)Accuracy =
H+CN

H+FA+M+CN

(10)Precision =
H

H+FA

(11)Kappa =
Accuracy − Pe

1 − Pe
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3  Results and discussion

3.1  Extraction of flooded points from radar images

To extract the flooded points, first, the flood return period was calculated for the Watershed. 
The results of fitting different statistical distributions to the 54-year data of instantaneous 
maximum flood at the watershed outlet (in the Pole Miandoab hydrometric station) showed 
that the Log-Pearson 3P was the best distribution, according to Kolmogorov–Smirnov (KS) 
and Anderson–Darling (AD) statistics (Table 2).

So, using the Log-Pearson 3P, discharge values of 591, 544, 487, 436, 342, 272, and 
183   m3/s are estimated for return periods of 200, 100, 50, 25, 10, 5, and 2, respectively. 
After estimating the flood return period with the best statistical distribution, the return 
period of occurred floods was determined for the existence date of Sentinel 1 radar images 
(from 2014 onwards). Table 3 shows the date of occurred floods in the Simineh River basin 
along with the amount of their return period. As can be seen, from April 2014, a total of 42 
floods have been recorded at the outlet of the watershed. Among these floods, three floods 
with a return period of 10 years, two floods with a return period of five years, one flood 
with a return period of two years, and 36 floods with a return period of lower than two 
years occurred (Table 3).

From 2014 to 2020, six floods with a return period of 2  years and above occurred 
(Table 3), which only two flood dates (i.e., 2017-04-16 and 2019-01-30) correspond to the 
radar image-taking period (each six-day). Therefore, from the floods with the return period 
of 2, 5, and 10 years from 2014 to 2020, the radar has taken images for the return periods of 
5 and 10 years. However, for occurred flood in 2016-01-09 with a return period of 2 years 
the Sentinel 1 data is not available means that the flood date did not correspond to the six-
day radar imaging period of the Sentinel 1 (Table 4). Table 4 presents the Radar status at 
the date of the flood events and selected reference images. For each of the flood events, 
the first reference (non-flood) image taken before the flood event (i.e., six days before) was 
considered. In the sense that non-flood images show the normal flow of the river and some-
how show the pre-flood discharge conditions (in the same month).

Figure 3 shows an example of Sentinel-1 images for the non-flood and flood dates (with 
return periods of 5 and 10 years) located in the outlet of watershed, which was received 
by the Google Earth Engine (GEE) system. As it turns out, these images display the flood 
zones well. The dark surfaces in Fig. 3c and d show well the extent of the flood area com-
pared to the normal flow mode (non-flood image) (Fig. 3).

After receiving the flood and non-flood images from the GEE, the first step was to cal-
culate the difference image between flood and non-flood images. By differentiating, perma-
nent water levels that are not caused by floods (such as normal river flow, lake, or wetland) 
were removed. For example, in Fig. 5, it is clear that in the difference image, the surface of 
the Qarah Gol wetland is removed and it is ensured that the water surfaces that are not due 
to flooding will not be present in the extracted flood pixels. Also, some parts of the river-
bed that are involved in the flood are well visible (Fig. 4).

Finally, flooded pixels were extracted using combined filtration by slope and HAND 
layers and also by using the thresholding method presented in the methodology. Figure 5 
shows the flood pixels for the 5- and 10-year return periods.
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3.2  Feature selection results

First, the multicollinearity analysis between independent variables was investigated using 
the variance inflation factor (VIF). Table 5 shows the VIF values for the 5- and 10-year 
return periods. As it turns out, the variables of slope and topographic roughness index 
(TRI) for both return periods have a VIF higher than 10, which are collinear variables. 
When there is collinearity, the model coefficients are not valid, because the effect of each 
descriptive variable on the "response variable" includes the effect of other variables in the 
model, too. Therefore, the variance of regression coefficient estimators is increased and, in 
practice, the prediction by the model will be associated with a large error. The reason for 
the relationship between the TRI and slope is due to the nature of the calculation of these 
two variables from the elevation map. In calculating both variables, the elevation values of 
adjacent pixels are used, and based on this, a high correlation is obtained between the two 
variables. The existence of collinearity between TRI and slope in previous studies in differ-
ent regions has also been confirmed (Lee et al. 2018; Kalantar et al. 2019; Lee et al. 2020; 
Amare et al. 2021).

In the next step, to eliminate collinearity, the TRI variable was removed from the list 
of input variables, and VIF was checked again. The results showed that only by removing 
the TRI variable, the problem of collinearity between the input variables is solved (i.e., the 
VIF values are lower than 5, Table 5).

After excluding the TRI variable and ensuring that the remaining variables have no col-
linearity, the selection of key variables was performed using the recursive feature elimi-
nation (RFE) method through R software separately for each return period. According to 
this method, the data were divided into k = 10 folds, and in each run, 9 folds were used 
to train the model, and one of the folds was set aside for validation. In the RFE method, 
first, the classification is done based on all the features and a value of importance (rank) is 
determined for each feature. Then, the classification is performed using the most important 
variables from one variable to n variables (in this study, 14 variables), and the performance 
in each execution is reported. In this study, based on the number of variables and folds, the 
model run was repeated 140 times:

Number of folds (10) × Number of variables (14) = Number of runs (140).
The priority of the features based on the total frequency of presence in 140 runs is pre-

sented in Table 6. The variables of distance to stream, elevation, NDVI, and rainfall more 

Table 2  Results of fitting different statistical distributions to instantaneous maximum flood at the watershed 
outlet

Distribution KS test AD test Sum of ranks Final rank

statistic Rank statistic Rank

Log-Pearson 3P 0.110 1 0.49 1 2 1
Lognormal 3P 0.117 3 0.62 3 6 2
Normal 0.111 2 0.70 4 6 3
Pearson 3P 0.119 5 0.57 2 7 4
Gamma 0.119 4 0.70 5 9 5
Lognormal 0.133 6 0.79 6 12 6
Gumbel 0.139 7 2.40 8 15 7
Log-Gamma 0.140 8 0.96 7 15 8
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than other variables were present, respectively, in 100, 93, 86, and 79% of runs as the most 
important variables (in both return periods). While the variables of flow cumulation, lithol-
ogy, curvature, and soil order were present less than other variables, respectively, in 30% 
(25%), 24% (7%), 14% (29%), and 7% (14%) of the model implementations for the return 
period of 5 years (10 years) (Table 6).

Table 3  Return period of occurred floods in the Simineh River basin since the presence of Sentinel-1 radar 
images

Qm: Mean daily discharge, Qi: Instantaneous maximum discharge, RP: Return period

Flood date Qm
(m3/s)

Qi
(m3/s)

RP
(year)

Flood date Qm  (m3/s) Qi  (m3/s) RP
(year)

2014-07-23 5 6 < 2 2018-05-26 26 27 < 2
2014-08-21 3 4 < 2 2018-06-20 17 19 < 2
2016-01-09 144 178 2 2018-07-18 11 14 < 2
2016-03-09 100 113 < 2 2018-08-03 13 15 < 2
2016-03-29 309 326 10 2018-09-06 3 9 < 2
2016-10-26 9 10 < 2 2018-12-08 31 40 < 2
2016-12-29 4 4 < 2 2018-12-21 14 16 < 2
2017-03-15 50 53 < 2 2018-12-30 37 40 < 2
2017-03-20 104 146 < 2 2019-01-18 43 54 < 2
2017-04-16 226 258 5 2019-01-30 289 322 10
2017-05-30 16 16 < 2 2019-02-07 48 49 < 2
2017-06-29 13 13 < 2 2019-03-02 52 54 < 2
2017-07-28 16 17 < 2 2019-03-16 53 57 < 2
2017-08-31 16 17 < 2 2019-03-27 146 155 < 2
2017-11-09 18 19 < 2 2019-04-02 262 284 5
2018-02-19 233 311 10 2019-04-18 74 78 < 2
2018-02-24 91 104 < 2 2019-05-05 31 36 < 2
2018-02-28 115 131 < 2 2019-05-21 10 11 < 2
2018-04-01 43 50 < 2 2019-06-17 11 13 < 2
2018-04-30 13 15 < 2 2019-08-05 18 21 < 2
2018-05-13 23 26 < 2 2020-02-23 47 51 < 2

Table 4  Pair radar images for flood and non-flood dates

Qm: Mean daily discharge, Qi: Instantaneous maximum discharge, RP: Return period

Flood date Qm
(m3/s)

Qi
(m3/s)

RP
(year)

Radar imaging Reference image Qm
(m3/s)

2016-01-09 144 178 2 × – –
2017-04-16 226 258 5 ✓ 2017-04-10 23.5
2019-04-02 262 284 5 × – –
2016-03-29 309 326 10 × – –
2018-02-19 233 311 10 × – –
2019-01-30 289 322 10 ✓ 2019-01-24 17.5
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The average performance of the RFE method in different iterations for different num-
bers of features is presented in Fig. 6. As can be seen, when the number of features is equal 
to 10, the average accuracy of the RFE method for both 5- and 10-year return periods is 
higher than the other number of features (accuracy is equal to 0.9889 and 0.9886, respec-
tively). Therefore, based on the results of the RFE method (taking into account the results 
of Fig. 6 and Table 6), 10 variables of distance to stream, elevation, NDVI, precipitation, 
TPI, aspect, drainage density, TWI, land use, and slope were selected as key features to 
model flood hazard.

Therefore, variables of flow accumulation, lithology, curvature, and soil order were 
among the least important variables and were excluded from the modeling process. The 
reason for low importance of these variables can be attributed to (i) the lack of spatial 
relationship between occurrence and non-occurrence of floods with these variables and 

Fig. 3  Example of Sentinel-1 images for non-flood and flood dates at the outlet of Simineh River Basin. 
Darker areas show flooding
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(2) uniform spatial distribution or non-variability of these variables in flooded areas (Bui 
et al. 2019). For example, large areas around the river and near the outlet of the basin are 
affected by floods with low flow accumulation. The uniformity of the pixel values in the 
flooded areas reduces the effect of the curvature variable. In this regard, in the case of vari-
ables lithology and soil order, the reason for the low importance can be attributed to the 
lack of a large-scale map in more detail. Using 1: 250,000 maps with large polygons may 
not be sufficient information for modeling. Therefore, the use of more detailed maps and 
other soil information can be more effective in the modeling. In previous studies, some of 
these variables have been removed in the process of selecting key variables. For example, 
in the study of Hosseini et al. (2020) and Bui et al. (2019), the variables of lithology and 
soil order are recognized as low-importance variables and are excluded from the modeling 
process.

Fig. 4  Comparison of the status of Qarah Gol wetland in non-flood (2019-01-24), flood (2019-01-30), and 
difference images
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3.3  Flood hazard modeling results

The optimal values of the modeling parameters are presented in Table  7. For the SVM 
model, the optimal value of the sigma parameter was 0.2 and 0.4, and the optimal value 
of the Cost parameter was 50 and 20, respectively, in the return periods of 5 and 10 years. 
For the CART model, the optimal values of the cp parameter were calculated to be 0.0011 
and 0.0020, respectively, for the return periods of 5 and 10 years (Table 7). For the avN-
Net model, the optimal value of the weight decay parameter is 0.0075 and 0.0001, and the 
optimal value of the hidden units is 13 and 13, respectively, in the return period of 5 and 
10 years (Table 7).

After ensuring adequate training of the models, the models were validated based on 
30% of data excluded from the training process. Table 8 shows the performance results of 
the models for the validation phase. As can be seen, the modeling accuracy and precision 
values for all models are more than 90%, which indicates the very good performance of 
the models for predicting flood zones. Kappa values also show a high performance of 88% 
by all models, which according to Monserud and Leemans (1992) is a great agreement 
between modeled and observational data. Also, the AUC values for all models are higher 

Fig. 5  Flood pixels extracted by Sentinel-1 radar images for 5-year a and 10-year b return periods
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than 98% in the five-year return period and higher than 96% in the ten-year return period 
(Table 8).

In general, comparing the performance of the models shows that although the SVM 
model offers higher performance, the CART and avNNet models also have a very close 
performance to it. In this regard, Tehrany et al. (2015) found that the SVM model has a 
good performance in predicting flood hazards in the Kuala Terengganu watershed of 
Malaysia. In another study, Shafizadeh-Moghadam et  al. (2018) showed that the perfor-
mance of the ANN model is higher than the CART model in flood hazard modeling in 
the Haraz watershed. Also, Davoudi Moghaddam et al. (2019) highlighted that the CART 
model has a good performance for the extraction of flood zones in southwestern Iran.

Finally, after ensuring the performance of the models, the information of all the pixels 
in the area was provided to the trained models and the flood hazard maps were predicted 
for 5- and 10-year return periods. Modeled maps show flood hazards varying from 0 to 1. 
Using the equal-interval method in ArcGIS, the maps are divided into five classes: very 
low hazard (values 0 to 0.2), low (values 0.2 to 0.4), medium (values 0.4 to 0.6), high (val-
ues 0.6 to 0.8), and very high (values 0.8 to 1) (Figs. 7, 8, 9).

As can be seen from the hazard maps (Figs. 7, 8, 9), the very low zone has the highest 
area. 92, 85, and 80% of the watershed area, respectively, in the SVM, avNNet, and CART 
models are related to the very low hazard zone in the return period of 5 years, while, in the 
10-year return period are about 90, 81, and 82%, respectively. The area of the low hazard 
zone is equal to 1.98% (1.95%), 16% (11%), and 7% (6%) in SVM, avNNet, and CART 
models with a return period of 5 years (10 years), respectively. The area of average hazard 
zone is about 1.44, 0.42, and 2.54% of the watershed area for SVM, avNNet, and CART 
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Fig. 6  Mean performance of the RFE method in different iterations for different number of features. Solid 
signs show better performance
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models with a return period of 5 years, respectively, while in the return period of 10 years 
is equal to 1.71, 1.57, and 4.42%, respectively. The high hazard zone for SVM, avNNet, 
and CART models in the 5-year return period comprises 1.48, 0.88, and 2.38% of the 
watershed area, respectively; these values for the 10-year return period are equal to 2.61, 
1.83, and 3.55%. Area of very high class is equal to 2.85, 3.01, and 2.83% for 5-year return 
period and 4.12, 5.03, and 3.51% for 10-year return period in SVM, avNNet, and CART, 
respectively (Figs. 7, 8, 9).

3.4  Sensitivity analysis and variables’ contribution

To evaluate the importance of the variables, the sensitivity analysis method of the Jack-
knife test (Miller 1974) was used. Each time one of the variables was removed from the 
modeling process and the modeling performance was calculated in the absence of that vari-
able relative to the total performance (i.e., when all variables are present in the modeling). 
In this method, after removing the variable, the more the modeling performance decreases, 
the more important the variable is. The criterion for measuring the importance of variables 
in this test was the rate of decrease in area under curve of the ROC, which is presented as 
percentage in Fig. 10.

Based on the results of the SVM model, the variables of elevation and distance from 
stream (DTS) were the most important in modeling flood hazard zones. Thus, the contri-
bution rate is 49 and 28% in the return period of 5 years and 54% and 21% in the return 
period of 10 years, respectively. The importance degree for each of the other variables was 
less than 8%, with a total contribution of 23 and 25% in the return period of 5 and 10 years, 
respectively (Fig. 10). The results of the CART model showed that the variables of eleva-
tion, DTS, and rainfall had the highest contribution in the modeling, which, respectively, 
are equal to 27, 26, and 21% in the return period of 5 years and 28, 23, and 20% in the 

Table 7  Optimal values of 
parameters for return period (RP) 
of 5 and 10 years

Model Parameter RP = 5 RP = 10

SVM Sigma 0.2 0.4
Cost 50 20

CART Complexity parameter 
(cp)

0.0011 0.0020

avNNet Weight decay 0.0075 0.0001
Hidden units 13 13

Table 8  Performance results of the models for the validation phase

Flood hazard Model Accuracy Precision Kappa AUC 

5-year return period SVM 0.967 0.956 0.934 0.992
CART 0.959 0.963 0.919 0.982
avNNet 0.952 0.939 0.904 0.987

10-year return period SVM 0.956 0.937 0.913 0.988
CART 0.941 0.926 0.882 0.968
avNNet 0.944 0.918 0.888 0.984
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return period of 10 years. Slope and land use with the importance of 11 and 10% in the 
return period of 5 years and 13% and 11% in the return period of 10 years are in the next 
degree of importance. The total significance of the other variables is about 5% for both 5- 
and 10-year return periods (Fig. 10). Unlike the SVM and CART models, the importance 
of variables does not differ much from each other by the avNNet model and the degree of 
importance varies between 7 and 14%. However, the variables of elevation (14%), DTS 
(13%), precipitation (12%), slope (12%), and TWI (11%) in the return period of 5 years 
were more important than other variables. In the return period of 10 years, the variables of 
elevation (14%), DTS (13%), precipitation (12%), slope (12%), and land use (11%) had the 
most contribution in the modeling process. Each contribution of other variables was less 
than 10%, but they are more important than the SVM and CART models (Fig. 10).

3.5  Flood hazard status of man‑made land uses

The flood hazard status of man-made land uses (including agricultural and orchard lands, 
dry farming, and residential areas) was assessed. By overlaying the land-use map and flood 
hazard zones, it was found that about 21.4% (14,649 ha) of irrigated areas (including agri-
culture and orchards) in the return period of 5 years and about 29.8% (20,437 ha) in the 
return period of 10  years are exposed to high and very high flood hazard areas for the 
SVM model. These values are equal to 17.7% (12,159 ha) and 22.3% (14,830 ha) for 5-year 
return period and 31.4% (21,522  ha) and 30.5% (20,703  ha) for 10-year return period, 
respectively for the CART and avNNet models (Table 9). From dry farming, about 0.5% 
(839 ha), 1% (1647 ha), and 2.1% (3360 ha), respectively, for the SVM, CART, and avNNet 
models are exposed to high and very high flood hazard areas in 5-year return period, while 
for 10-year return period these values are increased, respectively, equal to 0.7% (1093 ha), 
1.3% (2130  ha), and 2.4% (3877  ha). Also, 11.5% (841  ha), 8.3% (604  ha), and 14.3% 
(1048 ha) of residential areas are located at high and very high flood hazard zones for the 
SVM, CART, and avNNet models, respectively, during the return period of 5 years, while 
their areas, respectively, are about 22.1% (1608 ha), 17.1% (1252 ha), and 25.1% (1833 ha) 
in 10-year return period (Table 9).

4  Conclusion and future outlooks

Unlike previous studies conducted by machine learning models, this study set out to pro-
duce hazard maps based on the return period. The aim of this study was not to compare 
the hazard maps with and without considering return periods, but it is necessary to iden-
tify flood hazard areas based on return periods and must be done. The modeling results of 
this study demonstrated a great performance for all the applied models (i.e., accuracy and 
precision > 90%, kappa > 88%). The findings in this report are subject to at least three limi-
tations: (i) the Sentinel-1 radar images were the main source to extract the flooded pixels. 
Due to the 6-day capturing of images, many flood dates are not monitored. Given that no 
organ collects such information, this problem is one of the inevitable limitations of the 
research. (ii) Lack of soil map can be mentioned as another limitation of this research. 
Using soil maps, valuable information (such as infiltration, soil texture, soil hydrologi-
cal groups, and Curve Number) can be considered that are very important in the genera-
tion of floods. Although in this study, considered soil order could indirectly indicate the 
soil information, it is recognized as a low importance variable due to the uniformity of 
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the map and its large polygons. (iii) For the sake of computer limitation, the high time of 
processing during modeling can be considered as another problem and limitation of this 
research. Regarding the pixel size (12.5 m) and the adopted method for modeling with 10 

Fig. 7  Predicted flood hazard map using the SVM model in the return periods of five (top) and ten years 
(bottom)
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folds with frequent repetition (cross-validation method), the modeling process to prepare 
a hazard map for a model took up to a week. Respectively, for addressing the above-men-
tioned limitations, considering other sources of data for flood location extraction, providing 
a detailed soil map or studying a watershed that has it, and applying a strong processor 

Fig. 8  Predicted flood hazard map using the CART model in the return periods of five (top) and ten years 
(bottom)
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are recommended. It should be noted that the flood hazard maps are affected by climate 
change, environmental changes (deforestation, etc.), and human intervention, thus it would 
be interesting to assess their effects to update the maps over time. The findings of this study 
have some important implications for future practice such as flood risk management plans 

Fig. 9  Predicted flood hazard map using the avNNet model in the return periods of five (top) and ten years 
(bottom)
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and provide a clear picture of flood risk and flood damage in the watershed to decide on 
urban, rural, agricultural, and industrial areas development plans.
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Fig. 10  Relative importance of the predictive variables in the return period (RP) of five (top) and ten (bot-
tom) years
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