
Vol.:(0123456789)

Natural Hazards (2023) 115:261–287
https://doi.org/10.1007/s11069-022-05553-y

1 3

ORIGINAL PAPER

Machine learning network suitable for accurate rapid seismic 
risk estimation of masonry building stocks

Onur Coskun1 · Alper Aldemir2 

Received: 26 April 2022 / Accepted: 1 August 2022 / Published online: 17 August 2022 
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Most losses from earthquakes are associated with fully collapsed buildings. So, determin-
ing the seismic risk of buildings is essential for building occupants in active earthquake 
zones. Unfortunately, current methods used to estimate the risk state of large building 
stocks are insufficient for reliable, fast, and accurate decision-making. In addition, the risk 
classifications of buildings after major natural disasters depend entirely on the experience 
of the technical team of engineers. Therefore, the decision on risk distributions of building 
stocks before and after hazards requires more sustainable and accurate methods that include 
other means of technological advancement. In this study, the building characteristics domi-
nating the seismic risk outcome were determined using a database of 543 masonry build-
ings. Later, for the first time in the literature, a new, fast and accurate seismic evaluation 
method is proposed. The proposed method is thoroughly associated with detailed evalu-
ation results of structures with the help of machine learning algorithms. This study uti-
lized an approach in which six machine learning algorithms work together (i.e., Logistic 
Regression, Decision Tree, Random Forest, K-Mean Clustering, Support Vector Machine, 
and Ensemble Learning Method). As a result of the analysis of these algorithms, the cor-
rect prediction rates for the learning database (i.e., 434 buildings) and the test database 
(i.e., 109 buildings) of the proposed method were determined as approximately 96.67% and 
95%, respectively. Lastly, machine learning algorithms trained by structures with known 
after seismic risk results are developed. The proposed method managed to classify risk 
states with the accuracy of 84.6%.
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1 Introduction

The risk of heavy damage or failure of buildings during a seismic event is a significant con-
cern for communities, as the affected area is generally large. For this reason, determining 
the earthquake risk of structures has become an essential issue among structural engineers 
(FEMA356). Most losses from earthquakes are associated with the local or total collapse 
of buildings. In this context, continuous assessment and monitoring of buildings’ seis-
mic safety and vulnerability are challenging, especially when extensive area assessments 
are required. In addition, examining structural cracks or determining the wall type in a 
masonry building damaged due to earthquake events is a very dangerous task for site engi-
neers. For this reason, it has become possible to determine the seismic risk of buildings by 
observations that can be made from outside the building. But, the construction industry 
is one of the slowest professions to adapt to new technologies, and this situation needs to 
change. In this study, a contemporary method was proposed to accurately predict the seis-
mic performance of buildings with the help of machine learning algorithms eliminating the 
need for any technical personnel to enter the building.

The methodologies designed to determine the seismic risk of individual buildings are 
well matured. However, they necessitate the use of complex analysis tools along with 
detailed inputs like material testing, plan drawings, quality of material, etc. (FEMA2456, 
Eurocode 6, TEC2018, GABHR 2019; Dejong 2009; Aldemir et  al. 2013; Penna et  al. 
2014; Beyer et  al. 2014; Penna 2015 and Ahmad and Ali 2017). These detailed seismic 
assessment techniques become dysfunctional if the number of concerned buildings reaches 
thousands or more. This is mainly because the inputs and procedures take significant time, 
manpower of experienced engineers, and computational power. Therefore, these methods 
could not be employed when the seismic risk of the large building stock is aimed to be 
determined. Consequently, the current state-of-the-art on detailed seismic assessment of 
structures is limited by human and infrastructure resources. Therefore, Sozen (2014) stated 
that the seismic risk assessment of building inventories could only be accomplished by 
changing the strategy from seeking safety to filtering out vulnerable buildings from the 
large building stock (i.e., low-pass filtering). Thus, a versatile and accurate method should 
be formulated to enable decisions to be made using inexpensively acquired building data 
and the evaluation process to be implemented quickly (Sozen 2014).

Although several researchers have tried to generate simple methods to assess the seis-
mic risk of reinforced concrete (RC) structures (Yakut 2004; Yucemen and Ozcebe 2004; 
Askan and Yucemen 2010; Maziliguney et al. 2012; Al-Nimry et al. 2015; Perrone et al. 
2015; Kumar et al. 2017; FEMA P154; Coskun et al. 2020; Harirchian et al. 2020a; b); the 
literature shows a limited number of efforts to propose rapid screening (or filtering) meth-
ods applicable to unreinforced masonry (URM) building stocks (GABHR 2019; D’Ayala 
2013; Shah et  al. 2016; Achs and Adam 2012; Grünthal 1998; Achs 2011; Rajarathnam 
and Santhakumar 2015; Aldemir et al. 2020). D’Ayala (2013) attempted to correlate dam-
age states with fragility curves to determine the seismic vulnerability of masonry struc-
tures. However, this method requires the fragility curve for the location of the building, 
which reduces the applicability of this process, as fragility curves are scarce in number. 
Shah et al. (2016) used a building classification with respect to the masonry material used, 
the state of the building, construction quality, building shape irregularity, and the level of 
earthquake-resistant design. They used the European Macroseismic Scale (Grünthal 1998) 
and applied defined vulnerability classes (A–F) to determine the risk level of masonry 
structures. However, the outcome of this method still lacked correlation with actual 
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performance. In another approach, Achs and Adams (2012) proposed a rapid visual screen-
ing method that used penalty scores for structural parameters, including seismic hazard, 
regularity in the plan, regularity in elevation, horizontal stiffness, local failure, secondary 
structures, soil condition, foundation, and state of preservation. The penalty scores were 
derived from comprehensive preliminary in  situ inspections and measurements of Vien-
nese brick masonry buildings (Achs 2011). Rajarathnam and Santhakumar (2015) used 
aerial photographs on a geographic information system (GIS) platform to accelerate rapid 
visual screening. However, none of these methods is based on a large database of masonry 
structures with detailed seismic assessment results. In other words, all previous methods 
lack a correlation between rapid screening scores and detailed analysis results. Aldemir 
et al. (2020) proposed a new rapid visual screening method applicable to masonry struc-
tures. They aimed to increase the accuracy of the seismic risk estimation by correlating the 
rapid visual screening scores with the detailed seismic risk analysis results. To this end, 
they generated a linear relationship between the risk and the considered parameters. They 
concluded that this approach resulted in a promising method with some accuracy prob-
lems in predicting the test database. The complex relationships between the seismic risk 
estimations and the selected parameters could be resolved by implementing machine learn-
ing algorithms. Similarly, researchers have recently given some effort to incorporate the 
machine learning algorithms 1- to find a better relationship between the observed damage 
and seismic events (Mangalathu et al. 2020 and Zhang et al. 2018); 2- to propose methods 
to predict the fragility curves (Kiani et al. 2019; Ruggieri et al. 2021); 3- to estimate the 
seismic risk (Zhang et al. 2019; Harirchian et al. 2020a; b). However, none of these stud-
ies proposed a versatile seismic risk filtering method for masonry structures incorporating 
machine learning algorithms. In addition, some recent studies tried to propose contempo-
rary strategies to efficiently evaluate the seismic performance of structures (Javidan and 
Kim 2022a; b).

Several studies in the literature have succeeded in creating damage maps using 
unmanned aerial vehicles for post-earthquake damage assessment (Wang et  al. 2021; 
Cooner et al. 2016; Li et al. 2018; Xu et al. 2019; Xu et al. 2018; Sublime and Kalinicheva 
2019; Kerle et al. 2020; Stepinac et al. 2020; etc.). These studies have also evolved into 
studies that include post-earthquake permanent displacement estimations in order to derive 
new algorithms to accelerate data processing time (Li et  al. 2011) and to classify post-
earthquake damages (Wang et al. 2020). Finally, studies are carried out to determine the 
physical properties of buildings and their structural deficiencies, such as soft floors, using 
unmanned aerial vehicle photographs (Yu et al. 2020). However, none of these studies was 
designed to be applied before disasters in order to facilitate pre-hazard applications (i.e., to 
increase preparedness). In addition, machine learning methods have been developed for the 
estimation of structural systems using photographic data. Geiß et al. (2015) showed in their 
research that structural systems (masonry, confined masonry, reinforced concrete frame, 
steel frame, etc.) could be predicted with a high success rate by machine learning methods. 
In their methods, random forest and support vector machine algorithms are used.

Therefore, this study focused on developing a simple, rapid visual screening method 
to predict the damage level of masonry buildings using machine learning algorithms. The 
parameters required for the procedure were aimed to be collectible without the need for the 
entrance of technical personnel into the risky building. The parameters that could be deter-
mined externally are specified as follows:

• Number of Stories (NS)
• Floor system type (FT)



264 Natural Hazards (2023) 115:261–287

1 3

• Visual damage (VD)
• Wall material type (WT)
• Typical story height (TY)
• Vertical irregularity (VI)
• Typical plan area (TA)
• Earthquake zone (EZ)

It should be stated that the age of the structure is not included as an independent param-
eter in this proposed network. However, the selected parameters managed to correlate the 
existing physical and mechanical properties with the risk state. Although the age of the 
building is an important parameter, the visual damage parameter has a significant correla-
tion with the age of the building. Therefore, the proposed network has high accuracy in 
estimating the risk state. In other words, this study aimed to develop a calculation network 
based on the properties of any structures from external observations. This network was 
trained with the known detailed seismic risk analysis results. To this end, machine learning 
algorithms were trained with a large stock of buildings whose seismic risk analysis results 
were available (i.e., 543 different real buildings with seismic risk assessment analyses). 
Then, the seismic risk analysis estimation performance of this algorithm was tested with 
untrained buildings (i.e., 109 different real buildings with seismic risk assessment analy-
ses). The formed machine learning algorithm estimates the risk and damage level of the 
analyzed structure during a possible earthquake event.

2  Definition of the URM building database

The database used within the scope of this study was obtained from the Risky Buildings 
Department of the Ministry of Environment and Urbanization. The earthquake risk analy-
ses of the buildings in the database were determined by the detailed seismic risk analysis 
calculation method included in the provisions of the Urban Transformation Law No. 6306 
(GABHR 2012) or Turkish Earthquake Code (TEC 2007). In this context, the plan draw-
ings, material strengths, etc., of all buildings were available, along with all the physical 
properties. Therefore, the necessary technical analysis has been done on these structures 
to train machine learning algorithms. The selected parameters are presented in Table  1. 
Before using this raw database, data engineering was performed to filter out unnecessary 
or misleading information by deleting null values, categorizing the selected parameters, 
etc. In addition, the distribution of parameters is given in Fig. 1. It is known that masonry 
structures are commonly constructed to have less than four stories in Turkey. However, in 
some regions of Turkey, the seismicity is low, promoting the use of masonry structures up 
to 8 stories. In addition, the number of these exceptional cases is low. Thus, the selected 
database is intentionally formed to have a limited number of masonry buildings with more 
than four stories (only %25 of the entire database).

The detailed seismic assessment analysis of buildings was performed as per GABHR 
(2012). In the numerical models, all piers were simulated using 2-node 3-D frame ele-
ments, whereas all slabs were modeled with 4-node thin shell elements. In the numeri-
cal models, the modulus of elasticity was calculated using the expression (i.e., 200  fm) 
given in GABHR (2012). In each story, a rigid diaphragm was defined, provided that a 
reinforced concrete slab existed. After that, a response spectrum analysis was performed 
under the effect of a reduced design spectrum (i.e., R = 2). The analysis was performed for 
two orthogonal directions separately. During the response spectrum analysis, 95% of mass 
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participation was satisfied in each orthogonal direction. In the detailed seismic assessment 
analysis, the performance limits for slab elements were not calculated. The performance of 
each pier was determined as Minimum Damage (MD) provided that the pier had enough 
capacity to resist the reduced design spectrum and gravity demands. On the contrary, the 
performance of each pier was classified as Collapse Damage (CD) if the pier did not have 
enough capacity to resist the reduced design spectrum and gravity demands. The capacity 
of each pier was estimated by considering all the failure modes given in TEC (2018) (i.e., 
diagonal tension and base sliding). Also, the axial load demands were compared with the 
axial load capacities of each pier. In these calculations, a correction was made depending 
on the slenderness ratio. The correction factor was taken as 1 for slenderness ratios less 
than 6, 0.8 for slenderness ratios between 6 and 10, 0.7 for slenderness ratios between 10 
and 15, and 0.5 for slenderness ratios greater than 15. If the pier was found to have less 
axial load capacity than the demand, it would be classified as Collapse Damage (CD). The 
performance of each masonry building was claimed to be satisfying the life safety perfor-
mance level provided that less than 50% of the total base shear at the first story is resisted 
by masonry piers with a Collapse Damage (CD) performance level.

Table 1  Selected Parameters and their definitions

* PGA stands for peak ground acceleration

Parameters Abbreviation Unit Selected intervals Ranges

Number of stories NS – Any integer value 1–10
Floor system Type FT – 1: RC Slab with RC bond beam, 1–3

2: RC Slab without RC bond beam,
3: Others 1–4

Earthquake zone EZ – 1: PGA* ≥ 0.75 g,
2: 0.50 g ≤ PGA < 0.75 g,
3: 0.25 g ≤ PGA < 0.50 g,
4: PGA < 0.25 g

Wall material type WT – 1: Solid clay brick, 1–5
2: Hollow clay brick,
3: Stone,
4: Solid concrete block,
5: Others

Typical story height TH m 1: TH ≤ 2.4, 1–3
2: 2.4 < TH ≤ 3.2
3: TH > 3.2

Typical plan area TA m2 1: TA ≤ 50, 1–3
2: 50 < TA ≤ 200
3: TA > 200

Vertical irregularities VI – 1: Yes, 0–1
0: No

Visual damage VD – 1: Yes, 0–1
0: No
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3  Correlation of parameters with detailed seismic assessment analysis 
results

Detailed seismic assessment analysis of buildings is critical in determining the behavior of 
the building during seismic events. For this reason, detailed seismic assessment analysis 
is generally required for the safety check of all buildings over 20  years old and located 
in close proximity to earthquake zones. On the contrary, rapid screening methods should 
be used in countries where the filtering of risky buildings is aimed to be performed to 
take action about retrofitting operations. Therefore, this filtering operation is vital as struc-
tures at risk of collapse should be strengthened immediately, or new earthquake-resistant 
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structures should be built instead of these structures. However, current rapid screening 
methods in the literature have a minimal correlation with the detailed assessment analysis 
results as none of the methods was calibrated with the detailed analysis results. Thus, it 
is difficult to depend on the risk estimations of the rapid screening methods while tak-
ing actions at the seismic risk mitigation level. Consequently, in this study, it was aimed 
to form a network to correlate the seismic risk with the properties of buildings. For this 
reason, it was important to determine the most influential variables to be used in the detec-
tion of risky or non-risky structures in correlation with the seismic risk results from the 
detailed analysis. This operation could yield to dissociate the unnecessary parameters from 
the network and reduce the bias. The correlation of the variables in the available data set 
with the class (i.e., the risk state from the detailed analysis, RS) is shown below (Table 2 
and Fig. 2). In addition, the relationships between parameters, i.e., visual damage, vertical 
irregularity, number of stories and typical plan area, and the detailed seismic assessment 
analysis results are shown in Fig. 3. In Fig. 3, it is apparent that the risk state probability 
has a robust correlation with the increasing values of story number, vertical irregularity, 
and visual damage. In addition, total floor area has some limited correlation with the risk 
state determined from detailed analysis.

In Table  2, the correlation coefficients were calculated using “grouping and mean 
value determination processes” proposed by McKinney (2011). Grouping and mean 
value determination processes are used to group the subject data according to some 
identifiers, to examine the effect of input parameters on the output, to combine these 
data, or to transform data. This process is called learning through groups (McKinney 
2011). In this method, only one independent variable is selected in each case (i.e., verti-
cal irregularities), and the dependent variable is always the state of risk (i.e., 0 or 1). 
Then, the correlation coefficient for each subcategory in each independent variable is 
calculated by dividing the number of risky structures with subcategory i to the total 
number of risky structures. In Table  2, values above 0.5 contribute to the risk of the 

Table 2  Correlation of variables with the risk state

FT RS TY RS TA RS
2 0.848 1 0.770 1 0.778
1 0.807 0 0.667 2 0.562 Visual Damage = VD
3 0.551 2 0.667 0 0.375 Vertical Irregularities = VI

Earthquake Zone = EZ
VI RS VD RS NF RS

Wall Material Type = WT
1 0.899 1 1.000 7 1.000 Number of Floors = NF
0 0.678 0 0.727 6 1.000 Floor System Type = FT

5 0.933
WT RS EZ RS 3 0.891
1 0.798 3 0.898 2 0.8859 Typical Story Height = TY
5 0.793 2 0.845 4 0.830 Typical Plan Area = TA

Result of Seismic Risk = RS
4 0.727 1 0.775 1 0.146
2 0.717 4 0.584
3 0.500



268 Natural Hazards (2023) 115:261–287

1 3

building, while values below 0.5 contribute to the non-risk of the building. For example, 
if there is vertical irregularity (VI = 1), the RS value will increase to 0.899, indicat-
ing that the building contributes to its risky nature. If there is no vertical irregularity 
(VI = 0), the RS value will decrease by 0.678, contributing less to the building’s risk. 
Since vertical irregularity in structures is an undesirable situation as it adversely affects 
load transfer, this obtained result could be claimed to be reasonable. When the heat 
map is examined (Fig.  2), the parameters with the highest correlation that affect the 
detailed seismic assessment analysis result are vertical irregularity (VI), visual dam-
age (VD), and the number of floors (NF). The correlation of these parameters is also 
technically rational. Because the likelihood that the structure becomes risky for seis-
mic disturbances will increase if the structure is damaged. Likewise, as the number of 
floors increases, the horizontal drift demands of the building will increase inherently, 
which increases the seismic risk. Besides, the presence of structural cracks and vertical 
irregularities in the structure (i.e., VD = 1, VI = 1) causes the risk state (RS) to converge 
to 1. In contrast, the absence of structural damages (VD = 0, VI = 0) causes the RS to 
converge to 0.

Fig. 2  Correlation relationship of parameters
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In order to further investigate the selected parameters from different perspectives, 
another graph representing the relation between buildings with vertical irregularities 
and visual damage is plotted (Fig.  4a). From Fig.  4a, it could be inferred that verti-
cal irregularity (VI = 1) is observed more in risky and structurally undamaged struc-
tures (i.e., RS = 1 and VD = 0) than in non-risky and structurally undamaged struc-
tures (RS = 0 and VD = 0). This leads to the conclusion that vertical irregularity and 
visual damage correlate well with each other. Figure 4b shows the distributions of the 
risk states of buildings, the number of stories, and visual damage parameters and their 

Fig. 3  Relationships between a visual damage, b vertical irregularity, c number of stories, and d typical 
plan area and the detailed seismic assessment analysis results
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interrelationships. The structures with no structural damage and no risk (i.e., VD = 0 
and RS = 0) in the data set are usually one story. Therefore, it is understood that the 
probability of single-story masonry buildings being non-risky is high, and this situation 
may change toward risky as the number of floors increases. Higher lateral displacement 
in high-rise buildings may be the reason for this situation.

4  Machine learning algorithms

Machine learning (ML) is concerned with the ability of data-driven models to learn infor-
mation about a system from directly observed data without predetermining the mechanical 
relationships. ML algorithms can adaptively improve their performance with each new data 
sample, update their differentiable weights according to the new data and discover rela-
tionships in complex heterogeneous and high-dimensional data (Shaikhina et al. 2019). In 
this study, instead of sticking to a single method, it was preferred to use multiple machine 
learning methods (i.e., ensemble learning) in order to achieve the highest success percent-
age. As part of ensemble learning, different supervised machine learning algorithms were 
utilized since supervised machine learning algorithms rely on labeled input data to learn 
a function that produces an appropriate output when given new unlabeled data (Fig. 5a). 
Logistic regression (Peng et  al. 2002); decision tree classifier (Kotsiantis et  al. 2007); 
random forest classifier (Shaikhina et al. 2019); support vector machine (SVM) classifier 
(Widodo and Yang 2007); and K-neighbors classifier (Imandoust and Bolandraftar 2013) 
are used to predict building damage levels. To this end, the dataset was divided into train-
ing and test datasets first. Then, the statistical measures, like the correlation of parameters, 
are determined along with the feature engineering operations, i.e., categorical variable def-
initions. Then, the ensemble learning algorithms were codified to perform the necessary 
learning operations. Finally, the performance of the ML network on the estimation of the 
risk state was checked with the test database (Fig. 5b).

Fig. 4  Relationship between a visual damage—vertical irregularities and b number of stories—visual dam-
age and the detailed seismic analysis results
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5  Performance metrics

The seismic risk distribution of a large building stock was aimed to be accurately esti-
mated using the aforementioned machine learning algorithms. In all networks, the risk 
state from the machine learning algorithm was taken as risky (non-risky) if the risk score 
became 1 (0). In this part, the performances of the used algorithms will be evaluated not 
only by the success percentage but also by the metrics like true positives (TP), true nega-
tives (TN), false positives (FP), and false negatives (FN). These metrics were transformed 
into precision, recall, and the combined measure (i.e.,  Fmeasure) given in Eqs. (1–3) (Saito 
and Rehmsmeier 2015).

(1)Precision =
TP

TP + FP

Fig. 5  a Supervised learning example and b Flowchart of the method used in this study
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The utilized data set consisted of 543 buildings and was analyzed using multiple 
machine learning algorithms. All the calculations were made in the Jupyter environment 
(i.e., formally known as IPython). Initially, the dataset was divided into 434 trains and 49 
tests with the “Train Test Split” function from the “Sklearn model selection” library. Next, 
another dataset with additional 60 buildings excluded from the initial stage was formed 
for the second test stage. In other words, the total training dataset (i.e., the training dataset 
plus validation dataset) was equal to 483 buildings, whereas the test dataset comprised 60 
buildings. In addition, K-fold cross-validation was applied at the validation stage, which 
prevents the trained data set from being overfitted by the algorithm. As explained before, 
logistic regression, decision tree classifier, random forest classifier, support vector machine 
(SVM) classifier, and K-neighbors classifier were all used in this study. The accuracy of 
each method is presented in Table 3. In addition, the confusion matrices are summarized in 
Table 4.

It should be noted that it is essential to choose the correct hyperparameters of the logis-
tic regression to increase the percentage of accuracy. There were many hyperparameters 
for each model, so an excellent way to identify the best set of hyperparameters was to try 
different combinations and compare the results. The penalty value of l2 is chosen because 
l2 provides a better prediction when the output variable is a function of all input proper-
ties. The coefficient value, on the other hand, was chosen as one of the values providing the 
highest percentage of success in the graph in Fig. 6a. In the decision tree algorithm, there 
are many parameters that affect the success percentage. Of these, one of the values “maxi-
mum depth”, providing the highest percentage of success, was selected from Fig. 6b. In 
the random forest algorithm, there are many parameters that affect the success percentage. 
Of these, “minimum samples split” was chosen as one of the values that provide the high 
success percentage in the graph in Fig. 6c. It should be noted that this algorithm has many 
parameters that affect the results. While applying the KNN algorithm in this study, the 
“number of data points: k” parameter is one of the most important parameters in increasing 
the success percentage. Therefore, it was clear from Fig. 6d that the worst neighbor values 
for the dataset were k < 2, 3 < k < 4, and k > 13. In this case, these values should be avoided 
in choosing the k value. It has been observed that all values do not change the percent-
age of success in the penalty parameter selection of the Support Vector Machine Classifier 

(2)Recall =
TP

TP + FN

(3)F
measure

=
2 Pr ecision × Recall

Pr esicion + Recall

Table 3  Correlation of variables with the risk state

Method Training error accuracy (%) Testing error 
accuracy (%)

Logistic regression (LR) 93.88 91.88
Decision tree classifier (DTC) 95.00 95.90
Random forest classifier (RFC) 93.33 95.90
Support vector machine classifier (SVMC) 96.67 93.80
K-neighbors classifier (KNN) 93.00 88.50
Ensemble learning (EL) 96.67 95.90
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algorithm (Fig. 6e). In this study, the optimum values required to increase the success per-
centage of each algorithm were determined by the grid search method.

Finally, the number of possible outcomes of the variable RS that lead to the most 
accurate estimations was investigated. To this end, the Euclidian distances were plotted 
against the data points (i.e., dendrogram). The least number of possible outcomes could 
be determined by counting the least number of intersecting points with any possible hori-
zontal lines drawn on the dendrogram. For the risk state variable, this number equaled two 
(Fig. 7). Therefore, this cross-check also verified the validity of the selected possible out-
comes of the RS variable (i.e., risky or non-risky). In other words, the formed machine 
learning network could only distinguish between the risky and non-risky buildings. It could 
not classify the buildings according to their possible damage rates like minor damage, 
moderate damage, or collapse.

In Ensemble Learning, voting is one of the simplest ways of combining the predic-
tions from multiple machine learning algorithms. In this study, a single machine learning 
algorithm was not used to estimate the seismic analysis result. By using more than one 
machine learning algorithm, the majority of their predictions are based on votes. For this 
method, “hard” or “soft” voting can be done. Here, the algorithms give the seismic analysis 
result with two options: 1–0 (hard) or percentage ratio estimates (soft). In the proposed 

Fig. 6  Effect of algorithm parameters: a LR, b DTC, c RFC, d KNN and e SVMC
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methodology, it was decided to use hard voting for the data set. Components of the ensem-
ble learning, performance results, and schematic representations are shown in Figs. 8 and 
9. In addition, the success rate of this machine learning algorithm is shown in Table 5. In 
Fig. 9, the mean accuracy is obtained by taking the mean accuracy across k-folds for each 
algorithm.

6  Performance of the proposed method with damage observations 
after dinar EQ and elazig‑kovancilar EQ in Turkey

In this part, the risk status estimations of the buildings whose actual damages after real 
earthquakes in Turkey were compared. For this purpose, the Dinar earthquake  (ML = 6.1) 
and the Elazig-Kovancilar earthquake  (Mw = 6.1) were utilized. During the Dinar EQ, it 
was reported that 2,043 buildings were completely destroyed, and approximately 4,500 
buildings were severely damaged (EERI 1995). It was also reported that 2,549 buildings 
collapsed, and approximately 50 buildings were severely damaged (Akkar et al. 2011). The 
pseudo-spectral accelerations in the constant acceleration region for the Dinar EQ and the 
Elazig-Kovancilar EQ were reported as 0.90 g and 0.82 g, respectively. To test the predic-
tion performance of the machine learning algorithms proposed in this study, 13 buildings 
(5 buildings from the Elazig-Kovancilar EQ and eight buildings from the Dinar EQ) were 
used. Details on risk estimates are presented in Tables 6,7. From Tables 6,7, it could be 
concluded that the seismic risk status of 11 out of 13 buildings was correctly estimated 
by the proposed method. In summary, the machine learning algorithm gave correct results 
by estimating six undamaged structures as non-risky and five damaged structures as risky. 
But, it failed to classify two damaged structures as non-risky (i.e., Building 1 in Table 6 
and Building 3 in Table 8). With these results, the proposed ML algorithms correctly esti-
mated the damage status of 13 buildings and achieved 84.6% accuracy.

Fig. 7  Dendrogram representing the least number of outcomes for the variable RS
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7  Discussion of results

Rapid screening methods in the literature classify the earthquake risk of large building 
stocks by penalizing the existence of some physical deficiencies of structures. The decision 
is made depending on these penalty scores, which have no intended or calculated correla-
tion to detailed seismic risk analysis. Therefore, in this proposed approach, new insight was 

Fig. 8  Comparison of scores algorithms

Fig. 9  Mean accuracy results of 
each algorithm
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brought to the rapid screening method. To this end, a large database is utilized to correlate 
the seismic risk analysis results to the rapid screening scores. Therefore, unlike the litera-
ture-available rapid screening methods, the proposed method is useful for generating a risk 
distribution map of large building stocks having a significant correlation with the detailed 
seismic risk analysis results. Consequently, the proposed machine learning network could 
be employed while generating seismic risk mitigation systems. The confidence in the pro-
posed machine learning network is enhanced by examining the performance of the pro-
posed network with both post-earthquake reconnaissance and numerical seismic analysis 
results.

The performance of the proposed network is improved by implementing ensemble 
learning depending on the hard voting scheme. This manipulation significantly enhanced 
both the estimation success rate of the training and test database. In addition, the risk state 
estimation after EQs is aimed to be accurately predicted by the proposed method. To this 
end, the proposed network’s performance was investigated by comparing its risk state esti-
mations with damage states of buildings after real earthquakes. Thirteen buildings dam-
aged during the Dinar EQ  (ML = 6.1) and the Elazig-Kovancilar EQ  (Mw = 6.1) were uti-
lized. The risk estimation performance of the proposed network was found to be as large as 
84.6%. This observation also increased the confidence in the proposed network.

In Table 5, it is apparent that the false-negative ratio of the proposed model is 3.33%, 
whereas false-positive ratio is 0% for the test database. However, the observation for the 
real EQ application of the proposed method is different. The model estimated two dam-
aged structures as non-risky, which could be a drawback in the practical application of this 
model. Therefore, the false-positive ratio of the proposed model should be improved in 
order to have a more dependable model.

8  Conclusion

It is essential to determine the most vulnerable buildings and take precautions before major 
earthquakes hit in order to eliminate the loss of lives. However, the available detailed pro-
cedures require too much human power and resources to be possibly applied in large stocks 
of buildings. In addition, current rapid visual screening methods used to estimate the risk 
state of large building stocks do not result in reliable and accurate filtering. Therefore, in 
this study, it was aimed to bring a new perspective to the building seismic risk filtration. 
To this end, a calculation network based on the properties of any structures from external 

Table 5  Confusion matrix of 
ensemble learning

* FN: False-negative, FP: False-positive, TP: True-positive and TN: 
True-negative

Estimated risk state = 1 Estimated 
risk 
state = 0

Real risk state = 1 21 TP * 2 FN
Real risk state = 0 0 FP 37 TN
Precision = 21 / (21 + 0) = 100%
Recall = 21 / (21 + 2) = 91%
Fmeasure = 2 * (1 * 0.91) / (1 + 0.91) = 95%
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observations was collected. This network was trained with the known detailed seismic risk 
analysis results. Then, the seismic risk analysis estimation performance of this algorithm 
was tested with untrained buildings.

In this study, instead of depending on the estimation of a single method, it was preferred 
to use ensemble learning in order to achieve the highest success rate. As part of ensemble 
learning, different supervised machine learning algorithms were utilized. Logistic regres-
sion, decision tree classifier, random forest classifier, support vector machine classifier, and 
K-neighbors classifier are used to predict building damage levels. Then, hard voting was 
utilized as the outcome of the proposed method was designed to be composed of risky 
and non-risky buildings (i.e., 1–0). The successful percentage estimations of the proposed 
ensemble learning for the training and test database were 96.7% and 95.9%, respectively.

The proposed network’s performance was also investigated by comparing real EQ 
damages. In summary, the proposed ML algorithm gave correct results by classifying six 
undamaged structures as non-risky and five damaged structures as risky. However, the 
method failed to estimate the risk state of two damaged structures by defining them as non-
risky (i.e., Building 1 in Table 6 and Building 3 in Table 8). Therefore, the proposed ML 
algorithm achieved 84.6% accuracy. This methodology could serve better, provided that 
mobile applications or web-based software are designed to enable data entry in the field.
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