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Abstract
The National Risk Index developed by the Federal Emergency Management Agency pro-
vides a relative measurement of community-level natural hazard risk across 50 US states 
and Washington, DC. The Index leverages authoritative nationwide datasets and multi-
plies values for exposure, annualized frequency, and historic loss ratio to derive expected 
annual loss estimates for 18 hazard types and combines this metric with Social Vulnerabil-
ity and Community Resilience scores to generate Risk Index scores for every Census tract 
and county. Scores provide a holistic and comparable measure of risk across the US. Risk 
scores and underlying data are summarized in a custom web application. Geographical and 
statistical processing techniques were used to reconcile incompatibilities between the spa-
tial and temporal collection of input datasets. The index was developed using a multidisci-
plinary and collaborative approach and input from subject matter experts across disciplines 
and target users. The National Risk Index builds upon previous efforts to develop a multi-
hazard risk measurement for a large geography by expanding the number of hazard types 
considered, applying extensive geoprocessing techniques to combine diverse datasets, and 
combining traditional risk factors with the community risk factors of social vulnerability 
and community resilience for an enhanced nationwide picture of risk.
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1  Introduction

Between 1980 and 2020, the USA experienced 285 weather and climate disasters where 
overall damage costs reached at least $1  billion, with a cumulative cost exceeding 
$1.875 trillion US dollars (Smith 2021). During the same period, there were 1963 major 
disaster declarations (Federal Emergency Management Agency [FEMA] 2021a). Through 
internal programs like Hazard Mitigation Planning, the National Flood Insurance Program, 
the National Earthquake Hazard Reduction Program, the Dam Safety Program, Building 
Resilient Infrastructure and Communities, and others, FEMA increases risk awareness and 
encourages mitigation actions that reduce the impacts of natural hazards. However, com-
munity participation in these programs requires completion of risk assessments (FEMA 
2013) that can be expensive, duplicative, and inconsistent. To increase access to baseline 
risk assessment information, FEMA developed the National Risk Index to quantify the risk 
of natural hazards nationwide.

The quality and completeness of risk assessments vary dramatically based on the avail-
ability of data and analytical resources. Many assessments focus on only one or a small 
subset of natural hazards, use generalized nationwide datasets, or do not consider critical 
social and economic inequities. Examples of these assessments include Coleman and Dixon 
(2014), Ewert et  al. (2018), National Oceanic and Atmospheric Administration (NOAA) 
(2016), Widen (2016), and Dillon (2020). Despite these efforts, there is still a need for the 
federal government and nonfederal partners in the US to have consistent “assessments that 
address long-term risks, prioritize risk-based investments, discourage risky behaviors, and 
appropriately recognize the risk” (FEMA 2019, p. 12).

The complex challenges associated with quantifying and communicating multi-hazard 
risk at a national scale are well-established (Kappes et al. 2012; Marzocchi et al. 2012). 
Differences in the spatial and temporal resolution of data and the scale and mechanism 
of impacts for each hazard have driven analytical constraints on the number of hazards, 
the geographic or temporal scope, the types of exposures, or the level of quantification 
included in many multi-hazard risk assessment efforts (Lundberg and Willis 2015; Eshrati 
et al. 2015; Grunthal et al. 2006). Extensive geographical and statistical processing tech-
niques are required to reconcile incompatibilities between the spatial and temporal col-
lection of input datasets. While the product of frequency, exposure, and vulnerability is 
widely accepted as a foundational definition of risk (Ward et  al. 2020), the single risk 
metrics generated by this probabilistic approach are also acknowledged to oversimplify 
the risk information present in a full probability versus loss curve for a given hazard or 
multiple interacting hazards (Kaplan and Garrick 1981, United Nations Office for Disas-
ter Risk Reduction [UNISDR] 2019). Multi-hazard, large-scale risk assessment challenges 
are deepened by the separation between scientific communities for individual hazards, a 
challenge the National Risk Index addressed through collaborative, interdisciplinary work-
ing groups composed of over 80 subject matter experts from a variety of hazard and risk-
related fields.

FEMA’s National Risk Index builds on previous efforts and frameworks, including the 
FEMA Multi-Hazard Identification and Risk Assessment (FEMA 1997), World Bank Nat-
ural Disaster Hotspots (Dilley et al. 2005), the United Nations Disaster Risk Index (Peduzzi 
et  al. 2009), the World Atlas of Natural Disaster Risk (Shi et  al. 2015), and the United 
Nations Disaster Risk Reduction Framework (UNISDR 2019). The National Risk Index 
expands the number of hazards considered, applies geoprocessing techniques that allow 
comparisons across census jurisdictions and hazard types, and combines traditional risk 
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factors with social vulnerability and community resilience for an enhanced profile of risk. 
Social vulnerability and community resilience are foundational drivers of disaster impacts 
and should be fundamental considerations in any comprehensive risk assessment (Cutter 
et al. 2003, 2010; Lavell et al. 2012). However, few efforts have combined social vulner-
ability and community resilience indicators with quantifiable expected annual loss (EAL).

The National Risk Index is designed to serve as a nationwide, comparable measure of 
community risk for all counties and Census tracts in US states and the District of Colum-
bia, calculated within and across 18 significant natural hazard types. The results are based 
on widely accepted risk quantification methods and authoritative datasets available at a 
national scale. The National Risk Index defines risk as the product of EAL and social vul-
nerability divided by community resilience, where EAL is the product of natural hazard 
annualized frequency, exposure, and historic loss ratio (HLR). The results include EAL 
estimates in US dollars and relative measures of normalized risk for every county and 
Census tract. Fundamentally, these definitions are consistent with other risk models and 
international natural hazard risk modeling guidelines that estimate EAL as a function of 
frequency and severity (UNISDR 2017). In this index, the severity factor is further refined 
into the exposure and HLR factors.

The results and input data are summarized in an interactive web application with an 
iteratively designed user experience (UX), consisting of map displays and reports that help 
users identify, visualize, and prioritize communities at risk for natural hazards. County 
and Census tract composite scores—as well as scores for individual hazard types, social 
vulnerability, and community resilience—can be downloaded through the web application 
(https://​fema.​gov/​nri) for use in local analysis.

2 � Methodology

Traditionally, risk is quantified in terms of expected losses using metrics such as aver-
age annual losses and probable maximum losses. Risk metrics are calculated considering 
hazard frequencies, damage probabilities, and consequence exposure (Di Mauro 2014). 
The National Risk Index approach expands on the traditional expression of risk solely 
as expected annual losses by accounting for the likelihood of adverse impacts based on a 
community’s comparative social vulnerability and community resilience. Figure 1 shows 
the generalized risk equation. The components of this equation are explored in detail in 
subsequent sections.

See the National Risk Index: Technical Documentation for more information on the 
detailed methodology used by the Index (FEMA 2021b).

2.1 � Selection of natural hazards

The 18 hazard types included in the National Risk Index (see Fig. 1) were chosen based on 
a comprehensive review of hazard risk profiles from available 2016 State Hazard Mitiga-
tion Plans. For a hazard type to be included in the index, it had to be profiled by at least 
half of the State Hazard Mitigation Plans or be considered a significant regional hazard, 

Fig. 1   Generalized national risk 
index risk equation

Expected Annual Loss  x  Social Vulnerability

Community Resilience
Risk = 

https://fema.gov/nri


2334	 Natural Hazards (2022) 114:2331–2355

1 3

which is defined as a hazard geographically limited in occurrence but contributing signifi-
cantly to a region’s risk profile, such as hurricane or volcanic activity. Working groups of 
hazard identification and risk assessment experts helped identify the best available, nation-
wide datasets for each hazard type. No man-made hazards, such as dam or levee failure, 
were included, and the subsidence hazard was excluded due to lack of available data.

2.2 � Expected annual loss

The objective was to generate accurate, comparable EAL values for all communities 
(county and Census tract) for each of the 18 hazard types they are susceptible to and a 
composite EAL, which is the cumulative EAL for all hazard types. There were major chal-
lenges to achieving this objective, including, but not limited to:

•	 The nature of hazard types differs significantly, impacting communities with varying 
frequencies, severities, durations, and geographic extents.

•	 Hazard types contribute orders of magnitude different levels of losses. For example, 
average annual losses in the US from 1996 to 2019 in the Spatial Hazard Events and 
Losses Database of the United States (SHELDUS) from Hurricanes were $12.4 billion 
versus $4 million for Tsunamis (Arizona State University Center for Emergency Man-
agement and Homeland Security [ASU CEMHS] 2020).

•	 Hazard occurrence can result in a wide range of consequence types (e.g., injuries, fatal-
ities, property damage, crop and livestock damage, and lifeline disruption).

•	 Available source datasets characterizing historic or expected hazard occurrences vary 
across hazard types in format, quality, period of record, geographic scope, and resolu-
tion.

To address these challenges, the team developed an overarching analytical framework; 
however, methods specific to hazard types were developed to address and model the vari-
ance in hazard nature, magnitude of losses, consequence types, and source data. This 
approach was unique and iteratively constructed for the specific needs of a national, multi-
hazard risk assessment for communities. Characterization of the hazard type in terms of 
how it would be represented within the model was dependent on how the hazard type’s 
occurrences were documented in the source data and how historic losses were reported. To 
ensure consistent EAL results across hazard types, the team ensured alignment among the 
annualized frequency, exposure, and HLR factors.

Losses were estimated in three consequence types: building, population, and agriculture 
(crop and livestock). Each hazard type was modeled to have losses in one or more of these 
consequence types. Impacts to buildings and population were estimated for all hazard types 
except drought, which only estimated agriculture losses. Additionally, agriculture losses 
were estimated for those hazard types where agriculture losses contributed greater than 1% 
of the total historic reported losses (see Fig. 2).

EAL was computed for each hazard type by evaluating the applicable losses in each 
relevant consequence type. All losses were quantified as an annual dollar amount. While 
building and agriculture losses were monetary in the source data, impacts on popula-
tion were monetized into a population equivalence factor by taking fatality estimates 
from the source data and applying a $7.6 million Value of Statistical Life (VSL) (Zhou 
et al. 2020; FEMA 2009) and adjusting for inflation to 2020 dollars using the Consumer 
Price Index Inflation calculator (US Bureau of Labor Statistics [BLS] 2021).EAL was 
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calculated using hazard type-specific annualized frequency and consequence type-spe-
cific exposure and HLR factors using the method shown in Fig. 3. Monetization of the 
population consequences enabled the calculation of a total EAL, which considers all 
relevant consequence types for the hazard type. (Note: Each EAL factor is explored in 
detail in subsequent sections.)

For each community, all relevant hazard type EALs were added up to estimate compos-
ite EALs for total consequences and each of the three consequence types. Composite EALs 
represent the expected monetized losses from all hazard types. Hazard types with large 
EAL values contribute more significantly to the composite EAL than those with lower 
EAL values. A few hazard types often contribute most of the loss to the composite value 
of a community. For example, $1.35 billion of the $1.43 billion composite EAL for Los 
Angeles County, CA, came from Earthquake, while $73 million came from Wildfire.

Fig. 2   Consequence types evalu-
ated for each hazard type

Coastal
Flooding

Ice Storm

Cold Wave

Tornado

Landslide

Riverine 
Flooding

Strong Wind

Lightning

Wildfire

Avalanche

Tsunami

Heat Wave

Hail

Hurricane

Volcano

Earthquake
Winter 

Weather

Drought

Agriculture

Building

Hazard Type 1 | Census Block 1

Annualized Frequency x ExposurePop x $7.6M x HLRPop EALPop= $

ExposureBld x HLRBld EALBld= $

ExposureAg x HLRAg EALAg= $

EALTotal

=
$

+

+

Fig. 3   Hazard type-specific calculations for consequence type and total EALs
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2.2.1 � Annualized frequency

Natural hazard annualized frequency is defined as the expected frequency or probability 
of a hazard occurrence per year. Annualized frequency is derived either from the num-
ber of recorded hazard occurrences each year over a given period or the modeled prob-
ability of a hazard occurrence each year for a given community (Fig. 4).

There were several challenges in maintaining a consistent framework when estimat-
ing frequency across hazard types, including:

•	 Available source datasets vary significantly across hazard types in format (e.g., 
points, polygons, raster), quality, period of record, and geographic scope (e.g., conti-
nental US only).

•	 Hazard occurrences not only cause losses over different durations (e.g., Earthquake 
losses take seconds, Hurricane losses take days, and Drought losses may accumulate 
over months), but also vary in their geographic extent (e.g., Lightning strikes impact 
point locations, tornadoes impact paths, and hurricanes can impact multiple states).

•	 Some hazard types occur frequently (e.g., Lightning), while others are rare (e.g., 
Tsunami).

•	 Some hazard types can occur in places where they have not yet been recorded.

Annualized frequency estimates for the collection of hazard types were derived from 
multiple authoritative data sources. The team developed a set of techniques to address 
the challenges for all hazard types that were combined into a tailored approach based 
on the unique characteristics of each hazard type and its source data. The team had to 
determine the geographic extent at which event counts should be aggregated to develop 
representative frequency estimates for a community for each hazard type. For select 

ANNUALIZED FREQUENCY

Lightning:
2200 events/22 yrs = 100/yr

Tornado: 2 events/34 yrs = 0.06/yr

Heat Wave:
36 days/12yrs = 3/yr

Earthquake:

0.005/yr 0.004/yr

Fig. 4   Annualized frequency overview
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hazard types, frequency was modeled at the subtype level, for example by the tornado 
Enhanced Fujita (EF) scale.

To account for different hazard occurrence durations, frequency units were designated 
for each hazard. For hazard types with shorter durations (generally less than one day), his-
torical event counts were used as the units for annualized frequency (i.e., events per year). 
For longer duration hazard types (generally more than one day), historical event days were 
used as the units for annualized frequency (i.e., event-days per year). This distinction in 
characterizing the frequency basis was important to ensure alignment with the calculation 
of the HLR, which is discussed later.

For Wildfire, Earthquake, and select Coastal Flooding subtypes, the best available 
source data were geocoded probabilistic statistics and return period data that were used to 
compute an annualized frequency. Table 3 in the Appendix identifies the source datasets 
and approach that was used for each hazard type.

To address challenges with geographic extent, rarity of occurrence, and potential to 
occur in places where hazards have not yet been recorded, the team developed three major 
solutions, a combination of which is used for each hazard type:

•	 Hazard Occurrence Buffering Hazard types with widespread and/or unpredictable loca-
tions were buffered using expert-determined distances to smooth the representative 
areas of hazard occurrence. Hazard types using this approach include Hail, Hurricane, 
Strong Wind, Tornado, and Tsunami.

•	 Geographic Grid Aggregation The team applied a 49-by-49 km fishnet grid1 covering 
the US and counted the number of hazard occurrences (events or event-days) within 
each cell. Communities within the cell either inherited the count or an area apportion-
ment of the cell count. When communities intersected multiple cells, an area-weighted 
count was applied. Hazard types using this approach include Hail, Hurricane, Ice 
Storm, Strong Wind, and Tornado. For select hazards, counts were scaled to prevent 
overestimation at the community level.

•	 Minimum Annual Frequency A minimum annual frequency was assigned to commu-
nities that have not experienced a hazard occurrence recorded by the source data but 
were determined to be at some risk. Appropriate minimum values were identified by 
hazard-type subject matter experts. The estimated values are low given that historic 
occurrences had not been recorded over the period of record. Hazard types using this 
approach include Avalanche, Hurricane, Ice Storm, Landslide, Riverine Flooding, Tor-
nado, and Tsunami.

Table 3 in the Appendix summarizes the data sources and the hazard occurrence basis 
used to estimate annualized frequency for each of the hazard types.

2.2.2 � Exposure

Exposure is defined as the representative value of buildings, population (or population 
equivalence), or agriculture (crop and livestock) in a community exposed to a natural haz-
ard occurrence (see Fig.  5). Each hazard type is associated with a footprint or exposure 
area in which the hazard can occur and cause loss. Exposure differs across hazard types; 

1  The 49-by-49 km fishnet cell size was chosen to approximate the average area of a county.
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so, the team developed three ways to define exposure: (1) widespread, (2) susceptible area, 
or (3) representative area or values (see Fig. 5 for examples of each). Table 3 in Appendix 
identifies which approach was used for each hazard type.

A widespread exposure area was used for those hazard types that either impact large, 
multi-county areas (e.g., Drought) or could happen anywhere in the county with similar 
likelihood (e.g., Strong Wind). Susceptible area exposures were used for those hazard types 
where there is a distinct footprint where the hazard type can occur, such as flood zones 
along a river or areas in proximity to a volcano.

For Tornado, representative areas were estimated using average historic occurrence 
footprints for three sub-types based on the EF scale: (1) EF-scale 0 and 1; (2) EF-scale 2 
and 3; and (3) EF-scale 4 and 5. These representative areas were 0.78  km2, 13  km2, and 
79 km2, respectively. For Avalanche, a default value was applied for building and popula-
tion exposure based on an analysis of historical event occurrences.

As source data varies in its native spatial representation of each hazard type, the team 
translated each relevant record in the source data into a spatial polygon dataset for each 
hazard type. Spatial processes were then used to intersect those exposure areas with Cen-
sus block or Census tract boundaries to determine exposed areas for each hazard type.

Exposure values in the National Risk Index leverage FEMA’s Hazus data (version 4.2 
Service Pack 1) (FEMA 2018a) for building value and population estimates at each admin-
istrative reference layer (Census block, Census tract, and county). To generate exposure 
value estimates, the team multiplied exposure areas, either widespread or susceptible, by 
building and population densities. Depending on hazard type, the calculation used either 
average density or developed area density. Average building and population densities were 
calculated by dividing the building and population values by the total area, while devel-
oped area building and population densities were calculated by dividing the building and 
population values by the total developed area within the administrative reference layer. 
For agriculture, the US Department of Agriculture (USDA) 2017 Census of Agriculture 

EXPOSURE

Exposure
Example Hazard Type

Widespread
Heat Wave $250B 1.3M $720M

Riverine Flooding $90B 300K $120M

EF2&3 Tornado $10B 80K $150M

Fig. 5   Exposure overview
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provided an estimated dollar value of crop and livestock within each state (USDA 2019). 
This value was area-apportioned to each administrative reference layer. Agriculture value 
density was calculated by dividing the agriculture value by the total agriculture area of the 
administrative reference layer.

Table 3 in Appendix summarizes the relevant consequence types and the exposure area 
basis used to estimate exposure for each of the hazard types.

2.2.3 � Historic loss ratio

HLR is a hazard- and county-specific estimate of the percentage of the exposed conse-
quence type expected to be lost in a single hazard occurrence (see Fig. 6). This factor is 
developed using SHELDUS, which provides county-level data2 for each hazard occur-
rence, including begin and end dates, duration, county, associated hazard and peril, prop-
erty damage, crop losses, injuries, and fatalities (ASU CEMHS 2020).

As SHELDUS only records events that resulted in losses, hazard occurrences with no 
losses are not included in SHELDUS. Thus, because the HLR averages needed to consider 
all events—including those that did and did not result in losses—a number of zero-loss 
hazard occurrences equal to the difference between the estimated total number of occur-
rences and the number of occurrences that resulted in loss were added to the dataset as part 
of the HLR calculation process.

A county’s HLR could be the simple average of loss ratios (losses divided by exposure) 
from past hazard occurrences. However, because there are often wide variances in loss 
ratios or not enough hazard occurrences for a statistically significant average, the Bayesian 
credibility approach (Schnieper 1995) that considers multiple geographic levels was devel-
oped. Specifically, averages and variances of the individual hazard occurrence loss ratios 

Event Loss / Exposure
9/91 $50M/$250B = 0.02%
6/07 $300M/$250B = 0.1%
8/14 $15B/$250B = 6%

BAYESIAN LEVELS

Adjusted Simple

Historic Loss Events

1.3%

County
Area

Region
U.S.

HISTORIC LOSS RATIO

2.04%

Fig. 6   HLR overview

2  Note: This level of detail is more than what is publicly available on the SHELDUS website.



2340	 Natural Hazards (2022) 114:2331–2355

1 3

are calculated for each consequence type for up to four levels depending on the hazard 
type: (1) county, (2) surrounding area (196-by-196 km grid), (3) region, and (4) US.

The model used the average and variance values from the four levels to determine each 
level’s weighting factor and to calculate a final, county-level Bayesian-adjusted HLR for 
each hazard type and consequence type using the equation in Fig. 7.

Here:

HLRBuilding is the county-level Bayesian-adjusted HLR for the building consequence 
type for a specific hazard type. Note: a similar formula was used to calculate population 
and agriculture HLRs.
Average Loss RatioX is the average loss ratio for hazard occurrences at X level (national, 
regional, surrounding area, county) for the consequence type (e.g., building).
WeightX is the weighting factor for hazard occurrences at X level (national, regional, 
surrounding area, county) for the consequence type based on the variance of X level 
compared to variances at all other levels.

Figure  8 provides a representation of how loss ratios and variance impact the HLR 
calculation for four notional neighboring counties. In this example, the HLR for County 
D would be closer to County D’s average, which has many occurrences of a hazard that 
resulted in similar loss ratios, than Counties A, B, or C, which have had few or no occur-
rences and greater variance in their loss ratios. The HLRs for Counties A, B, and C will 
receive more contribution from the higher geographic levels (e.g., surrounding area, 
regional, or national) due to the lack of occurrences and/or high variance in loss ratios. Not 
all geographic levels were used for each hazard type. Table 3 in Appendix identifies which 
Bayesian levels were applied to each hazard type.

2.2.4 � Calculation of EAL

EAL values, quantified as an annual expected dollar loss, were computed at the Census 
block level for each hazard type and relevant consequence type and summed to a total 
EAL. The Census block-level EAL values were then aggregated to the parent Census 

Fig. 7   Bayesian-adjusted HLR calculation
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tract and county separately (see Fig.  9). This process was used for all hazard types 
except for Avalanche and Drought, which used county and Census tract, respectively, 
as the base EAL calculation level. For Earthquake, county and Census tract EAL values 
were extracted from FEMA’s P-366 study data (FEMA 2017).

Additionally, a composite EAL value (for total EAL and each consequence type) 
was calculated by summing the EALs for the 18 hazard types for each census tract and 
county as shown in Fig. 10.

COUNTY A
High Variance, Low WeightCounty

COUNTY B
No Variance, 0 WeightCounty

COUNTY D
Low Variance, High WeightCounty

COUNTY C
No Variance, 0 WeightCounty

Fig. 8   Representation of how loss ratios and variance impact county weighting factors

Fig. 9   Aggregation of hazard-specific census block EAL values to parent census tracts and county

Census Tract 1

+EALHazard 1 EALHazard 2 + EALHazard 3 + … EALHazard 18 = EALComposite $

Fig. 10   Aggregation of hazard-specific EAL values to composite EAL value
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2.2.5 � Comparing EAL to historical losses

To gauge the accuracy of EAL values, historic losses from SHELDUS for the period 
from 1996 to 2019 were annualized for a national loss estimate for each of the hazard 
types. When compared to the aggregated total EAL estimate, all hazard types, except 
Hurricane, Earthquake and Volcanic Activity, were within a factor of two (see Table 1). 
These exceptions existed because losses for those hazard types are driven by relatively 
few hazard occurrences. For example, from 1996 to 2019, 75% of all Hurricane con-
sequences were caused by only seven storms. These hazard occurrences are statistical 
outliers where high-value urban areas were impacted by severe hazard occurrences.

Similarly, from 1996 to 2019, the US had only one earthquake that exceeded one bil-
lion dollars in property loss: the 2001 Nisqually earthquake that impacted King, Pierce, 
and Thurston counties in Washington (ASU CEMHS 2020). Through use of national 
probabilistic data, the potential for major earthquakes in other parts of the country, 
such as Los Angeles and San Francisco, was recognized, and the probability that outlier 
events might occur was included. For this reason, Earthquake EAL estimates are much 
higher than historic losses for the period. Pursuing the development or integration of 
probabilistic data for additional hazard types, such as Hurricane and Riverine Flooding, 
could significantly improve the risk profiles.

Despite these outliers, the relatively high level of agreement between the calcu-
lated EAL values and the historical loss records shows that the EAL estimates are well 
aligned with actual recorded historic losses.

Table 1   Comparison of national 
average annual historic losses 
to EAL

Bolded ratios are beyond a factor of two

Hazard type Average annual 
historic losses

EAL Ratio of EAL to 
average historic 
losses

Avalanche $124 M $56 M 0.5
Coastal flooding $1.1 B $1.2 B 1.1
Cold wave $610 M $428 M 0.7
Drought $1.7 B $3.3 B 2.0
Earthquake $0.2 B $7.2 B 35.0
Hail $1.7 B $1.3 B 0.8
Heat wave $1.6 B $0.9 B 0.6
Hurricane $12.5 B $3.7 B 0.3
Ice storm $399 M $442 M 1.1
Landslide $212 M $267 M 1.3
Lightning $504 M $500 M 1.0
Riverine flooding $7.1 B $4.7 B 0.7
Strong wind $2.0 B $1.3 B 0.6
Tornado $3.3 B $5.1 B 1.5
Tsunami $4 M $5 M 1.3
Volcano $2 M $117 M 51.8
Wildfire $1.8 B $1.6 B 0.9
Winter weather $517 M $297 M 0.6
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2.3 � Social vulnerability and community resilience

Communities are impacted differently by natural hazards. To address the inequities of 
disaster impacts, the National Risk Index includes social vulnerability as a community-
specific coefficient that increases risk and community resilience as a community-specific 
coefficient that decreases risk. The use of these parameters to increase or decrease the com-
munity Risk Index scores is consistent with emerging approaches for modeling natural dis-
aster risks (Lavell et al. 2012). The National Risk Index accounts for social vulnerability 
and community resilience with the University of South Carolina’s Social Vulnerability 
Index (SoVI) and Hazards and Vulnerability Research Institute’s Baseline Resilience Indi-
cators for Communities (HVRI BRIC) index, respectively.

SoVI is a location-specific assessment that utilizes 29 socioeconomic variables contrib-
uting to a community’s reduced ability to prepare for, respond to, and recover from haz-
ards (University of South Carolina 2021a). To construct the index, SoVI converts variable 
values from this initial set into z-scores and applies a principal components analysis that 
reduces their dimensionality to a smaller set of statistically optimized components. Then 
SoVI implements an additive model over these components to adjust their cardinality and 
arrive at the final result (Cutter et al. 2003). SoVI values range from − 19.944 to 42.589 for 
Census tracts and from − 9.73 to 15.64 for counties.

The HVRI BRIC dataset includes a set of 49 indicators that represent six types of resil-
ience: social, economic, community capital, institutional capacity, housing/infrastructure, 
and environmental (University of South Carolina 2021b). To construct the index, HVIR 
BRIC uses linear min/max scaling to standardize the units of each variable along an inter-
val from 0 (less resilient) to 1 (more resilient). Then HVIR BRIC calculates the mean of 
these scaled values within each resilience-type and their sum determines the result (Cut-
ter et  al. 2014). HVRI BRIC values range from 2.059 to 3.233. HVRI BRIC values are 
only available at the county level, so each Census tract was assigned the value of its parent 
county.

These two indices include some related data inputs but are conceptually distinct. While 
SoVI examines population characteristics to understand vulnerability of individuals to dis-
aster, HVRI BRIC incorporates measures of social, economic, and institutional resilience 
and community capital (Cutter et  al. 2010). At the county level, SoVI and HVRI BRIC 
index values have low statistical correlation (Pearson’s correlation coefficient of − 0.26), 
statistically confirming their conceptual distinction.

2.4 � Risk calculation

Individual hazard-type Risk Index scores and a composite Risk Index score were cal-
culated for each Census tract and county using the process shown in Fig.  11. These 
scores measured the relative risk of a community to that of all other communities at 
the same level (Census tract or county). EAL, SoVI, and HVRI BRIC values used dif-
ferent scales and units. To combine them, their unit values were independently normal-
ized to a range of 0 (lowest possible value) to 100 (highest possible value). To achieve 
this range, the values of each component were rescaled using a min–max transforma-
tion, which preserves their distribution while making them easier to understand. EAL 
values can span several orders of magnitude between rural and urban communities. To 
address this, a cube root transformation was applied before min–max normalization. 
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The cube root transformation controls for this characteristic and provides scores with 
greater differentiation and usefulness (Hoyle 1973).

Here:

EAL ScoreHazard is a score derived from the estimate of expected losses (building 
value, population equivalence, and agriculture value) each year from the hazard 
type.
Social Vulnerability Score is derived from an index value of demographic charac-
teristics that measure a community’s susceptibility to the adverse impacts of natural 
hazards.
Community Resilience Score is derived from an index value of demographic charac-
teristics that measure a community’s ability to prepare for, adapt to, withstand, and 
recover from natural hazards.

A composite, multi-hazard Risk Index score is calculated using the same process 
with the EALComposite value. This represented the risk of a community for all hazard 
types relative to all other communities at the same level (Census tract or county).

Additionally, a five-category qualitative rating was provided that describes the 
nature of a community’s score in comparison with all other communities at the same 
level, ranging from “Very Low” to “Very High.” To determine the content of each rat-
ing category, an unsupervised machine learning technique known as k-means cluster-
ing or natural breaks was applied to each score: Risk Index, EAL, Social Vulnerabil-
ity, and Community Resilience. For each score, this approach divided all communities 
into five groups such that the communities within each group were as similar as pos-
sible (minimized variance) while the groups were as different as possible (maximized 
variance).

Since the value ranges associated with each rating category are assessed indepen-
dently for each component and score, there were no fixed numeric values for each cat-
egory. For example, a county’s risk score for Tsunami could be 6.2 with a rating of 
“Very Low,” while its risk score for Riverine Flooding could be 3.3 with a rating of 
“Relatively Low.” The rating is intended to classify a community for a specific compo-
nent, relative to all other communities at the same level.

Figure 12 shows the standard color schemes for each rating category, illustrates how 
component ratings impact risk ratings, and provides several illustrative examples of 
EAL, Social Vulnerability, Community Resilience, and Risk Index scores and rating 
categories for ten representative counties.

Not hazard specific

Hazard Type 1 | County 1
Social

Vulnerability
Community
Resilience/ =xEAL ScoreHazard 1 Risk Score Hazard 1

100

0
EALTotal Hazard 1 $

Hazard Type 1|County 1

Not hazard specific

SoVI Value BRIC Value0 to
100

100

0

0 to
100

100

0

Cube root

Min-max Min-max

Min-max

Fig. 11   Calculation of a hazard-type risk score for a county
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3 � Results and discussion

The National Risk Index methodology produced baseline natural hazard risk assessment 
information; however, without a user-friendly application to view the data, it was dif-
ficult to ensure that the risk scores, ratings, and underlying data and calculations could 
be understood and used by the target audience. To fulfill this need, a web application 
was designed using a multidisciplinary and collaborative approach that adopted prin-
ciples and methods from user-centered design (UCD), user experience (UX), usability, 
and design thinking (Rosenzweig 2015; Narang et al. 2017; Rubin and Chisnell 2008; 
Argyle et al. 2017; Lathrop et al. 2014; Lanter and Essinger 2017; Morgan 2016; Steuri 
et  al. 2020). This approach facilitated an iterative design of the risk communication 
methods based on the latest data.

Representative target users and experts were involved throughout the web application 
development process to get real time feedback and insights to verify that the presentation 
of results in the application was understandable, useful, and simple to use, and that the 

Fig. 12   National risk index qualitative rating legend and illustration of risk component scores
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application provided a positive user experience. An early investigation into the adoptability 
of the National Risk Index as a decision support tool found that perceived simplicity and 
usefulness would increase the likelihood of a local practitioner adopting it for risk manage-
ment activities. Feedback also indicated that users’ ability to understand the information 
would influence their likelihood to use it in future decision making.

Through the many meetings with potential users and experts, the team identified the results 
that would be useful for informing a variety of decisions, and designed the web application to pre-
sent risk information and data in a way that would inform these decisions, including:

•	 Enhancing hazard mitigation plans.
•	 Encouraging community level risk communication and engagement.
•	 Supporting the development or enhancement of codes and standards.
•	 Informing long-term community recovery.
•	 Educating new homeowners and renters.
•	 Prioritizing and allocating resources.
•	 Identifying the need for more refined risk assessments.
•	 Informing the insurance and mortgage industries.
•	 Updating emergency operations plans.

It was a challenge to create a web application for the National Risk Index that was use-
ful for practitioners and decision makers, easy for the public to understand, and able to 
withstand the scrutiny of academic and scientific communities. To achieve these objec-
tives, the following features were included:

•	 An interactive web map using a Mercator projection3 to visually explore the results.
•	 A feature to create printable reports with risk information for a single community or 

multiple communities to enable comparisons.
•	 Downloadable nationwide and state-level datasets at the county and Census tract level 

in tabular (csv) and spatial (shapefile and geodatabase) formats.
•	 Summary and technical documentation explaining the methodology, source data, and 

data processing methods, as well as information and guidance on use.

Feedback and other insights from potential users of the application and experts 
informed the presentation of scores, ratings, and underlying data in the web map and 
reports. Aspects of the application’s presentation of risk information influenced by users 
and experts include:

•	 Qualitative rating labels.
•	 Presenting normalized risk scores out of their maximum (out of 100) and alongside 

minimum and maximum scores in the dataset.
•	 Presenting national and state average scores and a community’s relative position when 

compared to the rest of the US and relevant state.
•	 Progressively disclosing a community’s risk information by initially presenting an over-

view followed by the underlying data that supports the overview.

3  The National Risk Index application presents results using a Mercator projection because it is a common, 
native format for web-based geographic information systems (GIS). An Albers projection is used for all 
geoprocessing in the calculation of risk.
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Depending on the specific need, users can view the scores and ratings through a variety 
of lenses: (1) hazard type risk or EAL rankings within a community, (2) community risk 
or EAL rankings within a hazard type, and (3) community risk or EAL rankings across all 
hazard types. Example results are included Table 2. Figure 13 contains the national maps 
for the composite EAL and Risk Index ratings for both counties and Census tracts from the 
National Risk Index November 2021 release (version 1.18.1).

Table 2 compares the composite and hazard type-specific Risk Index scores and ratings 
for six counties with differing profiles. Communities will not have risk scores for select 
hazards based on the reasons below:

•	 Insufficient Data (ID) Hazard, social vulnerability, or community resilience source data 
are not available.

•	 Not Applicable (NA) Community is not considered at risk for hazard type.
•	 No Rating (NR) EAL, and therefore risk, is zero.

Risk Index scores represent risk to the entire community relative to all other communities at 
the same level; thus, communities with higher exposure (i.e., more to lose) will often rank higher. 
For example, Los Angeles and Harris County are the two highest risk counties, but they are also 
ranked 1 and 3 respectively in both total population and building value, which means they have a 
very high exposure compared to smaller and less populated counties. The risk scores are not per 

Table 2   Composite and hazard-type risk index scores for several sample counties

Hazard
Los Angeles 

County, CA

Harris 

County, 

TX

Oklahoma 

County, OK

Essex 

County, 

NJ

Rolette 

County, 

ND

Juneau City and

Borough, AK

Composite 100 80.6 32.5 21.9 13.3 3.9

Avalanche 7.8 NA NA NA NA 11.5

Coastal flooding 2.9 20.7 NA 25.4 NA 2.9

Cold wave NR NR NR NR 70.8 NR

Drought 0.5 13.8 10.3 2.1 6.0 NR

Earthquake 100 8.1 12.6 12.4 0.5 4.2

Hail 11.1 34.1 70.7 11.8 14.8 NR

Heat wave 18.0 23.5 40.7 19.0 10.7 NR

Hurricane NA 100 4.2 12.0 NA NA

Ice storm 19.4 12.1 71.0 24.7 24.3 2.8

Landslide 7.6 5.9 5.0 15.3 18.4 ID

Lightning 33.4 60.9 30.5 34.3 13.2 ID

Riverine flooding 20.4 100 25.3 17.2 5.8 3.3

Strong wind 20.5 23.3 22.6 42.1 17.9 NR

Tornado 37.1 100 53.8 36.8 15.4 0.2

Tsunami 25.4 NA NA NA NA 6.2

Volcano NA NA NA NA NA NA

Wildfire 89.6 11.8 15.0 2.5 19.2 ID

Winter weather 14.5 65.3 43.9 44.8 62.9 10.5
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capita measures. However, the web application provides data for download so that users can calcu-
late a per capita or exposure-adjusted measure based on their needs.

The Risk Index results are not predictive; rather they provide comparisons between com-
munities and hazard types largely based on historical event data. To evaluate the accuracy of 
results, the team conducted review sessions with more than 40 experts from federal partner 
agencies and academia with expertise spanning multiple facets of risk methodology and com-
munication, specific hazard types, and source data. Experts reviewed multiple iterations of 
individual hazard type and composite Risk Index results as well as the EAL, Social Vulner-
ability, and Community Resilience scores. Expert feedback from these sessions was iteratively 
incorporated into the final version.

Partners and contributors supported development of the Index by providing source data, 
insights into datasets, and data limitations, including any methodology decisions made in 
their preparation. Subject matter experts identified and helped troubleshoot potential reporting 
biases, such as more frequent hazard occurrence reporting in urban vs. rural areas, inconsist-
encies in scores, and risk information for certain communities that did not align with other 
studies. Reviewers identified anomalies in data and provided explanations for them based on 
source data knowledge and experience with historic data values.

4 � Conclusion

The development of the National Risk Index is a significant and meaningful first step 
toward establishing a baseline or minimal standard national level, multi-hazard, and 
multi-component measurement of natural hazard risk. Through application of best-avail-
able, national-level datasets with reliable periods of record for common hazard types 
found in State Hazard Mitigation Plans, the National Risk Index establishes hazard type-
specific approaches using common and novel analytical techniques. The techniques are 
generally applied at the Census block level to integrate data for 18 hazard types, manage 
geographic and temporal constraints, and account for multiple consequence types. The 
National Risk Index uses an accepted method to calculate EAL dollars and normalized 
EAL scores at multiple levels of geography for each individual hazard type. Combining 

Fig. 13   Composite EAL and risk index ratings for census tracts and counties
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EAL scores with Social Vulnerability and Community Resilience components empha-
sizes the importance of both natural hazard and community risk factors in any complete 
risk assessment. The resulting normalized Risk Index scores offer both a comparable 
measure of natural hazard risk at regional and national scales and a reliable resource at 
the community level.

The innovative approach would not have been possible without cross-disciplinary 
collaboration and the invaluable contributions from experts. Although the National 
Risk Index relies on nationally available input datasets to derive comparable risk scores, 
each data source was corroborated by hazard identification and risk assessment experts. 
Contributors brought insights from geoprocessing, actuarial science, data science, UX 
design, web application development, risk assessment, and mitigation planning. Peri-
odic expert evaluation validated the vision and value of the Index, while offering crucial 
insights to refine and continually improve its methodology, including anticipated source 
data updates and identified opportunities to improve or supplement datasets.

While an important first step, there are several limitations that could be addressed in 
subsequent enhancements, including expanding coverage to US territories, integration 
of new data sources to enhance hazard representation, use of probabilistic models as 
they become available, modeling potential impacts of climate change, and expanding to 
consider other equity-related factors.

Overall, the National Risk Index provides opportunities to broaden our understanding 
of risk distribution at the regional and national level, and can help communities prior-
itize risk assessment needs, including data collection to fill information gaps or for more 
detailed analyses. It is a single data repository for 18 hazard types, social vulnerabil-
ity, and community resilience, including the EAL dollar values used to calculate EAL 
scores, which are useful to local hazard mitigation planning efforts. The National Risk 
Index application serves as a risk communication resource and a decision-making sup-
port tool by enabling users to identify the highest risk hazard type for a community, the 
hazard type with the highest potential for negative impacts, or the communities with the 
highest potential for negative impacts. Leveraging its public availability, the team will 
solicit feedback from users to identify improvements and enhancements to the index and 
application (e.g., alternate risk metrics like per capita EAL). Additionally, the team will 
explore ways that the national results can be supplemented with local datasets to better 
inform local decisions. Lastly, the National Risk Index is also intended to inspire the 
risk assessment community to pursue new and innovative products to supplement the 
National Risk Index and further support risk reduction.

Appendix: Hazard methodology summary

Table 3 summarizes key facets of the modeling approaches for annualized frequency, expo-
sure, and HLR that were applied to each of the hazard types.



2350	 Natural Hazards (2022) 114:2331–2355

1 3

Ta
bl

e 
3  

E
A

L 
fa

ct
or

 m
et

ho
do

lo
gy

 su
m

m
ar

y 
fo

r e
ac

h 
ha

za
rd

 ty
pe

H
az

ar
d 

ty
pe

A
nn

ua
liz

ed
 fr

eq
ue

nc
y

Ex
po

su
re

H
LR

D
at

a 
so

ur
ce

H
az

ar
d 

oc
cu

rr
en

ce
 b

as
is

C
on

se
qu

en
ce

 ty
pe

s
Ex

po
su

re
 a

re
a

B
ay

es
ia

n 
le

ve
ls

B
ui

ld
in

g
Po

pu
la

tio
n

A
gr

ic
ul

tu
re

C
ou

nt
y

A
re

a
Re

gi
on

U
S

A
va

la
nc

he
A

SU
 C

EM
H

S 
(2

02
0)

Ev
en

t
✓

✓
Re

pr
es

en
ta

tiv
e 

ex
po

su
re

✓
✓

C
oa

st
al

 fl
oo

di
ng

FE
M

A
 (2

01
8b

), 
N

O
A

A
 

20
18

), 
N

H
C

 2
01

8a
), 

N
H

C
 

20
18

b)

Ev
en

t
✓

✓
Su

sc
ep

tib
le

 A
re

a:
 D

ev
el

-
op

ed
 a

re
a 

in
 c

oa
st

al
 fl

oo
d 

fo
ot

pr
in

ts

✓
✓

✓

C
ol

d 
w

av
e

N
W

S 
(2

01
8)

, I
SU

 (2
01

8)
Ev

en
t d

ay
✓

✓
✓

W
id

es
pr

ea
d:

 A
ve

ra
ge

 h
az

ar
d 

oc
cu

rr
en

ce
 si

ze
✓

✓
✓

✓

D
ro

ug
ht

N
D

M
C

 (2
01

8)
Ev

en
t d

ay
✓

W
id

es
pr

ea
d:

 A
ve

ra
ge

 h
az

ar
d 

oc
cu

rr
en

ce
 si

ze
✓

✓
✓

Ea
rth

qu
ak

e
FE

M
A

 (2
01

7)
Ev

en
t

Pr
ob

ab
ili

sti
c

✓
✓

Ex
pe

ct
ed

 a
nn

ua
l l

os
s a

nd
 

ex
po

su
re

 fr
om

 F
EM

A
 3

66
 

stu
dy

✓
✓

✓

H
ai

l
N

W
S 

(2
01

7a
)

Ev
en

t
✓

✓
✓

W
id

es
pr

ea
d:

 C
ou

nt
y/

C
en

su
s 

tra
ct

 a
re

a
✓

✓
✓

✓

H
ea

t w
av

e
N

W
S 

(2
01

8)
, I

SU
 (2

01
8)

Ev
en

t d
ay

✓
✓

✓
W

id
es

pr
ea

d:
 A

ve
ra

ge
 h

az
ar

d 
oc

cu
rr

en
ce

 si
ze

✓
✓

✓
✓

H
ur

ric
an

e
N

H
C

 (2
01

8b
)

Ev
en

t
✓

✓
✓

W
id

es
pr

ea
d:

 A
ve

ra
ge

 h
az

ar
d 

oc
cu

rr
en

ce
 si

ze
✓

✓
✓

Ic
e 

sto
rm

U
SA

C
E 

(2
01

4)
Ev

en
t d

ay
✓

✓
W

id
es

pr
ea

d:
 A

ve
ra

ge
 h

az
ar

d 
oc

cu
rr

en
ce

 si
ze

✓
✓

✓
✓

La
nd

sl
id

e
N

A
SA

 (2
02

1)
Ev

en
t

✓
✓

Su
sc

ep
tib

le
 a

re
a:

 L
an

ds
lid

e 
su

sc
ep

tib
le

 a
re

a
✓

Li
gh

tn
in

g
N

C
EI

 (2
01

7)
Ev

en
t

✓
✓

W
id

es
pr

ea
d:

 C
ou

nt
y/

C
en

su
s 

tra
ct

 a
re

a
✓

✓
✓

R
iv

er
in

e 
Fl

oo
di

ng
N

C
EI

 (2
02

0)
Ev

en
t d

ay
✓

✓
✓

Su
sc

ep
tib

le
 a

re
a:

 1
%

 a
nn

ua
l 

ch
an

ce
 fl

oo
dp

la
in

✓
✓

St
ro

ng
 w

in
d

N
W

S 
(2

01
7b

)
Ev

en
t

✓
✓

✓
W

id
es

pr
ea

d:
 C

ou
nt

y/
C

en
su

s 
tra

ct
 a

re
a

✓
✓

✓
✓



2351Natural Hazards (2022) 114:2331–2355	

1 3

Ta
bl

e 
3  

(c
on

tin
ue

d)

H
az

ar
d 

ty
pe

A
nn

ua
liz

ed
 fr

eq
ue

nc
y

Ex
po

su
re

H
LR

D
at

a 
so

ur
ce

H
az

ar
d 

oc
cu

rr
en

ce
 b

as
is

C
on

se
qu

en
ce

 ty
pe

s
Ex

po
su

re
 a

re
a

B
ay

es
ia

n 
le

ve
ls

B
ui

ld
in

g
Po

pu
la

tio
n

A
gr

ic
ul

tu
re

C
ou

nt
y

A
re

a
Re

gi
on

U
S

To
rn

ad
o

N
W

S 
(2

02
0)

Ev
en

t
✓

✓
✓

Re
pr

es
en

ta
tiv

e 
Ex

po
su

re
: 

A
ve

ra
ge

 h
ist

or
ic

al
 d

am
ag

e 
si

ze
 b

y 
su

b-
ty

pe

✓
✓

✓
✓

Ts
un

am
i

(N
C

EI
 2

01
8)

Ev
en

t
✓

✓
Su

sc
ep

tib
le

 a
re

a:
 In

un
da

tio
n 

zo
ne

 a
re

a
✓

✓
✓

✓

Vo
lc

an
ic

 a
ct

iv
ity

G
V

P 
(2

01
3)

Ev
en

t
✓

✓
Su

sc
ep

tib
le

 a
re

a:
 1

00
-k

m
 

bu
ffe

r a
ro

un
d 

ac
tiv

e 
vo

l-
ca

no
 lo

ca
tio

ns

✓
✓

✓

W
ild

fir
e

Sh
or

t e
t a

l. 
(2

01
6)

Ev
en

t
Pr

ob
ab

ili
sti

c
✓

✓
✓

Su
sc

ep
tib

le
 a

re
a:

 A
re

as
 

w
he

re
 m

od
el

ed
 fl

am
e 

le
ng

th
 >

 8’

✓
✓

✓

W
in

te
r w

ea
th

er
N

W
S 

(2
01

8)
, I

SU
 (2

01
8)

Ev
en

t d
ay

✓
✓

✓
W

id
es

pr
ea

d:
 A

ve
ra

ge
 h

az
ar

d 
oc

cu
rr

en
ce

 si
ze

✓
✓

✓



2352	 Natural Hazards (2022) 114:2331–2355

1 3

Author contributions  Conceptualization was done by CZ, JR, and JB. Risk methodology was done by CZ, 
MM, EG, and JB. Source data processing and risk methodology implementation were done by EG and MM. 
Manuscript writing—Original draft preparation were done by MM and EG. Manuscript writing—Review 
and editing were done by CZ, JR, MM, EG, NR, and JB. Application design and risk communication were 
done by CZ, NR, and JB. Project management was done by CZ and NR.

Funding  Work relating to the National Risk Index and this submitted manuscript was funded by FEMA.

Data availability  Access the latest National Risk Index at: https://​fema.​gov/​nri. Explore the latest National 
Risk Index data using the National Risk Index map (https://​hazar​ds.​fema.​gov/​nri/​map). The latest National 
Risk Index data can be downloaded from https://​hazar​ds.​fema.​gov/​nri/​data-​resou​rces. Archived National 
Risk Index datasets can be made available upon request by emailing FEMA-NRI@fema.dhs.gov.

Code availability  Code was used for National Risk Index source data processing and application develop-
ment. All code is proprietary to FEMA and cannot be shared openly.

Declarations 

Conflict of interest  Casey Zuzak and Jesse Rozelle (FEMA) received support from Compass PTS JV, a joint 
venture that includes ABS Group and CDM Smith, Inc., and FACTOR, Inc. as a subcontractor. Authors from 
ABS Group (Matthew Mowrer), CDM Smith, Inc. (Nicholas Ranalli), and FACTOR, Inc. (Emily Good-
enough) have and continue to provide production and technical services to FEMA under federal contract 
awards. Authors from ABS Group, CDM Smith, Inc. and FACTOR, Inc. are consultants to FEMA and were 
paid for the services provided to FEMA for the National Risk Index and this submitted manuscript. Jordan 
Burns was affiliated with FEMA while supporting and contributing to the National Risk Index but is now a 
researcher at the National Renewable Energy Laboratory.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Argyle EM, Gourley JJ, Zachary LF, Hansen T, Manroos K (2017) Toward a user-centered design of a 
weather forecasting decision-support tool. Bull Am Meteor Soc 98:373–382. https://​doi.​org/​10.​1175/​
BAMS-D-​16-​0031.1

Arizona State University Center for Emergency Management and Homeland Security (ASU CEMHS) 
(2020) Spatial hazard events and losses database for the United States (SHELDUS), version 19.0. Ari-
zona State University center for emergency management and homeland security. https://​cemhs.​asu.​
edu/​sheld​us. Accessed 19 Nov 2021

Coleman TA, Dixon PG (2014) An objective analysis of tornado risk in the United States. Weather Forecast 
29(2):366–376. https://​doi.​org/​10.​1175/​WAF-D-​13-​00057.1

Cutter SL, Ash KD, Emrich CT (2014) The geographies of community disaster resilience. Global Environ 
Chang 29:65–77

Cutter SL, Boruff BJ, Shirley WL (2003) Social vulnerability to environmental hazards. Soc Sci Q 84:242–
261. https://​doi.​org/​10.​1111/​1540-​6237.​84020​02

Cutter SL, Emrich CT, Burton CG (2010) Disaster resilience indicators for benchmarking baseline condi-
tions. J Homel Secur Emerg Manag 7:1–22. https://​doi.​org/​10.​2202/​1547-​7355.​1732

Di Mauro M (2014) Quantifying risk before disasters occur: hazard information for probabilistic risk assess-
ment. World Meteorological Organization Bulletin 63(2). World Meteorological Organization. https://​

https://fema.gov/nri
https://hazards.fema.gov/nri/map
https://hazards.fema.gov/nri/data-resources
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1175/BAMS-D-16-0031.1
https://doi.org/10.1175/BAMS-D-16-0031.1
https://cemhs.asu.edu/sheldus
https://cemhs.asu.edu/sheldus
https://doi.org/10.1175/WAF-D-13-00057.1
https://doi.org/10.1111/1540-6237.8402002
https://doi.org/10.2202/1547-7355.1732
https://public.wmo.int/en/resources/bulletin/quantifying-risk-disasters-occur-hazard-information-probabilistic-risk-assessment


2353Natural Hazards (2022) 114:2331–2355	

1 3

public.​wmo.​int/​en/​resou​rces/​bulle​tin/​quant​ifying-​risk-​disas​ters-​occur-​hazard-​infor​mation-​proba​bilis​
tic-​risk-​asses​sment. Accessed 19 Nov 2021

Dilley M, Chen RS, Deichmann U, Lerner-Lam AL, Arnold M (2005) Natural disaster hotspots: a global 
risk analysis. Deutscher Universitätsverlag, Washington

Dillon GK (2020) Results and application of the national wildfire risk assessment. In: Hood SM, Drury 
S, Steelman T, Steffens R (eds) Proceedings of the fire continuum-preparing for the future of 
wildland fire. 2018 May 21–24. Missoula, MT. Proceedings RMRS-P-78. Fort Collins, CO. U.S. 
Department of Agriculture, Forest Service, Rocky Mountain Research Station. pp. 252–257

Eshrati L, Mahmoudzadeh A, Taghvaei M (2015) Multi hazards risk assessment, a new methodology. 
Int J Health Syst Disaster Manag 3: 79–88. https://​www.​ijhsdm.​org/​text.​asp?​2015/3/​2/​79/​151315. 
Accessed 19 Nov 2021

Ewert JW, Diefenbach AK, Ramsey DW (2018) 2018 update to the U.S. geological survey national vol-
canic threat assessment. U S Geol Surv Sci Investig Rep. https://​doi.​org/​10.​3133/​sir20​185140

Federal Emergency Management Agency (FEMA) (1997) Multi-hazard identification and risk assess-
ment: a cornerstone of the national mitigation strategy. Washington, D.C.

FEMA (2009) Benefit-cost analysis reference guide. Washington, D.C.
FEMA (2013) Local mitigation planning handbook. Washington, D.C.
FEMA (2017) Hazus estimated annualized earthquake losses for the United States. Washington, D.C.
FEMA (2018a) Hazus 4.2 SP1. Washington, D.C.
FEMA (2018b) National flood hazard layer. FEMA.gov. https://​www.​fema.​gov/​flood-​maps/​natio​nal-​

flood-​hazard-​layer. Accessed 19 Nov 2021
FEMA (2019) National mitigation investment strategy. Washington, D.C.
FEMA (2021a) Declared disasters. FEMA.gov. https://​www.​fema.​gov/​disas​ter/​decla​ratio​ns. Accessed 19 

Nov 2021a
FEMA (2021b) National risk index: technical documentation. FEMA.gov. https://​www.​fema.​gov/​sites/​

defau​lt/​files/​docum​ents/​fema_​natio​nal-​risk-​index_​techn​ical-​docum​entat​ion.​pdf. Accessed 19 Nov 
2021b

Grunthal G, Thieken AH, Schwarz J, Radtke KS, Smolka A, Merz B (2006) Comparative risk assess-
ments for the city of Cologne—storms, floods, earthquakes. Nat Hazards 38:21–44. https://​doi.​org/​
10.​1007/​s11069-​005-​8598-0

Hoyle MH (1973) Transformations: an introduction and a bibliography. Int Stat Rev 41:203–223. https://​
doi.​org/​10.​2307/​14028​36

Kaplan S, Garrick BJ (1981) On the quantitative definition of risk. Risk Anal 1:11–27. https://​doi.​org/​
10.​1111/j.​1539-​6924.​1981.​tb013​50.x

Kappes MS, Keiler M, von Elverfeldt K, Glade T (2012) Challenges of analyzing multi-hazard risk: a 
review. Nat Hazards 64:1925–1958. https://​doi.​org/​10.​1007/​s11069-​012-​0294-2

Lanter D, Essinger R (2017) User-centered design. In: Richardson D, Castree N, Goodchild MF, Kob-
ayashi A, Liu W, Marston RA (eds) International encyclopedia of geography: people, the earth, 
environment and technology. Wiley, Oxford

Lathrop R, Auermuller L, Trimble J, Bognar J (2014) The application of webGIS tools for visualizing 
coastal flooding vulnerability and planning for resiliency: the New Jersey experience. ISPRS Int J 
Geo Inf 3(2):408–429. https://​doi.​org/​10.​3390/​ijgi3​020408

Lavell A, Oppenheimer M, Diop C, Hess J, Lempert R, Li J, Muir-Wood R, Myeong S (2012) Climate 
change: new dimensions in disaster risk, exposure, vulnerability, and resilience. In: Field CB, Bar-
ros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen 
SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance 
climate change adaptation. Cambridge University Press, Cambridge, pp 25–64

Lundberg R, Willis H (2015) Assessing homeland security risks: a comparative risk assessment of 10 
hazards. Homeland security affairs 11, Article 10. Homeland security affairs journal. HSAJ.org. 
https://​www.​hsaj.​org/​artic​les/​7707. Accessed 19 Nov 2021

Marzocchi W, Garcia-Aristizabal A, Gasparini P, Mastellone ML, Di Ruocco A (2012) Basic principles 
of multi-risk assessment: a case study in Italy. Nat Hazards 62:551–573. https://​doi.​org/​10.​1007/​
s11069-​012-​0092-x

Iowa State University (ISU) Department of Agronomy (2018) Iowa environmental mesonet. Department 
of agronomy, Iowa State University. https://​meson​et.​agron.​iasta​te.​edu/. Accessed 19 Nov 2021

Morgan JD (2016) A user-centered design for the addition of interactive masking capability within an 
existing web GIS. Trans GIS 20(5):807–816. https://​doi.​org/​10.​1111/​tgis.​12197

Narang B, Trivedi P, Dubey MK (2017) Towards an understanding of UX (user experience) and UXD (user 
experience design), an applicability based framework for ecommerce, intranets, mobile, and tablet and 
web usability. Int J Adv Res Comput Sci 8:2764–2768. https://​doi.​org/​10.​26483/​IJARCS.​V8I5.​4130

https://public.wmo.int/en/resources/bulletin/quantifying-risk-disasters-occur-hazard-information-probabilistic-risk-assessment
https://public.wmo.int/en/resources/bulletin/quantifying-risk-disasters-occur-hazard-information-probabilistic-risk-assessment
https://www.ijhsdm.org/text.asp?2015/3/2/79/151315
https://doi.org/10.3133/sir20185140
https://www.fema.gov/flood-maps/national-flood-hazard-layer
https://www.fema.gov/flood-maps/national-flood-hazard-layer
https://www.fema.gov/disaster/declarations
https://www.fema.gov/sites/default/files/documents/fema_national-risk-index_technical-documentation.pdf
https://www.fema.gov/sites/default/files/documents/fema_national-risk-index_technical-documentation.pdf
https://doi.org/10.1007/s11069-005-8598-0
https://doi.org/10.1007/s11069-005-8598-0
https://doi.org/10.2307/1402836
https://doi.org/10.2307/1402836
https://doi.org/10.1111/j.1539-6924.1981.tb01350.x
https://doi.org/10.1111/j.1539-6924.1981.tb01350.x
https://doi.org/10.1007/s11069-012-0294-2
https://doi.org/10.3390/ijgi3020408
https://www.hsaj.org/articles/7707
https://doi.org/10.1007/s11069-012-0092-x
https://doi.org/10.1007/s11069-012-0092-x
https://mesonet.agron.iastate.edu/.
https://doi.org/10.1111/tgis.12197
https://doi.org/10.26483/IJARCS.V8I5.4130


2354	 Natural Hazards (2022) 114:2331–2355

1 3

National Aeronautics and Space Administration (NASA) (2021) Cooperative open online landslide 
repository (COOLR). Hydrological science laboratory, global precipitation measurement, goddard 
space and flight center, national aeronautics and space administration. https://​gpm.​nasa.​gov/​lands​
lides/​coolr​data.​html. Accessed 19 Nov 2021

National Oceanic and Atmospheric Administration (NOAA) (2016) National water model: improving 
NOAA’s Water prediction services. NOAA.gov. https://​water.​noaa.​gov/​docum​ents/​wrn-​natio​nal-​water-​
model.​pdf. Accessed 19 Nov 2021

NOAA (2018) Flood frequency and sea level rise. NOAA.gov. https://​coast.​noaa.​gov/​slrda​ta. Accessed 19 
Nov 2021

National Centers for Environmental Information (NCEI) (2017) Damage and casualty reports, prototypes. 
National centers for environmental information, national oceanic and atmospheric administration. 
https://​www.​ncei.​noaa.​gov/​produ​cts/​light​ning-​produ​cts. Accessed 19 Nov 2021

NCEI (2018) Global historical tsunami database. national centers for environmental information, national 
oceanic and atmospheric administration. https://​www.​ngdc.​noaa.​gov/​hazard/​tsu_​db.​shtml. Accessed 
19 Nov 2021

NCEI (2020) Storm events database, version 3.1. National centers for environmental information, national 
oceanic and atmospheric administration. https://​www.​ncdc.​noaa.​gov/​storm​events/​versi​ons.​jsp. 
Accessed 19 Nov 2021

National Drought Mitigation Center (NDMC) (2018) U.S. Drought monitor. National drought mitigation 
center, University of Nebraska-Lincoln, U.S. department of agriculture, and national oceanic and 
atmospheric administration. https://​droug​htmon​itor.​unl.​edu/. Accessed 19 Nov 2021

National Hurricane Center (NHC) (2018a) National storm surge hazard maps-version 2. National hurricane 
center, national oceanic and atmospheric administration. https://​www.​nhc.​noaa.​gov/​natio​nalsu​rge. 
Accessed 19 Nov 2021

NHC (2018b) Best track data (HURDAT2) archive. National hurricane center, national oceanic and atmos-
pheric administration. https://​www.​nhc.​noaa.​gov/​data/. Accessed 19 Nov 2021

National Weather Service (NWS) (2017a) Storm prediction center, severe weather database files, Hail, 
1955–2017. National weather service, storm prediction center, national oceanic and atmospheric 
administration. https://​www.​spc.​noaa.​gov/​wcm/. Accessed 19 Nov 2021

NWS (2017b) Storm prediction center, severe weather database files, damaging wind, 1955–2017. Storm 
prediction center, national weather service, national oceanic and atmospheric administration. https://​
www.​spc.​noaa.​gov/​wcm/. Accessed 19 Nov 2021

NWS (2018) Active alerts. National weather service, national oceanic and atmospheric administration. 
https://​www.​weath​er.​gov/​alerts. Accessed 19 Nov 2021

NWS (2020) Storm prediction center, severe weather database files, Tornado, 1950–2019. Storm prediction 
center, national weather service, national oceanic and atmospheric administration. https://​www.​spc.​
noaa.​gov/​wcm/. Accessed 19 Nov 2021

Peduzzi P, Dao H, Herold C, Mouton F (2009) Assessing global exposure and vulnerability towards natural 
hazards: the Disaster Risk Index. Nat Hazard 9:1149–1159. https://​doi.​org/​10.​5194/​nhess-9-​1149-​2009

Rosenzweig E (2015) Successful user experience: strategies and roadmaps. Morgan Kaufmann, Burlington
Rubin J, Chisnell D (2008) Handbook of usability testing: how to plan, design, and conduct effective tests. 

Wiley Publishing Inc., Indianapolis
Schnieper R (1995) On the estimation of the credibility factor: a Bayesian approach. ASTIN Bull 25(2):137–

151. https://​doi.​org/​10.​2143/​AST.​25.2.​563244
Shi P et  al (2015) Mapping multi-hazard risk of the world. In: Shi P, Kasperson R (eds) World atlas of 

natural disaster risk. IHDP/future earth-integrated risk governance project series. Springer, Berlin, pp 
287–306

Short KC, Finney MA, Scott JH, Gilbertson-Day JW, Grenfell IC (2016) Spatial dataset of probabilistic 
wildfire risk components for the conterminous United States. U.S. Forest Service. https://​www.​fs.​usda.​
gov/​rmrs/​datas​ets/​spati​al-​datas​et-​proba​bilis​tic-​wildf​ire-​risk-​compo​nents-​conte​rmino​us-​united-​states-​
1st. Accessed 19 Nov 2021. https://​doi.​org/​10.​2737/​RDS-​2016-​0034

Smith AB (2021) 2020 U.S. billion-dollar weather and climate disasters in historical context. Climate.gov. 
https://​www.​clima​te.​gov/​news-​featu​res/​blogs/​beyond-​data/​2020-​us-​billi​on-​dollar-​weath​er-​and-​clima​
te-​disas​ters-​histo​rical. Accessed 19 Nov 2021

Global Volcanism Program (GVP) (2013) Volcanoes of the world (VOTW) Database information. global 
volcanism program, national museum of natural history, smithsonian institution. https://​volca​no.​si.​edu/​
gvp_​votw.​cfm. Accessed 19 Nov 2021. https://​doi.​org/​10.​5479/​si.​GVP.​VOTW4-​2013

Steuri B, Bender S, Coretekar J (2020) Successful user-science interaction to co-develop the new urban cli-
mate model PALM-4U. Urban Climate 32:1–9. https://​doi.​org/​10.​1016/j.​uclim.​2020.​100630

https://gpm.nasa.gov/landslides/coolrdata.html
https://gpm.nasa.gov/landslides/coolrdata.html
https://water.noaa.gov/documents/wrn-national-water-model.pdf
https://water.noaa.gov/documents/wrn-national-water-model.pdf
https://coast.noaa.gov/slrdata
https://www.ncei.noaa.gov/products/lightning-products
https://www.ngdc.noaa.gov/hazard/tsu_db.shtml
https://www.ncdc.noaa.gov/stormevents/versions.jsp
https://droughtmonitor.unl.edu/
https://www.nhc.noaa.gov/nationalsurge
https://www.nhc.noaa.gov/data/
https://www.spc.noaa.gov/wcm/
https://www.spc.noaa.gov/wcm/
https://www.spc.noaa.gov/wcm/
https://www.weather.gov/alerts
https://www.spc.noaa.gov/wcm/
https://www.spc.noaa.gov/wcm/
https://doi.org/10.5194/nhess-9-1149-2009
https://doi.org/10.2143/AST.25.2.563244
https://www.fs.usda.gov/rmrs/datasets/spatial-dataset-probabilistic-wildfire-risk-components-conterminous-united-states-1st
https://www.fs.usda.gov/rmrs/datasets/spatial-dataset-probabilistic-wildfire-risk-components-conterminous-united-states-1st
https://www.fs.usda.gov/rmrs/datasets/spatial-dataset-probabilistic-wildfire-risk-components-conterminous-united-states-1st
https://doi.org/10.2737/RDS-2016-0034
https://www.climate.gov/news-features/blogs/beyond-data/2020-us-billion-dollar-weather-and-climate-disasters-historical
https://www.climate.gov/news-features/blogs/beyond-data/2020-us-billion-dollar-weather-and-climate-disasters-historical
https://volcano.si.edu/gvp_votw.cfm
https://volcano.si.edu/gvp_votw.cfm
https://doi.org/10.5479/si.GVP.VOTW4-2013
https://doi.org/10.1016/j.uclim.2020.100630


2355Natural Hazards (2022) 114:2331–2355	

1 3

United Nations Office for Disaster Risk Reduction (UNISDR) (2017) Words into action guidelines: national 
disaster risk assessment. UNDRR.org. https://​www.​undrr.​org/​publi​cation/​words-​action-​guide​lines-​
natio​nal-​disas​ter-​risk-​asses​sment. Accessed 19 Nov 2021

UNISDR (2019) Risk. In: Global assessment report on disaster risk reduction: 2019. UNDRR.org. https://​
www.​undrr.​org/​publi​cation/​global-​asses​sment-​report-​disas​ter-​risk-​reduc​tion-​2019. Accessed 19 Nov 
2021

United States Army Corps of Engineers (USACE) (2014) Damaging ice storm geographic information sys-
tem. cold regions research and engineering laboratory (CRREL), engineer research and development 
center, U.S. Army Corps of Engineers. https://​www.​erdc.​usace.​army.​mil/​Media/​Fact-​Sheets/​Fact-​
Sheet-​Artic​le-​View/​Artic​le/​490684/​damag​ing-​ice-​storm-​gis/. Accessed 19 Nov 2021

United States Department of Agriculture (USDA) (2019) 2017 Census of Agriculture. Washington, D.C.
United States Bureau of Labor Statistics (BLS) (2021) Consumer price index (CPI) inflation calculator. 

BLS.gov. https://​www.​bls.​gov/​data/​infla​tion_​calcu​lator.​htm. Accessed 19 Nov 2021
University of South Carolina (2021a) Social vulnerability index (SoVI) for the United States - 2010–2014. 

University of South Carolina hazards & vulnerability research institute (HVRI). http://​artsa​ndsci​ences.​
sc.​edu/​geog/​hvri/​sovi%​C2%​AE-0. Accessed 19 Nov 2021a

University of South Carolina (2021b) Baseline resilience indicators for communities (BRIC). University of 
South Carolina hazards & vulnerability research institute (HVRI). http://​artsa​ndsci​ences.​sc.​edu/​geog/​
hvri/​bric. Accessed 19 Nov 2021b

Ward PJ, Blauhut V, Bloemendaal N, Daniell JE, de Ruiter MC, Duncan MJ, Emberson R, Jenkins SF, 
Kirschbaum D, Kunz M, Mohr S, Muis S, Riddell GA, Schäfer A, Stanley T, Veldkamp TIE, Winsem-
ius HC (2020) Natural hazard risk assessments at the global scale. Nat Hazard 20:1069–1096. https://​
doi.​org/​10.​5194/​nhess-​20-​1069-​2020

Widen HM (2016) New methods in tornado risk and vulnerability assessments. Dissertation, Florida State 
University. http://​purl.​flvc.​org/​fsu/​fd/​FSU_​2016SP_​Widen_​fsu_​0071E_​13208

Zhou S, Zhai G, Shi Y, Lu Y (2020) Urban seismic risk assessment by integrating direct economic loss and 
loss of statistical life: an empirical study. Int J Environ Res Public Health 17(21):8154. https://​doi.​org/​
10.​3390/​ijerp​h1721​8154

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://www.undrr.org/publication/words-action-guidelines-national-disaster-risk-assessment
https://www.undrr.org/publication/words-action-guidelines-national-disaster-risk-assessment
https://www.undrr.org/publication/global-assessment-report-disaster-risk-reduction-2019
https://www.undrr.org/publication/global-assessment-report-disaster-risk-reduction-2019
https://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/490684/damaging-ice-storm-gis/
https://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/490684/damaging-ice-storm-gis/
https://www.bls.gov/data/inflation_calculator.htm
http://artsandsciences.sc.edu/geog/hvri/sovi%C2%AE-0
http://artsandsciences.sc.edu/geog/hvri/sovi%C2%AE-0
http://artsandsciences.sc.edu/geog/hvri/bric
http://artsandsciences.sc.edu/geog/hvri/bric
https://doi.org/10.5194/nhess-20-1069-2020
https://doi.org/10.5194/nhess-20-1069-2020
http://purl.flvc.org/fsu/fd/FSU_2016SP_Widen_fsu_0071E_13208
https://doi.org/10.3390/ijerph17218154
https://doi.org/10.3390/ijerph17218154

	The national risk index: establishing a nationwide baseline for natural hazard risk in the US
	Abstract
	1 Introduction
	2 Methodology
	2.1 Selection of natural hazards
	2.2 Expected annual loss
	2.2.1 Annualized frequency
	2.2.2 Exposure
	2.2.3 Historic loss ratio
	2.2.4 Calculation of EAL
	2.2.5 Comparing EAL to historical losses

	2.3 Social vulnerability and community resilience
	2.4 Risk calculation

	3 Results and discussion
	4 Conclusion
	References




