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Abstract
The frequency of urban waterlogging is increasing significantly under the combined influ-
ence of natural factors (precipitation and terrain) and anthropogenic factors (drainage sys-
tem and urbanization). Previous studies had explored the effect of landscape pattern and 
topography on waterlogging based on historical waterlogging events records. However, the 
research on current waterlogging issues based on historical records had limitations since 
the impact factors of waterlogging are inconsistent due to the changes of surface and mete-
orological conditions. This paper applied a hydrological and hydrodynamic model named 
InfoWorks ICM, to simulate the urban waterlogging depth (UWD). Under the consistent 
surface and meteorological conditions, UWD were selected as the dependent variable to 
analyze the influence of landscape pattern and topography on waterlogging at multiple 
scales. Pearson correlation analysis and stepwise regression models were used to discover 
the relationship between these indices. According to the results, in terms of landscape 
composition, the percentages of built-up area and urban green space have the most sig-
nificant influence on waterlogging. In addition, organizing average built-up area patch sizes 
and integrating green spaces with complex shape and high connectivity can improve the 
state of urban waterlogging. Besides, the rational allocation of topographic gradient is an 
effective measure at small scale. The adjusted R2 of regression model were 0.723 at 400 m 
analysis scale, 0.323 at 600 m analysis scale, and 0.193 at 800 m analysis scale, indicating 
that attention should be paid to scale effect in similar research. This research can provide a 
reference for mitigating urban waterlogging disasters.
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1  Introduction

Urban waterlogging refers to the disaster of stagnant water disaster in the urban area due to 
a heavy or continuous precipitation exceeding the urban drainage capacity (Xue et al. 2016; 
Yu et al. 2018). In the context of global climate change, the frequency of extremely heavy 
and long-term rainfall increased significantly around the world, causing an increase in the 
probability of waterlogging events (Kirtman et  al. 2013). Furthermore, in the process of 
urbanization, the impervious surface expands rapidly, which changes the process of water 
cycle on the original surface and further aggravates the waterlogging risk, especially in 
low-lying coastal cities (Sang and Yang 2017; Liu et al. 2019).

China, as one of the largest developing countries, experienced a massive city expan-
sion since the government introduced the open-door policy in 1978. Simultaneously, China 
is suffering extensively from the environmental impacts of rapid urbanization and climate 
change (Huang et al. 2017; Hou et al. 2019). According to the “Statistical Bulletin of Flood 
and Drought Disasters in China” from the Ministry of Water Resources of the People’s 
Republic of China, an average of 2065 cities experienced urban waterlogging from 2006 to 
2020, especially the economically developed cities in east of China, which have big popu-
lation and developed economy (http://​www.​mwr.​gov.​cn/). Previous studies have shown that 
the urban waterlogging will cause huge economic losses and casualties, threaten traffic 
safety, paralyze the basic functions of cities, affect water quality and damage the ecological 
environment et.al (Su et al. 2016; Tang et al. 2018; Fahy et al. 2019). For example, accord-
ing to the disaster investigation report by the Ministry of Emergency Management of the 
People’s Republic of China (https://​www.​mem.​gov.​cn/), on July 20, 2021, Zhengzhou city 
suffered the heaviest rainfall on record (449 mm), causing traffic paralysis and communica-
tion interruption, and resulting in 380 casualties and economic losses of 40.9 billion yuan. 
Therefore, how to solve the urban waterlogging has become a heated topic discussed by 
scholars and the public in the process of sustainable urban development in China.

Considerable researches have shown that most waterlogging events are caused by both 
natural factors and human activities (Zhang et  al. 2017; Wang et  al. 2021). In terms of 
natural factors, in addition to the extreme precipitation caused by global climate change, 
the “urban rain island” effect which means the precipitation in urban is higher that sub-
urbs is also a major factor (Zhao et al. 2021). Besides, urban micro-topography is also an 
important natural factor causing waterlogging events, due to its effect on runoff (Huong 
and Pathirana 2013; Wu et al. 2020). Among anthropogenic factors, low designed stand-
ards and inadequate management of drainage facilities lead the loss of urban drainage 
function during heavy rainstorms, and result in waterlogging (Zhang et  al. 2021c). And 
the changes in landscape pattern (composition and configuration) especially the expan-
sion of impervious surface and the reducing of green space caused by urbanization also 
effectively promote the frequent occurrence of waterlogging (Yao et al. 2017; Zhang et al. 
2018b). Among these factors, the researches on analyzing impact factors of waterlogging 
from the landscape pattern and urban micro-topography are mostly did.(Wu and Zhang 
2017; Yu et  al. 2018; Zhang et  al. 2018a, 2020; Zhao et  al. 2018; Tehrany et  al. 2019; 
Liu et al. 2021), and these studies used the historical waterlogging records to characterize 
urban waterlogging. Historical waterlogging points are true reflection of past waterlogging 
events. In order to ensure that there are enough samples for statistical analysis, records of 
many years are usually needed. Under the rapid change of urban surface conditions, it is 
inaccurate to use historical waterlogging points and the latest surface conditions to ana-
lyze the impact factors. More importantly, the scale of these studies based on historical 
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waterlogging points is usually at the level of large watersheds. In this context, the relation-
ship between waterlogging events and their impact factors can be well obtained, but the 
related results and findings will be hard to implement in terms of feasibility due to the large 
spatial level.

At present, the hydrological and hydrodynamic models are extensively utilized to simu-
late the urban waterlogging process, such as Storm Water Management Model (SWMM), 
MIKE Urban, and InfoWorks Integrated Catchment Model (ICM) (Bisht et al. 2016; Nayeb 
Yazdi et al. 2019). These models could solve the problem mentioned above; however, the 
research applied the hydrological and hydrodynamic models to analyze the influence of 
topography and landscape pattern on urban waterlogging is lacking. As one of the rep-
resentative one-dimensional (1D) hydrological models, the SWMM was widely used to 
analyze the process caused by runoff (Burger et  al. 2014; Babaei et  al. 2018); however, 
it cannot reflect the surface water flows directly (Zhang et al. 2021b). On the other hand, 
the InfoWorks ICM combined the one-dimensional (1D) hydraulic model of urban drain-
age networks and the two-dimensional (2D) flood inundation model of the urban catch-
ment. Thus, it could simulate the situation of water flows on the surface and with higher 
accuracy than SWMM (Zhang et al. 2021a). Comparing to the other one-dimensional and 
two-dimensional coupled model, such as MIKE Urban, InfoWorks ICM has an embedded 
Structure Query Language (SQL) system that can make data pre- and post-processing more 
convenient (Song et al. 2021). More importantly, since InfoWorks ICM could invoke GPU 
to participate in simulation, it has higher efficiency, especially in the simulation of drain-
age network model with large amount of data (H. Wallingford 2012). Therefore, InfoWorks 
ICM is widely used for urban waterlogging disaster and risk mapping studies (Cheng et al. 
2017; Sidek et al. 2021). Considering the significant advantages of InfoWorks ICM, this 
study utilized this model to simulate the process of urban waterlogging and took the result 
of urban waterlogging depth (UWD) as the dependent variable. Meanwhile, considering 
the complexity of urban waterlogging, this study took landscape indices and topographic 
indices as the independent variables in the regression model, to obtain a more comprehen-
sive result on the relationship.

The main objective of this study is to provide useful information to reduce the effect of 
urban waterlogging. In order to accomplish the main objective, our targets included: (1) 
simulate the UWD in the process of a rainfall and obtain its spatial distribution; (2) detect 
the relationships between the urban waterlogging and landscape pattern and topography at 
multiple scales; (3) summarize the causes and solutions of the urban waterlogging prob-
lems in the study area from the perspective of landscape and topographic planning.

2 � Materials and methods

2.1 � Study area

Haining City is located in the plain near Hangzhou Bay, north bank of Qiantang River, 
Zhejiang Province, P.R China, at 30°15′–30°35′ N and 120°18′–120°52′ E (Fig.  1). The 
municipal area of Haining City is 863.32 km2, and the urban area is 150.52  km2 (http://​
www.​haini​ng.​gov.​cn/). The annual average precipitation in Haining reaches 1187 mm, with 
the influence of subtropical monsoon climate and typhoon. The rainy season of Haining 
is mainly in summer (Li et  al. 2019). More specifically, June–July is Meiyu season and 
July–September is typhoon season, in which characteristics of rainfall are long duration 

http://www.haining.gov.cn/
http://www.haining.gov.cn/
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and high intensity. Meanwhile, the topography of Haining is flat, the percentage of plain is 
greater than 80%, and the mean elevation of study area is less than 20 m. Thus, waterlog-
ging occurs frequently in this region during rainy season, especially in central urban dis-
trict with more impervious surface and less green space than rural area.

According to the record of China Meteorological Administration, the residents in Hain-
ing suffered a serious waterlogging disaster caused by heavy rainfall (94.2 mm/h) on Sep-
tember 16, 2018 (http://​www.​cma.​gov.​cn/). And in the first national survey of natural dis-
asters in China, waterlogging was listed as one of the most serious problems in Haining. 
Therefore, this study selected central urban district of Haining which with high frequency 
of urban waterlogging as study area. More importantly, the study in Haining could provide 
reference for other plain cities located in southeastern China.

2.2 � Data collection and pre‑processing

In this study, we utilized Haining administrative division data, 1:5000 unmanned aerial 
vehicle (UAV) image and land use survey data to determine the land cover in 2016. For 
the edge of study area which is lack of UAV image, the Landsat 8 OLI/TIRS images were 
used to determine the land cover information. The ASTER GDEM, urban drainage net-
work, precipitation records and measured flow data were used to simulate urban waterlog-
ging and evaluate the simulation results. The detailed information of the dataset is shown 
in Table 1.

The main work of data pre-processing was urban drainage network simplification which 
had a significant effect on simulation efficiency. According to the idea of linking the area 
of property with the pipe mentioned in pervious study (Abbas et al. 2019), we simplified 
the data of urban drainage network without affecting the original effect of the network. The 
number of urban drainage nodes and lines was 2916 and 2417 after simplification.

2.3 � Overall workflow

This study attempted to detect the impact factors of urban waterlogging from the per-
spectives of landscape pattern and terrain. The overall workflow was designed as follows 

Fig. 1   The location of Haining central urban district

http://www.cma.gov.cn/
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(Fig.  2), with five main part works: (1) urban waterlogging stimulation based on urban 
drainage network, precipitation and DEM in InfoWorks ICM, (2) terrain factors calculation 
based on ASTER GDEM in ArcGIS 10.4, (3) land cover mapping based on UAV image, 

Table 1   Description of the data used in study

The acquisition date of UAV image is 26 June, 2016. The acquisition date and time of Landsat 8 OLI/TIRS 
image is 23 June, 2016 (10:31:27), the path is 119, and the raw is 39

Data name Year Source

Vector data
Haining administrative divisions 2021 Haining natural resources bureau
Land use survey data 2016 Haining natural resources bureau
Urban drainage network 2016 Haining city administration bureau
Text data
Meteorological precipitation records 2018 Haining city administration bureau
Flowmeter measurement records 2018 Field survey
Raster data
1:5000 UAV image 2016 Haining natural resources bureau
Landsat 8 OLI/TIRS image 2016 United states geological survey (USGS)
ASTER GDEM 2013 National aeronautics and space admin-

istration (NASA)

Fig. 2   The overall workflow of study
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land use survey data and Landsat 8 OLI/TIRS in ArcGIS10.4 and ENVI 5.3, (4) quanti-
fication the landscape pattern (composition and configuration) based on land cover map 
obtained in part 3 in FRAGSTATS 4.2, (5) statistical analysis of urban waterlogging based 
on landscape pattern and terrain factors.

2.4 � Urban waterlogging simulation

2.4.1 � InfoWorks ICM

InfoWorks ICM, a coupled hydrological and hydrodynamic model developed by 
Innovyze®, was adapted to simulate urban waterlogging. The flexible data exchange capa-
bility of InfoWorks ICM and parallel computation based on GPUs improved the simplicity 
and computational efficiency in two-dimensional hydrodynamic modeling greatly (Yang 
et al. 2021). The runoff calculation and flow convergence for the hydrological model, one-
dimensional hydrodynamic simulation for the underground pipe networks, and the two-
dimensional hydrodynamic simulation for surface inundation are included in whole pro-
cess of waterlogging simulation. The hydrodynamic simulation for the underground pipe 
networks is implemented by solving the Saint–Venant equations. The Preissmann Slot is 
used to calculate complicated hydraulic conditions including surface flow and pressurized 
flow two states (Cheng et al. 2017). The Saint–Venant formulas are as follows:

where A is the cross-sectional area of the pipe (m2), Q is the flow rate of the pipe (m3/s), t 
is time (s), x is the length along the x direction (m), h is water depth (m), g is the gravita-
tional acceleration (m2/s), θ is the angle between the pipe line and horizontal line (degree), 
and S0 and K are the bed slope and conveyance, respectively.

The mathematical representation of the 2D surface flow is based on the nonlinear 
shallow water equations. It is a simplified form obtained by averaging the Navier–Stokes 
equation in the direction of water depth (YE et al. 2021). It was used for two-dimensional 
hydrodynamic simulation. The formulas are as follows:

where u and v are velocities in x and y directions (m/s), respectively, qi is the source dis-
charge per unit area (m/s), ui and vi are the velocity components of the source discharge in x 
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and y directions (m/s), respectively, S0,x and S0,y are the ground slope in x and y directions, 
respectively, and Sf ,x and Sf ,y are the friction slopes in x and y directions, respectively.

2.4.2 � Model construction

The study area was generalized as urban plain catchment area in the model according to 
its characteristic of underlying surface. In this study, the whole study area was divided into 
eight primary catchments according to the distribution of river, road and urban drainage 
network. After that, each primary catchment was divided into sub-catchments based on 
Thiessen polygon which was created by urban drainage node. Besides, the land cover type 
in each sub-catchment includes built-up area, road and avenue, urban green space, farm-
land and water. The attributes of each land cover are listed in Table 2. These parameters 
are set and adjusted mainly referring to the InfoWorks ICM help document (H. Wallingford 
2012), Storm Water Management Model (SWMM) help document (Rossman 2015) and 
designed standard for outdoor drainage by Ministry of Housing and Urban–Rural Develop-
ment of China in 2014.

2.4.3 � Model calibration and validation

In this study, the flowmeter measurement records during the rainfall on 20 August, 2018, 
were used to verify the reliability of the model. By comparing the measured data obtained 
by flowmeter and simulation data obtained by the model of two observed stations in the 
study area (Fig. 3a, b), the RMSE was 0.005 m3/s and 0.003 m3/s, respectively, indicating 
that the model could simulate waterlogging accurately and effectively.

2.5 � Explanatory variables

Previous researches showed that the landscape pattern, topographic factors and urban 
drainage network have a significant impact on urban waterlogging events (Wu and Zhang 
2017; Tehrany et al. 2019; Zhang et al. 2020). Owing to the use of urban drainage network 
data in the waterlogging simulation, it was not taken as an explanatory variable in order to 
prevent the possible impact of this modus operandi on the results. Thus, totally 18 explana-
tory variables were considered in this study.

2.5.1 � Landscape composition

Landscape composition refers to the percentage of each land cover types (PLAND) within 
the landscape (Du et al. 2016). In this study, the land cover data were classified from land 
use survey data, UAV image and Landsat 8 OLI/TIRS image, and they were divided into 
five categories: (1) built-up area (including house, buildings and squares); (2) road and ave-
nue (RAV); (3) water (including lake, pond and river); (4) urban green space (UGS, includ-
ing grassland and forest); and (5) farmland (including vegetable field and paddy field).

2.5.2 � Landscape configuration

Landscape configuration refers to the spatial characteristics, arrangement, position or 
geometric complexity of landscape (Wang et  al. 2020). It has been proven that land-
scape metrics, such as the index of shape, complexity and aggregation, are able to 
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explain the spatial heterogeneity of waterlogging events (Huong and Pathirana 2013; 
Wu et al. 2020). In this study, considering the abilities in reflecting the characteristics 
of landscape patterns and their simplicity in interpretation, six class-level spatial met-
rics were selected: largest patch index (LPI), total edge (TE), mean patch area (AREA_
MN), mean shape index (SHAPE_MN), patch density (PD), and patch cohesion index 
(COHESION). The equations and descriptions of these indices are listed in Table 3

2.5.3 � Topographic factors

In natural conditions, runoff flows to lower elevations area under the influence of grav-
ity and forms waterlogging. The research around the world has shown the effect of 
topography to waterlogging events (Wang et al. 2015; Zambrano et al. 2018; Shi et al. 
2019). In this study, seven topographic factors, including elevation (Fig.  4a), slope 
(Fig.  4b), curvature (Fig.  4c), relative elevation (RE), topographic roughness index 
(TRI, Fig. 4d), topographic position index (TPI, Fig. 4e), and topographic surface tex-
ture index (TSI, Fig. 4f), were selected to reflect topographic characters. The equations 
and descriptions of these factors are listed in Table 3

Fig. 3   The simulated result and measured result at a observation station 1, b observation station 2
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2.6 � Multiple scales statistical analysis

In this study, Pearson correlation analysis and stepwise regression model were used to detect 
the impact factors of urban waterlogging. Four scales, 200, 400, 600, and 800 m, were taken 
as the basic analysis units for statistical analysis. The dependent variable was mean UWD in 
each grid, while the land cover characteristics (landscape composition and configuration) and 
topographic factors were included as the explanatory variables. The result of single sample 
Kolmogorov–Smirnov (KS) indicated that the dataset of each variable was non-normal distri-
bution; thus, these variables were converted into ln ( Xi ) before stepwise regression.

The stepwise regression model could eliminate collinearity between variables and has a 
good performance in multiple regression (Chen et al. 2015; Zheng et al. 2021). The formula of 
stepwise regression model is as follows:

where Y  is the dependent variable, Xi (i = 1, 2,…, n) is the independent variable, �0 is the 
constant, and �i (i = 1, 2,…, n) is the standard regression coefficient.

(6)Y = �0 + �1X1 + �2X2 + ... + �nXn

Fig. 4   The a elevation, b slope, c curvature, d TRI, e TP, and f TSI in the study area
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3 � Results

3.1 � Urban waterlogging depth (UWD)

The land use and land cover (LULC) map (Fig. 5a) showed that the built-up area was 
highly concentrated in the central and southern parts of the study area, with lumps and 
strips of urban green space distributed in it, while a large area of farmland was dis-
tributed in the north, west and southeast of the urban area. The results of the simula-
tion (Fig. 5b) showed that when the rainfall period was 50 years, the maximum UWD 
reached 1.66 m. A large area of urban waterlogging was mainly distributed in the edge 
of the city, including the northeast, west, south the built-up area. On the contrary, the 
distribution of urban waterlogging in central city was scattered and less severe than the 
case in the edge of the city.

The statistical urban waterlogging conditions of each land cover are listed in Table 4. 
Comparing the mean depth, the depth of urban waterlogging in farmland was the larg-
est, followed by built-up area, urban green space and road and avenue. The submersed 
area of built-up area was the largest reaching 3.52 km2, which was the largest among 
all the categories. It is worth noting that the submerged area of farmland which has a 
close relationship with crops reached 1.49 km2, ranking second. It is obvious that the 
submersed percentage of built-up areas and roads was significantly higher than that of 
urban green space and farmland, revealing the difference of the influence of pervious 
surface and impervious surface on urban waterlogging.

Fig. 5   The a land use and land cover, b urban waterlogging depth, and c urban drainage network

Table 4   Urban waterlogging statistics of different land cover

Land cover Area (km2) Mean depth (m) Submersed area 
(km2)

Percentage of 
submersed area 
(%)

Built-up area 55.27 0.24 3.52 6.37
Road and avenue 8.30 0.19 0.63 7.59
Urban green space 17.58 0.22 0.79 4.49
Farmland 59.34 0.27 1.49 2.51
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3.2 � UWD and landscape composition

The Pearson correlation coefficients are shown in Fig. 6. It revealed the relationship across 
four analysis scales between UWD and the explanatory variables selected in this study. 
Lines in different color represent different analysis scales. And the value of the coordinate 
axis represents the correlation coefficient of the corresponding factor. The stepwise regres-
sion model results of four analysis scales are shown in Table 5. It was used to detect the 
comprehensive effects of the factors selected in this study on urban waterlogging. And the 
adjusted R2 of model at 400 m, 600 m and 800 m analysis scale were 0.723, 0.323 and 
0.193, respectively.

As shown in Fig. 6, the correlation coefficients between UWD and PLNAD of each land 
cover varied from analysis scales. For built-up area, the significant correlation coefficients 
between UWD and PLAND were 0.105, 0.204, and 0.274 at 400 m, 600 m and 800 m anal-
ysis scale, respectively. For road and avenue, there were no significant correlation coeffi-
cients between UWD and PLAND. For urban green space, the significant correlation coef-
ficients between UWD and PLAND were − 0.105, − 0.161, and − 0.155 at 400 m, 600 m 
and 800 m analysis scale, respectively. For farmland, the correlation coefficient between 
UWD and PLAND was significant at 200 m and 800 m analysis scale, valuing 0.127 and 
0.155, respectively. And for water, the correlation coefficients between UWD and PLAND 
was significant at 600  m analysis scale with a value of -0.156, while in three stepwise 
regression models, there was no effective variable represents landscape composition.

3.3 � UWD and landscape configuration

The relationship between UWD and landscape configuration is also shown in Fig. 6 and 
Table 5. For built-up area (Fig. 6a), except PD, the other five indices were correlated sig-
nificantly with urban waterlogging depth. And the correlation was the strongest at 800 m 
analysis scale. The coefficient of LPI, TE, AREA_MN, SHAPE_MN, and COHESION 
was 0.267, − 0.215, − 0.243, − 0.258, and − 0.257, respectively. In stepwise regression 
model (Table 5), the SHAPE_MN of built-up area was an effective variable at 800 m anal-
ysis scale. The standard regression coefficient was − 0.216. For road and avenue (Fig. 6b), 
the LPI, AREA_MN, SHAPE_MN, and COHESION were correlated significantly with 
urban waterlogging depth. And the correlation was the strongest at 800 m analysis scale. 
The coefficient of these indices was − 0.186, − 0.209, − 0.166, and − 0.241, respectively. 
The regression model showed that the PD of road and avenue was an effective variable at 
400 m and 600 m analysis scale. The standard regression coefficient was 0.778 and 0.192, 
respectively.

For urban green space (Fig. 6c), except PD, the other five indices were correlated signifi-
cantly with urban waterlogging depth. The correlation between TE and UWD was strongest at 
600 m analysis scale with the coefficient of -0.164, while LPI, AREA_MN, SHAPE_MN, and 
COHESION had the strongest correlation with UWD at 800 m analysis scale. The coefficient 
was − 0.168, − 0.172, − 0.207, and − 0.156, respectively. In regression model at 600  m and 
800 m analysis scale, the standard coefficient of TE and LPI was − 0.377 and − 0.256, respec-
tively. For farmland (Fig. 6d), except TE and CHOESION, the other four indices were cor-
related significantly with urban waterlogging depth. The correlation between PD and UWD 
was strongest at 400 m analysis scale. And the coefficient was − 0.227, while LPI, AREA_
MN, and SHAPE_MN had the strongest correlation with UWD at 800 m analysis scale. The 
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Fig. 6   The correlation coefficients between urban waterlogging depth and landscape composition and con-
figuration, topographic factors across four analysis scales
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regression model showed that AREA_MN and SHAPE_MN of farmland were effective vari-
ables at 400 m analysis scale.

The landscape indices of water were special. There only existed significant correlation with 
UWD at 600 m analysis scale. The coefficient of LPI, TE, AREA_MN, SHAPE_MN, and 
COHESION were − 0.194, − 0.125, − 0.169, − 0.135, and − 0.213, respectively. The regression 
model also showed the influence of COHESION of water on urban waterlogging at 600 m 
analysis scale.

3.4 � UWD and topographic factors

From Fig.  6f, we can see that the elevation and TSI were significantly correlated with the 
UWD across four analysis scale. The correlation coefficients between UWD and elevation 
were − 0.226, − 0.166, − 0.138, and − 0.238, respectively, and TSI was 0.062, 0.130, 0.135, and 
0.134, respectively, while RE (0.128), slope (− 0.109), curvature (− 0.153), TRI (0.095), and 
TPI (− 0.155) were only significantly correlated with UWD at 200 m analysis scale.

4 � Discussion

4.1 � Correlations between urban waterlogging and landscape composition

Previous studies have shown that land covers and its ratios have an impact on urban 
waterlogging due to their surface heterogeneity (Zhang et  al. 2021c). The research in 
southeast of China showed a positive correlation between waterlogging point density 
and percentage of built-up area, while the correlation between waterlogging point den-
sity and percentage of urban green space was negative (Wu and Zhang 2017; Zhang 
et  al. 2018a). Consistent with the literature mentioned above, our research found that 

Table 5   Stepwise regression model across four analysis models

400 m

Variable Elevation AREA_
MNFarmaland

PDRAV SHAPE_MNFarmland Inter-
cept:  − 5.543

Adjusted R2: 
0.732

Regression 
coefficient

 − 2.138 0.608 0.778  − 0.985

VIF 1.726 2.567 1.441 3.542

600 m

Variable RE Elevation PDRAV COHESIONWater TEUGS Inter-
cept:  − 2.007

Adjusted R2: 
0.323

regression coefficient 0.248  − 0.324 0.192  − 0.374  − 0.377
VIF 2.594 3.861 1.367 5.953 4.571

800 m

Variable Slope AREA_MN UGS LPIUGS SHAPE_
MNBuilt-up area

Intercept: 
− 2.605

Adjusted 
R2: 0.193

regression coefficient 0.144  − 0.613  − 0.256  − 0.216
VIF 1.958 2.579 4.358 2.647
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the correlations between UWD and percentage of built-up area and urban green space 
were positive and negative at different analysis scales. As a representative of impervi-
ous surface, the built-up area accelerates the accumulation of surface runoff and cuts off 
the infiltration of surface water, which increases the risk of urban waterlogging, while 
the urban green space plays a completely opposite role. Besides, the result of our study 
showed a negative relationship between UWD and the percentage of water body, indi-
cating that water body played a significant role on the reducing of urban waterlogging. 
It has also been reported in other case studies (McMinn et al. 2010; Zheng et al. 2016). 
Therefore, increasing the percentage of urban green space and water body in the process 
of urbanization can effectively reduce the risk of waterlogging.

As for road and avenue, the correlation analysis results did not show a significant 
correlation. It is supposed that the main reason was the area ratio of road and avenue 
was much smaller than other land covers in each analytical scale. Strangely, from the 
result of UWD results of each land cover, we found that as a kind of impervious surface, 
the mean UWD of the road and avenue was smaller than that of the urban green space 
(Table 4). The high density of municipal drainage facilities on the road and avenue may 
be the main reason for the minimum UWD (Fig.  5c). In order to test our hypothesis, 
two sample plots with similar landscape pattern and terrain were selected to compare 
the effect of urban drainage network on road accumulation water. The result show that, 
in sample plot 1 with high drainage network density, the road did not be submersed and 
there was no waterlogging area (Fig. 7a), while in sample plot 2, there were large areas 
of road were submersed and the largest depth was 0.07 m (Fig. 7b). Despite the positive 
role of the drainage system, the percentage of submersed area of road and avenue was 
the highest (Table 4). Therefore, we need to pay attention to the waterlogging risk on 
road and avenue, especially those in low drainage network density area.

The mean UWD of farmland was 0.27  m and ranked first at four land cover types 
(Table 4). There were two reasons to explain this phenomenon: (1) most of the farm-
land in the study area was paddy field, which can be seen as a man-made water storage 
area; (2) most of the farmland areas were in the suburbs, and the drainage network were 
lacking or backward. The result of Person correlation analysis also showed the posi-
tive relationship between UWD and the percentage of farmland. And this result was in 
agreement with pervious findings which showed the positive correlation between flood 
frequency and increasing of farmland (Du et al. 2015). Thus, controlling the percentage 
of farmland was a direct action to reduce the risk of waterlogging. However, the regula-
tion of arable land minimum in China forced us to change our perspective of solving the 
problem to other aspects, such as optimizing farmland drainage systems and farmland 
spatial configuration (Ren et al. 2021).

4.2 � Correlations between urban waterlogging and landscape configuration

The landscape configuration was significantly related to the UWD (Fig.  8), indicat-
ing that the spatial form of landscape patches strongly affects water accumulation on 
land surface. LPI indices measured the dominance of the single largest land cover 
patch (McGarigal and Marks 1995). Our study clearly showed that the LPI of built-up 
area and farmland correlated with UWD positively, while the LPI of road and avenue, 
urban green space, and water bodies were negatively correlated with UWD (Fig.  8a). 
These results were similarity to the findings in Pearl River Delta (Liu et al. 2021). As 
for impervious surface, larger single built-up patches have a stronger effect on reducing 
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rainwater infiltration, resulting in more surface runoff. At the same time, the higher run-
off coefficient in built-up areas makes the UWD much deeper than other patches (Gao 
et al. 2020). Most of the farmland types in study area are paddy fields. It can be seen 
as artificial water storage area. Therefore, it was reasonable that the LPI of farmland 
was positively correlated with the UWD during rainfall process. Although considered 
as an impervious surface, the LPI of road and avenue was negatively correlated with 
urban waterlogging depth, in contrary to built-up area. Generally speaking, since the 
road patch shape was usually a banded, the larger the LPI is, the wider of the roads are. 
Wider roads and avenues were often of great significance or newly built in the city and 
generally have better drainage network. As a result, the correlation between UWD and 
the LPI of built-up area and roads showed an opposite trend. As for urban green space, 
a larger single patch will strengthen the effect of interception and infiltration of rainfall 
(Liu et al. 2020). Therefore, with the increase in LPI of urban green space, the UWD 
decreased. And for water bodies, a larger single patch could store more rainfall, thus 
reducing the other land covers’ pressure of waterlogging.

TE indices measured the sum edge length of each land cover’s patch. A larger TE indi-
cates that the patch has longer boundaries with other patches, and the exchange of matter 
and energy is more frequently. And the SHAPE_MN indices measured the geometric com-
plexity of the landscape (McGarigal and Marks 1995). The results of our study showed that 
UWD correlated negatively with TE and SHAPE_MN of built-up area, urban green space 
and water bodies (Fig. 8b, d). This suggested that massive patches which have longer edges 
and more complex shapes could reduce the UWD. One possible reason was that in the case 
of the same patch area, the patch with longer edge length and complex spatial shapes made 
the runoff disperse gradually as it flows across the boundary. In this context, the surface 
water had sufficient time to infiltrate causing the final reduce in surface water.

Fig. 7   The mitigation effect of urban drainage network on road accumulation water
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AREA_MN indices measured the average condition of patch size and was directly 
related to the number of patches of each land cover type. AREA_MN usually express the 
degree of fragmentation and the connectivity of landscape together with PD and CHOE-
SION (McGarigal and Marks 1995). According to the results of our study, farmland 
patches with higher fragmentation and lower connectivity level could better reduce the 
urban waterlogging depth. Previous studies have reported that a certain type of land cover 
with fragmented patches may increase the exchange of soil and groundwater flows among 
the patches, thus decreasing the runoff (Liu et al. 2020). Contrarily, lower fragmentation 
and high connectivity level urban green space and water bodies were effective landscapes 
due to their stronger infiltration and water storage. Unexpectedly, the UWD was also corre-
lated positively with fragmentation and negatively with connectivity of built-up areas and 
roads and avenue (Fig. 8c, e, f). We suspected that it was affected by the drainage network.

Fig. 8   The landscape indices and urban waterlogging depth
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According to the stepwise regression models, the influence of landscape configuration 
on the UWD was stronger than that of landscape composition, especially the indices which 
characterize the shape and fragmentation of a landscape. Thus, in the perspective of plan-
ning landscape to reduce the risk of waterlogging, more attention should be paid to land-
scape configuration.

4.3 � Correlations between urban waterlogging and topographic factors

The topographic factors have been widely used in assessment of urban waterlogging risk 
which proved the strong correlation between them (Yin et al. 2011; Quan 2014). Our study 
revealed their relationship quantitatively (Table 6). Through the analysis of the significant 
correlation coefficient, we found that the region with low altitude and flat or low-lying ter-
rain have deeper UWD. However, these places were ideal areas for urban planners to layout 
a large number of buildings, which might further aggravate the pressure of urban water-
logging risk during heavy storm or rainfall season. Thus, increasing the surface gradient 
change within the city reasonably can effectively reduce the UWD and the risk of water-
logging. For example, tilting the urban topography to natural drainage and water storage 
facilities (rivers and lakes) to take maximum advantage their positive ability in hydrology 
process. And it was also a reasonable measure to reduce the height of the road so that 
more runoff could flow into the drainage pipe. Besides, we should make full and dual use 
of landscape pattern and topography, configure more permeable landscapes in low-lying 
areas.

4.4 � Scale effect on correlations between urban waterlogging and impact factors

Multi-scale landscape pattern analysis is widely used in ecosystem service value, urban 
heat island, water quality change, and other fields to better explain the relationship between 
landscape pattern and the environmental indicators (Bai et al. 2020; Song et al. 2020; Wu 
and Lu 2021). Our study also emphasized the scale effect between UWD and its impact 
factors. The regression model could explain 72.3% variation in the UWD at 400 m spatial 
scale, while at 600 m and 800 m, the explanatory power of the regression models dropped 

Table 6   Correlation coefficients 
between water accumulation 
depth and topographic factors 
across four analysis scales

***Represents p value < 0.001. **represents p value < 0.01. *repre-
sents p value < 0.05

Topographic factors Analysis scales

200 m 400 m 600 m 800 m

Elevation  − 0.226**  − 0.166*  − 0.138*  − 0.238**
RE 0.128** 0.055 0.104 0.051
Slope  − 0.109**  − 0.059  − 0.155 0.136
Curvature  − 0.153**  − 0.087  − 0.070  − 0.051
TRI 0.095** 0.062 0.126 0.118
TPI  − 0.155**  − 0.095  − 0.049 0.010
TSI 0.062* 0.130** 0.135* 0.134*
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sharply, to only 32.3% and 19.3%, respectively (Table 5). Besides, comparing the standard 
regression coefficient of each model, we found that the importance of topographic factors 
in the model decreased significantly with the increasing of spatial scale. The correlation 
coefficients between UWD and topographic factors also showed a significant relationship 
at small scales (200 m and 400 m). These all proved that the topography had an important 
influence on the UWD at small scales. In terms of landscape composition, the scale effect 
only existed in the categories of built-up area and urban green space. However, the correla-
tion coefficient between the UWD and the proportion of built-up area was more sensitive to 
the change of scale than the proportion of urban green space. The scale effect of landscape 
configuration was also found in our study, especially the spatial pattern of built-up area. 
With the increasing of spatial scale, the LPI, TE and COHESION of built-up area were 
correlated with UWD stronger. Therefore, in the process of alleviating urban waterlog-
ging risk through landscape reorganization, decision makers should fully consider the scale 
effect of each land cover type especially the built-up area, in order to achieve the maximum 
effects.

4.5 � Limitations and future perspectives

Several limitations should be addressed to better understanding the results. First, the 
impact factors of UWD may be different under the different rainfall conditions. Our study 
only focused on the situation where the return period of rainfall was 50 years. More atten-
tion on rainfall conditions and climate change should be paid in the future work. Second, 
although the statistical analysis using the regular grid as the analysis unit could obtain the 
relationship between the UWD and the explanatory variables, the suggestions based on this 
may bring inconvenience because of the different management units in the actual rectifica-
tion and reform work. Therefore, taking the management unit as the basic analysis unit will 
be better for the application of results. Finally, our research may not be able to reflect the 
urban waterlogging caused by the overloading of the sewage system caused by rainfall due 
to the lack of sewage network data.

5 � Conclusion

Revealing the impact factors of urban waterlogging is of great significance to optimize 
the urban waterlogging prevention and management. In this study, the UWD simulated 
by InfoWorks ICM was used as a dependent variable to characterize urban waterlogging. 
And we conducted a method that combines the Pearson correlation analysis and stepwise 
regression model to investigate the relative contributions of impact factors to urban water-
logging through multi-scale study. There are four conclusions gained in study: (1) In terms 
of landscape composition, the influence of proportion of built-up area on urban waterlog-
ging is the most significant among the five types of land covers, and the second is propor-
tion of urban green space. This suggested that adjusting the proportion of built-up area and 
urban green space is an effective measure to reduce the risk of waterlogging. Meanwhile, 
the UWD results on the road show that the urban drainage network can effectively alleviate 
the local waterlogging. (2) The influence of landscape configuration variables on waterlog-
ging is the most important among the landscape composition, configuration and topogra-
phy. This result indicates that the urban waterlogging can be mitigated by optimizing the 
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spatial configuration of landscape. Average built-up area patch sizes and construct a larger 
single green space with complex shape and high connectivity can reduce the urban water-
logging risk. (3) At small scale, more attention should be paid to the role of topography 
factors, and the risk of urban waterlogging should be mitigated through the rational alloca-
tion of terrain gradient. (4) Across different scales of analysis, the correlation coefficient, 
regression model and its adjusted determination coefficients (Adjusted R2) showed a strong 
scale effect. In this context, it is necessary to carry out multi-scale analysis, determine the 
main factors, and put forward reasonable solutions under the corresponding scales.
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