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Abstract
The aim of this study was to improve our understanding of factors that affect the spatial 
distribution of wildfire occurrences at the regional scale. We employed the random for-
est, boosted regression tree, and genetic algorithm rule-set production models to assess 
the spatial interplay between fire events and climate, topography, and anthropogenic fac-
tors in order to characterize wildfire occurrence in the Zagros eco-region of western Iran. 
We constructed a geospatial database using the historical fires from the period 2007–2020 
and topography, climate, and human related factors. The results demonstrated that human 
activities (i.e., land use and distance from the settlements and roads) contributed 45% to 
the probability model of wildfire occurrence in the study region. The models ranked the 
climate factors (rainfall, temperature, and wind effect) as the second most influential driv-
ers of fire occurrences, whereas topographic features (slope, elevation, and aspect) did not 
significantly influence fire probability in the landscape. Overall model performance was 
assessed with the area under the receiver operating characteristic (AUROC) method that 
showed the superior performance of the RF model in the training phase (AUROC = 0.92) 
and in its ability to predict upcoming fires (AUROC = 0.90). The insights obtained from 
this research can bring into focus both the locations and the types of suppression policies 
that are required to alleviate the effects of the upcoming wildfires in the early twenty-first 
century.
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1  Introduction

The potential occurrences of wildland fires threaten terrestrial ecosystems in many parts 
of the globe (Pausas and Keeley 2009; Swain 2021). Fire damage can be reduced or even 
be avoided by exploring wildfire-ecosystem relationships. Estimating the probability that a 
fire may occur provides the basis for probability mapping, land classification, firefighting, 
resource allocation, and landscape management (Hyde et al. 2013; Zhang et al. 2019a).

Presently, wildfire research has been increasingly fueled by advances in geographic 
information systems (GIS) and remote sensing (Ghorbanzadeh et  al. 2019), along with 
the improvement in data availability and computation power (Jaafari et  al. 2019a; Elia 
et al. 2020). Despite these advances, there is a shortage of knowledge of the connectivity 
between wildfires and different geo-environmental factors in many rugged landscapes of 
large extents around the world (Pourtaghi et al. 2016; Spano et al. 2021; Tavakkoli Piral-
ilou et al. 2022). Further, previous works have rarely focused on additional complexities 
(e.g., human–environment interactions) associated with the predictive modeling of wild-
fires (Hong et al. 2019; Jaafari et al. 2019a, b). Developing and collecting the input data, 
i.e., factors that directly or indirectly cause wildfire occurrence in different fire-prone land-
scapes, remains a difficult task that discourages and limits spatially explicit mapping of 
wildfire susceptibilities.

Causative factors of wildfire have been well researched and formalized and fall into the 
four main groups of climate, land cover, topography, and anthropogenic factors (Adab et al. 
2018; Rodrigues et al. 2018; Hong et al. 2019; Spano et al. 2021; Tavakkoli Piralilou et al. 
2022). Whereas climate-related factors (e.g., wind, drought, rainfall, lightning, and evapo-
transpiration) largely affect the frequency and intensity of wildfire occurrence (Dennison 
et  al. 2014; Rasooli et  al. 2021), topographic features (e.g., altitude, slope, and aspect) 
affect fire ignitions mostly indirectly (Hong et  al. 2019; Naderpour et  al. 2021) through 
changes to the vegetation, local climate, and accessibility to people (Adab et  al. 2013, 
2018). Land cover (i.e., vegetation) strongly affects fire occurrence and fire spread via fuel 
type, fuel load, and moisture content (Chuvieco et al. 2010; Adab et al. 2018; Sari 2021). 
Finally, humans can alter natural local conditions (Li et al. 2021; Lan et al. 2021; Liu et al. 
2022) in ways that may either intensify or suppress wildfire occurrences (Gralewicz et al. 
2012; Viedma et al. 2018; Naderpour et al. 2021).

Being able to quantify the relative importance of different causative factors and their 
associations with historical fire events is central to an improved understanding of under-
lying patterns of wildfire susceptibilities that facilitates the development and adaptation 
of more efficient fire management strategies. The current approach to predictive modeling 
of wildfire, however, is an extremely subjective approach that requires a significant time 
investment, typically refers to expert knowledge (Goleiji et  al. 2017; Sari 2021), applies 
multiple methods (Pourtaghi et  al. 2016; Jaafari and Pourghasemi 2019; Jaafari et  al. 
2019a, b), and often uses trial-and error processes. These disadvantages have provided the 
impetus for new studies to develop new approaches for more efficient field inspections and 
the incorporation of advances made possible by big data to enhance our understanding of 
the connectivity between landscape characteristics and wildfire probabilities.

Several factor selection techniques have been suggested in the wildfire literature for the 
identification of explanatory factors that are closely associated with wildfire occurrences. 
The inclusion of too many conditioning factors, however, may introduce inherent noise that 
decreases the prediction accuracy. Equally, the use of a narrow range of explanatory fac-
tors will likely fail to provide sufficient information to build predictive models and make 
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accurate predictions. Several researchers suggested the use of factor selection methods as 
a crucial pre-processing phase for every wildfire prediction modeling project (Pourtaghi 
et al. 2016; Jaafari et al. 2018), because factor selection practices safeguard the predictive 
system from the inclusion of those factors that are not relevant and might even decrease 
the accuracy of model outputs (Jaafari et al. 2018). Factor selection techniques are gener-
ally separated into three groups: (1) factor ranking methods such as random forest (RF) 
and boosted regression tree (BRT) that are used for quantifying the importance of each 
factor (Pourtaghi et al. 2016; Jaafari and Pourghasemi 2019), (2) correlation analysis meth-
ods such as evidential belief function, weight of evidence, frequency ratio, and step-wise 
assessment ratio analysis (SWARA) (Jaafari et  al. 2017, 2019a, b), and (3) factor subset 
selection methods such as Gain Ratio, and Relief-F (Jaafari et al. 2018).

Here, we present a comparative analysis of three predictive models derived from 
machine learning techniques, i.e., RF, BRT, and genetic algorithm rule-set production 
(GARP), to rank different geo-environmental factors known to influence fire occurrence 
and to predict the probability of fire occurrence in a mountainous eco-region in western 
Iran where wildfires are recurrent. The main contributions and novelties of the current 
study are as follows:

•	 General by applying the state-of-the-art machine learning methods to a typical fire-
prone landscape, the study enhances our understanding of wildfires and the likely fac-
tors that determine its occurrence.

•	 Methodical this is the first application of the GARP model in wildfire modeling and 
factor ranking, enabling direct comparisons with results from RF and BFT models.

•	 Regional improved knowledge of underlying patterns of wildfire occurrences in the 
Zagros eco-region of Iran. Our findings are useful for adopting fire management strate-
gies adjusted to the local conditions, and bring into focus both the locations and the 
types of suppression policies that are necessary to mitigate the impacts of the future 
wildfires.

•	 Global Our study extends the scope of fire behavior inferences beyond America, 
Europe, and Oceania/Australia to an Asian country, providing the basis for government 
authorities and scientists to enhance preparedness of human communities toward fire 
safety techniques.

2 � Study area

Our study area is located in the central highlands of the Zagros Mountains of Iran and 
extends between latitudes 31° 9′ N to 32° 48′ N and longitudes 49° 28′ E to 51° 25′ E 
between 783 and 4178 m a.s.l. elevation and covers an area of approximately 16,532 km2 
(Fig. 1). This area is a typical fire-prone portion of the Zagros eco-region where many 
wildfires occur. The area enjoys a Mediterranean climate with warm and dry summers, 
below-freezing winter temperatures, and mean annual temperature between 5 and 16 °C. 
Mean annual precipitation ranges between 250 and 1400  mm that mostly falls during 
the autumn and winter months between November and March. Land use/cover patterns 
are strongly shaped by elevation and within each vegetation zone, aspect-induced micro-
climate permits different vegetation communities and land uses at small scales. Gen-
erally, the area exhibits a range of vegetation conditions that includes grasslands and 
scattered forests dominated by Quercus brantii with a mixture of several broadleaved 
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species (e.g., Amygdalus scoparia, Pistacia vera, Acer monspessulanum, Pyrus glabra, 
Crataegus microphylla, Fraxinus rotundifolia, Lonicera nummulariifolia). Most of the 
past wildfires that have occurred in the Zagros eco-region were either due to a combi-
nation of low rainfall, drought occurrences or anthropogenic phenomena (Jaafari et al. 
2017, 2019a). Although wildfires are a recurrent feature of this eco-region, few studies 

Fig. 1   Location of the study area with locations of observed wildfire sites that occurred between 2007 and 
2016 (used for model training) and between 2017 and 2020 (used for model validation) (A and B are field 
photographs of recent wildfires in the study area)
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have been conducted to predict the probability of wildfire occurrences and to quantify 
the main drivers of wildfire.

3 � Data used

While fire data recorded over eight years between 2007 and 2014 have been used previ-
ously by Jaafari et al. (2017) and (2019b), these data were supplemented with recent field 
survey data (2015–2020) for this study. These data include the spatial location of wildfires 
and a set of different geo-environmental and anthropogenic factors that serve as wildfire 
predictors and are described in more detail below.

3.1 � Historical fires

Identifying and mapping the historical locations of wildfires is crucial for exploring the 
association between fire probability and the geo-environmental factors. Current approaches 
typically rely on remotely sensed satellite image data. The Moderate Resolution Imag-
ing Spectrometer (MODIS) active fire products have been widely used for detecting fire 
events (Giglio et  al. 2003; Ghorbanzadeh et  al. 2019). MODIS has a 1 km pixel resolu-
tion and detects active fires through uses thermal data anomalies at the time the satellite 
passes over the ground. The MODIS data are often validated in terms of the records of fire 
occurrence and area burned using the finer resolution sensors such as Landsat and ASTER. 
For this study, we compiled a fire inventory map based on the chronological documents 
of the administrative office of natural resources of the Chaharmahal and Bakhtiari Prov-
ince related to wildfires and multiple field surveys. For further verification of the time and 
locations of fire events, we used data from the MODIS active fire products obtained from 
the NASA’s Terra MODIS and Aqua MODIS satellites (https://​modis.​gsfc.​nasa.​gov) and 
Landsat images (https://​lands​at.​visib​leear​th.​nasa.​gov) (Zhang et  al. 2019b; Zhao et  al. 
2021). Since many of the fires were small, we omitted any fires < 0.3  ha in extent. The 
value of < 0.3 ha was adopted after considering minimum (0.07 ha), maximum (12.61 ha), 
and average (5.39 ha) areas of historical fire events across the study area. We thus used 164 
confirmed fire events that occurred during the period between 2007 and 2020 as the basis 
for the inventory map (Fig. 1). Records for each of the confirmed fire events include the 
geographical coordinates, date of the fire, and the size of the burned area.

3.2 � Predictor factors

To select the predictor factors (i.e., wildfire influencing factors), an initial study of local 
wildfire properties and their spatial distribution was conducted. Then, relying on other 
peer-reviewed wildfire modeling research (Chuvieco et  al. 2010; Carmo et  al. 2011; 
Oliveira et al. 2012; Satir et al. 2016; Adab et al. 2018; Viedma et al. 2018; Zhang et al. 
2019a; Ghorbanzadeh et al. 2019; Sari 2021) and data availability, the final set of predictor 
factors was selected: Slope degree, aspect, elevation (m), land use, mean annual rainfall 
(mm) and temperature (°C), normalized difference vegetation index (NDVI), wind effect, 
and distance (m) from human settlements, streams, and roads. These factors were gener-
ated using the 10-year data from 2007 to 2020 (Fig. 2). Topographic features (i.e., slope, 
aspect, elevation) were derived from a 30-m resolution digital elevation model (DEM) 
collected from ASTER Global DEM Explorer tool (http://​earth​explo​rer.​usgs.​gov) (Zhang 

https://modis.gsfc.nasa.gov
https://landsat.visibleearth.nasa.gov
http://earthexplorer.usgs.gov
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et  al. 2019c). Using the Landsat satellite images, we provided the land use and mean 
annual NDVI maps for the study area (Chen et al. 2021; Quan et al. 2022). The climate fac-
tors (i.e., temperature, rainfall, wind speed, and wind direction) were computed using the 
20-year data collected from the national meteorological organization of Iran (Chen et al. 
2022; Yin et al. 2022). Wind effect that is a non-dimensional factor combining wind speed 
and wind direction was produced within the SAGA GIS software. The distance maps were 
generated by buffering streams, roads, and settlements areas within the study area using 
the Euclidean distance tool available in the ArcGIS software that computes the distance of 
each fire cell to the closest cell depicting road, river or settlement. The information related 
to all factors was integrated and manipulated in a GIS environment and then transformed to 
raster format at 30 m resolution. A detailed description of the significance of each predictor 
factor on wildfire occurrences is available in the corresponding literature (e.g., Adab et al. 
2013, 2018; Pourtaghi et al. 2016; Zhang et al. 2019a; Hong et al. 2019; Elia et al. 2020; 
Liu et al. 2020, and references therein).

4 � Probability modeling

Modeling of wildfire probability deals with estimating the likelihood of wildfire occurrence 
and results in a probability value between 0 and 1 (i.e., probability values), with greater 
probability values indicating a greater probability for a fire to occur. Probability modeling 
is typically based on exploring the spatial association between wildfire events that have 
occurred in a given landscape and different geo-environmental and anthropogenic factors 
using a data-driven method (Pourtaghi et al. 2016). The general work flow of the modeling 
process proposed in this study for modeling of wildfire probability and identifying the most 
influential factors is shown in Fig. 3 and described in the following subsections.

4.1 � Background of the methods used

Based on an initial analysis of the many methods used in the literature, we selected three 
machine learning methods that can efficiently elucidate relationships among predictor fac-
tors and would be most appropriate for future applications. Here, we briefly describe these 
methods and refer to the corresponding literature (Breiman 2001; Stockwell 1999) for a 
more detailed description of each method.

RF uses Breiman’s “bagging” idea to integrate a collection of separately trained binary 
decision trees with controlled variance to perform a classification task. RF can handle 
both continuous and categorical datasets and is not very sensitive to over-fitting, yielding 
promising results in many fields of science (Shabani et al. 2021). In a wildfire modeling 
using the RF model, the training dataset D is split into m subsets of the samples D1, D2, 
…, Dk using the bootstrap resampling method. Then, the m decision trees are generated 
corresponding to the m subsets and a random vector k of the predictor factors. Finally, 
the probability of wildfire occurrence is calculated by estimating the proportion of the 
decision trees that predict the wildfire occurrence among all the decision trees within the 
RF algorithm. In this study, we used the random-forest package (Breiman 2001) for the 

Fig. 2   Predictive factors used in this study: a elevation, b aspect, c slope, d rainfall, e temperature, f wind 
effect, g land use (1: Forest, 2: Good range, 3: Poor range, 4: Farmland, 5: Wetland, and 6: Irrigated farm-
ing), h NDVI, i distance from settlements, j distance from rivers, and k distance from roads

▸
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implementation of RF model; the computational process was carried out in the R statistical 
software. For the minimum out of-bag (OOB) error of the RF model, we tuned the number 
of decision trees and factors tried at each split on 1000 and 3.

BRT is a combination of regression and boosting techniques intended to reduce the 
weakness of the single regression tree methods. No prior data transformation or omission 
of outliers is required for BRT, which can easily handle different types of environmental 
factors and spatial data. Further, this method can fit complex nonlinear relationships such 
as natural hazards, and efficiently explore the interaction effects among predictors. Here, 
we performed the BRT model using the gbm package within the R 3.0.2 statistical software 
(Ridgeway 2007).

GARP is a machine learning method based on a genetic algorithm that classifies data 
using an iterative procedure of rule (if–then) selection, assessment, testing, and integra-
tion or rejection (Feria and Peterson 2002). Originally developed for species distribution 
modeling (Stockwell 1999), this method was adopted in recent years for natural hazards 
modeling (Darabi et al. 2019; Rahmati et al. 2019). GARP predicts the probability of inci-
dence of an event using the historic presence-only occurrence records in relation to contin-
uous environmental factors, providing an estimate of future probability of occurrence. For 
this study, we used the GARPTools package within the R 3.0.2 statistical software for the 
implementation of the GARP model. Table 1 lists the optimized parameters that we used to 
perform the GARP model.

4.2 � Model training and validation

To apply the RF, BRT, and GARP models for wildfire modeling and mapping, we split the 
historical fires detected within the study landscape into two groups such that the 115 fires 
(70% of all fires) that occurred in the period between 2007 and 2016 were used for training 
the models and 49 fires (30% of all fires) that occurred between 2017 and 2020 were used 
for validation. Along with these datasets, 164 non-fire locations were randomly sampled 

Fig. 3   Flowchart detailing the methodology employed in this study
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from the unburned/unburnable portions of the study area and were used for producing the 
final training and validation datasets (Xie et al. 2021a). This process produced a total of 
230 records for the training and 98 records for the validation datasets.

The receiver operating characteristic (ROC) curve was used to evaluate the goodness-
of-fit (i.e., training performance) and predictive capability (i.e., validation performance) of 
the models. The x-axis of ROC curve signifies the false positive rate (1-specificity) and the 
y-axis specifies the false negative rate (sensitivity). An area under curve (AUC) = 1 repre-
sents 100% sensitivity and 100% specificity and is the best possible outcome. AUC values 
of > 0.9 indicate an outstanding performance of the predictive model (Xie et al. 2021b).

4.3 � Probability mapping

After successful training and validation, the resulting predictive models were applied to 
the entire research landscape to generate the landscape-level probability values. To gener-
ate the final wildfire probability maps, we classified the probability values derived from 
each model into different probability levels by means of the geometrical interval classifica-
tion method. Five classes (i.e., very low, low, moderate, high, and very high) were adopted 
to the probability maps after Pourtaghi et al. (2016) and Hong et al. (2019). Finally, the 
probability maps were analyzed and the land area allocated to each probability class was 
summed.

5 � Results

5.1 � Factor importance

The three models tested in this study provided a rank of relative importance for each wild-
fire influencing factor (Table 2). All three models consistently identified distance to human 
settlements, NDVI, and distance to roads as the most important factors, corresponding to 
more than 50% of the total contribution to wildfire probability. Conversely, distance from 
streams and slope were considered least influential (less than 3% each) affecting the prob-
ability of wildfire occurrence on the landscape. In the case of other factors, the models did 
not agree on their relative importance. For example, while the BRT model ranked aspect 
as the fifth influential factors, the other two models gave a much lower influence/weight to 
this factor.

Table 1   Optimization of the 
GARP parameters

Parameter Value

Runs 50
Convergence limit 0.01
Maximum iterations 500
Best subset selection parameters
Omission measure type Extrinsic-soft
Omission threshold 25
Commission threshold 55
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5.2 � Model performance

The best training performance of the three predictive models of wildfires was achieved 
by the RF model (ROC-AUC = 0.924; Fig. 4a), followed by GARP (ROC-AUC = 0.881) 
and BRT (ROC-AUC = 0.821). The results of the validation performance resulted in 
the same ranking of the models. RF was the most powerful model for the prediction 
of wildfires (AUC = 0.904), followed by GARP (AUC = 0.849) and BRT (AUC = 0.748) 
(Fig. 4b). The variance and covariance between the fire and non-fire grid cells estimated 
using the OOB error index (Fig.  5) showed an accuracy rate of 90.82%, indicating a 
near perfect performance of the RF model for classifying non-fire and fire grid cells 
over the landscape.

Table 2   Relative importance (%) 
of influencing factors extracted 
using GARP, BRT, and RF

The most influential factors are shown in bold

Factor GARP BRT RF

Distance from settlements 26.5 25.4 27.1
NDVI 16.3 14.2 17.3
Distance from roads 11.2 12.3 12.5
Rainfall 9.8 9.4 7.6
Elevation 8.4 3.7 5.5
Land use 7 5.7 7.4
Temperature 6.3 7.2 9.6
Wind effect 5.5 8.3 6.4
Aspect 3.9 8.5 2.7
Distance from streams 2.6 2.4 2.5
Slope 2.5 2.9 1.4

Fig. 4   ROC curves and AUC values of the models in the training phase (a) and validation phase (b)
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5.3 � Probability maps

The probability values derived from the GARP model that ranged from 0.02 to 0.98 were 
grouped into five probability classes (Fig. 6a). This model delineated approximately 45% 
and 40% the land area into the very low to low and high to very high probability classes, 
respectively (Fig. 7). The application of the BRT model led to probability values ranging 
from 0.2 to 0.97 with an overestimation of portion of the landscape (~ 60% of land area) 
classified into the high and very high probability to fire occurrences compared to other two 
models (Figs. 6b and 7). The probability values derived from the RF model were between 
0.07 and 1 and were more evenly distributed across all probability classes over the land-
scape (Figs. 6c and 7).

6 � Discussion

Our earlier research in the Zagros eco-region (Jaafari et al. 2017, 2018, 2019b; Jaafari and 
Pourghasemi 2019) led us to specifically focus on quantifying the effects of different geo-
environmental and anthropogenic factors on the probability of a fire to occur and how the 
inclusion/exclusion of different variables would change the results. In this study, we tested 
the performances of three machine learning methods for developing wildfire predictive 
models. Whereas the RF and BRT models have a history of widespread use in wildfire 
modeling (Pourtaghi et al. 2016), this study applied the GARP model for the first time in 
the context of wildfire modeling. GARP utilizes a stochastic approach based on a genetic 
algorithm that allows different outputs to be run simultaneously to obtain a near optimum 
result (Stockwell 1999). While this advantage has enabled the GARP model to successfully 
outperform several other machine learning methods in other modeling projects (Darabi 
et al. 2019; Rahmati et al. 2019), our comparative study revealed that the RF model pro-
vided slightly better training and validation performances than the GARP model. The RF 
model inherently benefits from several important features (Ließ et al. 2012) that make this 
model a suitable tool for the prediction of wildfires: (1) RF is a straightforward learning 
machine that can easily be coupled with a GIS; (2) RF has the ability to handle very high-
dimensional datasets with discrete and continuous factors, (3) during the training phase 
of the RF model, interactions among input factors can be detected, (4) RF is capable of 

Fig. 5   The error rate of the RF 
model (OOB: out of bag, 0: 
absence fire, and 1: presence of 
fire). OOB estimate of error rate: 
9.18%; model accuracy: 90.82%
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Fig. 6   Probability maps of wildfire occurrence produced using a GARP, b BRT, and c RF

Fig. 7   Distribution of probability 
classes in the four wildfire prob-
ability maps
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capturing nonlinear relationships among the input factors, (5) the computational cost is 
low and the training speed is fast, and (6) RF achieves a high level of quality performance 
while being less prone to overfitting.

Although the superiority of the RF model over other models has been acknowledged by 
different authors (Oliveira et al. 2012; Valdez et al. 2017), Pourtaghi et al. (2016) reported 
that BRT out-performed RF predicting upcoming fires. Pourtaghi et al. (2016) attributed 
these results to the nature of BRT that integrates the strengths of regression trees and 
boosting to provide enhanced predictive performance. From these divergent results, we are 
inclined to conclude that the spatially explicit modeling using machine learning techniques 
are perhaps site-specific and likely depend on the factors included in the geospatial data-
base that the models are built upon.

Although the probability of wildfire occurrences is strongly dependent on the local 
climate (Stocks et  al. 1998; Gillett et  al. 2004; Flannigan et  al. 2009; Wu et  al. 2015), 
anthropogenic influences have been increasingly identified as the main driver of wildland 
fires across the world (Syphard et  al. 2008; Vilar et  al. 2010; Oliveira et  al. 2012; Col-
lins et al. 2015). As a consequence, climate factors (e.g., rainfall, temperature, and wind 
effect) contribute less to empirical models predicting fire probability across the landscape 
than climatic variables, despite ongoing climate change over the past years. Similarly, our 
results show that the contribution of individual human-related factors exceeded the total 
contribution of climate- and topographic-related factors in the models of wildfire probabil-
ity. Human-related factors in this study that accounted for human infrastructure (e.g., set-
tlements, roads) and human-created land-use types (e.g., agriculture) contributed approxi-
mately 45% to the model of wildfire probability in this study. In contrast to previous works 
that relied on data for the period from 2007 to 2014 and limited the influence of human-
related factors on wildfire occurrence to the analysis to distance to national roads, which 
failed to document a significant association between proximity to roads and intensity of 
fire occurrence works (Jaafari et  al. 2017, 2018, 2019b; Jaafari and Pourghasemi 2019), 
the expanded current database included the a layer of local roads and clearly showed a sig-
nificant effect of human activities along these roads that resulted in increased probability 
of fire occurrence. Specifically, distance from human settlements and roads jointly contrib-
uted approximately 38% to the model of wildfire probability in this study area, lending sup-
port to previous studies that showed that human activities are a strong driver of increasing 
fire occurrence (Vilar et al. 2010; Syphard et al. 2008; Collins et al. 2015).

The strength of the relationship between wildfires and roads seems to be dependent 
upon the region, the scale of analysis, and human population densities and activities (Col-
lins et al. 2015). For example, in the densely poulated Santa Monica Mountains in Cali-
fornia, distance to roads was the strongest factor of fire occurrence (Syphard et al. 2008) 
whereas this was not the case in Chinese boreal forests where climate-related factors 
were more strongly associated with fire occurrence than roads (Wu et al. 2014). Increased 
human infrastructure and local road density does not necessarily result in greater wildfire 
occurrence, however; In fact, the probability of fire occurrence may even be lower close 
to human settlements and roads than at greater distances to human infrastructure if fire 
suppression policies exist and are enforced and strengthened by well-equipped firefighting 
services (Gralewicz et al. 2012). Thus, in cases where prevention measures that targeted 
wildfire-related human activities were successfully implemented in Portugal, climate-
related factors once again replaced human-related factors as the most important factors 
that controlled the probability of wildfire occurrence (Rodrigues et al. 2018). We interpret 
the strong association of human-related factors with past wildfire occurrences in our study 
area with Mediterranean climate as reflecting mostly unintended fire initiations following 
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increased human activities or landscape modifications. If so, increased human influences 
on wildland landscapes should be accompanied by appropriate safety measures (e.g., moni-
toring, fire stations) that can be readily called upon to address such wildfires.

Although the topographic factor elevation was more strongly associated with wildfire 
occurrence than the topographic factors slope and aspect, which has also been seen in Can-
ada (Gralewicz et al. 2012), the additional contribution of topographic factors to wildfire 
occurrence in the Zagros eco-region was limited after accounting for human-related and 
climatic factors. This weak additional contribution of topographic factors has also been 
reported for the Hyrcanian eco-region of northern Iran (Adab et  al. 2018) and several 
European countries (Oliveira et al. 2012; Viedma et al. 2018) whereas other authors have 
found a strong correlation of topography with fire occurrence (Carmo et  al. 2011; Satir 
et  al. 2016). In general, however, because topography typically has a strong association 
with human-related and climatic factors (e.g., strong relation of elevation with temperature 
or land use), accounting for the effects of human-related factors on fire occurrence likely 
diminishes the additional contribution of topography in empirical models of fire probabil-
ity that incorporate many correlated factors.

Overall, our findings may be useful for adopting fire management strategies that are 
adjusted to local conditions. These strategies may include differential prevention measure-
ments with respect to the main drivers in different portions of the landscape, regulation 
of human activities in areas that are more fire-prone, fuel reduction measures adjacent to 
the human settlements and along rivers, and an informed allocation of public resources 
and support systems in hazardous areas prior to the start of the main fire season. Finally, 
it worth noting that due to significant anthropogenic activities in the Zagros eco-region, 
the zones of probability to wildfire occurrence delimited by these three models are only 
reflective of the time period of the study and should not be understood to persist unchanged 
for a long time. Thus, wildfire probability maps should be periodically updated for more 
informed and timely fire prevention.

7 � Conclusions

Using three machine learning methods, we showed how different geo-environmental and 
anthropogenic factors interact to determine wildfire probability in a mountainous landscape 
in western Iran. Anthropogenic influences such as land use and distance from the settle-
ments and roads had a relative contribution of 45% in models predicting the probability 
of wildfire occurrence in the study area. The models ranked climate factors as the second 
most influential drivers of fire occurrences, whereas topographic features only contributed 
an additional 10–15% to the fire probability model after accounting for anthropocentric and 
climatic factors in the model. We conclude that wildfire dynamics in the Zagros landscape 
are now strongly influenced by human activities and infrastructure and suggest that future 
fire management strategies should be directed to enhance preparedness of human commu-
nities through the application of fire safety techniques. Our approach to develop spatially 
explicit models of the probability of wildfire occurrence throughout large landscapes can 
identify high-risk areas to which scarce resources can be deployed for efficacious suppres-
sion activities to prevent fire ignitions outright and to develop suppression policies (e.g., 
monitoring protocols) to reduce the probability of future wildfire occurrence where fires 
are most likely to occur.
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