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Abstract
The rainfall can contribute significantly to landslide events, especially in hilly areas. The 
landslide susceptibility map (LSM) usually helps to mitigate disasters. However, how 
to accurately predict the susceptibility of landslides is still a difficult point in the field 
of disaster research. In this study, five advanced machine learning technologies (MLTs), 
including the Light Gradient Boosting Machine, extreme gradient boost, categorical boost-
ing (CatBoost), support vector machine, and random forest, are utilized to landslide sus-
ceptibility modeling and their capabilities are compared through evaluation indicators. 
The northern part of Yanping, Fujian Province, China, is selected as the research object, 
because this area experienced mass landslide events due to extremely heavy rainfall in June 
2010, resulting in many casualties and a large number of public facilities destroyed. The 
influencing factors for landslides, namely topographic, hydrological, geologic and human 
activities, are prepared from various data sources based on the availability. Through the 
analysis of the actual situation in the study area, 13 suitable landslide condition factors 
are considered and the availability of relevant factors is checked according to the multicol-
linearity test. The landslide inventory including 631 samples in this study area is obtained 
from historical information, satellite data in Google earth and performed field surveys. The 
landslide inventory is randomly divided into two datasets for model training and testing 
with a 7:3 ratio. The area under the curve of ROC, accuracy rate, Kappa index and F1 score 
are applied to compare the MLTs capabilities. In this paper, the results of factor importance 
analysis show that the first three important condition factors are the distance to faults, the 
distance to drainages and the slope. According to the LSMs, in the study area, the central 
and western regions are at high and very high landslide susceptibility levels, while almost 
all the eastern and northeastern regions are at medium and low landslide susceptibility lev-
els. The CatBoost model is a very promising technology in landslide research according 
to the evaluation results, which means that for landslide susceptibility research, gradient 
boosting algorithms may get more accurate results and show better prospects in the future. 
Finally, the results of this paper will contribute to environmental protection to a certain 
extent.
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1  Introduction

Landslide is a main geological event triggered by rainfall, earthquakes and human con-
struction activities (Malamud et al. 2004; Li et al. 2020a, b; Yunus et al. 2020), and land-
slide disasters not only threaten the safety of human life and property, but also damage 
the ecological environment (Froude and Petley 2018; Li et al. 2020a, b). Therefore, many 
researchers have studied landslide susceptibility and its spatial distribution map (Korup 
and Stolle 2014). Mastering the mechanism of landslide occurrence and drawing a map 
of landslide-prone areas is of great significance to land management and urbanization 
construction.

Landslide susceptibility refers to the likelihood that a landslide event will occur under 
certain combinations of conditions (Guzzetti et al. 2007; Constantin et al. 2011). With land-
slide susceptibility mapping (LSM), it is possible to predict the areas most likely to experi-
ence landslides. In the past, GIS-based methods have been utilized by many researchers. 
However, some methods are subjective and can cause many human errors. The quantitative 
method is an objective judgment based on the geological conditions and influencing factors 
of the landslide, such as analytic hierarchy process (Yalcin et al. 2011), logistic regression 
(Sassa et al. 2017) and regression spline (Conoscenti et al. 2015). There are many factors 
that can cause landslides, which greatly increases the difficulty of explaining the causes 
and mechanisms of landslides. Therefore, accurate prediction of landslide susceptibility 
remains a difficult task, and an excellent modeling method is essential for the establishment 
of LSM. Machine learning technology (MLT) has been more and more widely utilized in 
LSM with the development of mathematical statistics theory and computer technology. 
Compared with traditional technical methods, MLT has the advantage of being able to han-
dle complex and high-dimensional nonlinear data sets; for example, random forest (RF) 
and decision trees (DTs) have achieved good results in prevention of geological hazards 
and environmental monitoring applications. MLT has been utilized in LSM (Taalab et al. 
2018; Pham et al. 2020), terrain classification (Are et al. 2015) and flood hazards research 
(Hong et al. 2018; Costache et al. 2020; Avand et al. 2021; Yariyan et al. 2020).

Although MLT performs well in disaster modeling, there is still a controversy about 
which method is most suitable for predicting landslide-prone areas (Lee et al. 2002; Car-
rara and Pike 2008). Different MLTs have different advantages and disadvantages. There-
fore, it is very necessary to carry out research work on these advanced methods and 
techniques, including their quantitative and systematic comparison, in order to obtain rea-
sonable conclusions; on the other hand, models with high prediction accuracy (even if the 
prediction accuracy increases by 1% or 2%) can indeed generate more accurate landslide 
susceptibility areas (Zhang et al. 2019a, b; Mason and Graham 2002; Jebur et al. 2014), so 
it is necessary to use more higher performance models to accurately predict landslide sus-
ceptibility areas. In the past few years, gradient boosting algorithms have become more and 
more popular among researchers due to their excellent predictive capability and robustness 
(Azizi and Hu 2020). The CatBoost, XGBoost and LightGBM, as for very novel methods, 
have been utilized in other fields. However, they are still rarely utilized in landslide suscep-
tibility research and have not been widely studied.

The main purpose of this paper is to develop five models (i.e., RF, SVM, XGBoost, 
LightGBM and CatBoost) to map landslide susceptibility in northern Yanping, Fujian 
Province, China, which is most severely affected by the 618 event. The area under the 
ROC curve (AUC), the accuracy rate (ACC), the Kappa index and the F1 score are applied 
to evaluate the capabilities of the MLTs, and the main landslide conditioning factors are 
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determined through the factor importance analysis. In this paper, these five MLTs are uti-
lized for the first time in landslide susceptibility studies in the hilly area of Fujian Prov-
ince, China. Furthermore, few related papers have dealt with the performance comparisons 
of novel gradient boosting algorithms (such as CatBoost and LightGBM) with the previ-
ously popular MLTs. This study also demonstrates that the gradient boosting algorithm 
may be more accurate for landslide susceptibility studies and may show better prospects 
in the future. Finally, the results of this paper can provide a certain degree of reference for 
local disaster risk management and control and can also provide positive inspiration for the 
future decision-making and planning of local government departments.

2 � Study area and geological setting

On June 18, 2010, large-scale geological events caused by heavy rainfall mainly occur in 
the upper reaches of the Minjiang River. In this disaster events, especially the northern part 
of Yanping is the most severely affected. Since the number of geological events reaches 
its peak on June 18, 2010, and began to decrease after the 18, the local government and 
related media refer to this disaster event as the event of June 18, abbreviated as the 618 
event. The study area is located in the north-central part of Fujian province between 26°41’ 
to 26°46’N and 118°06’ to 118°12’E (Fig. 1). Jianxi River is the only river in this region, 
which is an upper tributary of the Minjiang River, and it spans the entire Yanping area. The 
study area covers 34.54 km2 of the most severely affected area in the 618 event in 2010.

2.1 � Rainfall

The study area is located in the subtropical monsoon climate zone with abundant rain-
fall throughout the year. According to the 17-year record (1997 ~ 2013) of rainfall data 
from previous literature data (Yang 2016), the annual average rainfall in the study area 
is 1638 mm, and the average monthly rainfall in June exceeded 300 mm (346 mm). It is 
worth emphasizing that the maximum process rainfall amounts to 705.4 mm in June 2010, 
more than double the historical rainfall during the same period. The annual average tem-
perature is about 19.3 °C, and average temperature of the hottest month and coldest month 
is 28 °C (July) and 9 °C (January), respectively (Fig. 2).

From June 14 to 25, 2010, due to the combined effects of high-altitude troughs, low 
vortex shear and ground stationary fronts, long-term continuous heavy rains occurred in 
the upper reaches of the Minjiang River, leading to regional group-occurring landslides 
and debris flow disasters. Based on incomplete statistics, the disaster causes 64 deaths, 
7 missing and severe damage to water conservancy, electricity, roads and communication 
facilities. The direct economic loss amounted to 6.828 billion RMB.

In the study area, there are obvious regional differences in rainfall intensity. Figure 3 
shows the daily rainfall records of the six rain gauge stations (Xiayang, Yanfu men, Shili 
an, Shaxi kou, Dafeng and Taiping) near the study area from June 8 to June 20. The daily 
rainfall peaked on June 14 and June 18, and the rainfall intensity began to decrease sig-
nificantly after June 18. On June 14, 2010, the daily rainfall at Shaxi kou rain gauge sta-
tion is 238.5  mm. Particularly within one hour from 9:00am to 10:00am, the rainfall 
reached 49.5  mm, which far exceed the extreme heavy rain level (36  mm), leading to 
regional disaster events occur in the Shaxi kou area at this time. The hourly rainfall meas-
ured by Xiayang rain gauge station reaches 37.0 mm (10:00am ~ 11:00am) and 45.5 mm 
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(11:00am ~ 12:00am), respectively, which reach the extreme heavy rain level, and large-
scale disasters also occurred in the Xiayang area in the period. The occurrence of geologi-
cal events and rainfall condition are positively correlated to a certain extent. According to 
documents, there are more landslide events in 1998, 2006, and 2010, for which the annual 
rainfalls are 2182  mm, 1897  mm, and 2814  mm, respectively. Particularly in 2010, the 
annual rainfall reaches the highest rainfall value in the past 20  years, which causes the 
group-occurring geological events flows in this region.

Fig. 1   Landslide inventory map and location of the study area
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2.2 � Geological setting

In the study area, the terrain in the northwest is higher than that in the southeast. It is 
located on the second uplift belt of the neocathaysian structural system. The tectonic 
movement is dominated by cathaysia structure and neocathaysian structural system. The 
neocathaysian structure system is composed of compound folds, compressive or com-
pressive torsion fractures, such as Hulushan anticline, Xiqin syncline and Yanshan fault. 
The study area belongs to terrain of middle and low mountains hilly. The highest moun-
tain is Mount Mangdang in the middle of the area, with an elevation of about 1363 m.

Fig. 2   Average rainfall and temperature in Yanping, Fujian, from 1997 to 2013

Fig. 3   Daily rainfall intensity and cumulative rainfall intensity measured by six rainfall gauge stations in 
Yanping from June 8 to 20, 2010
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The main lithology in this area is mostly granite, volcanic rock, Pre-Sinian schist, and 
gneiss. Among them, the mineral components of igneous rock are mainly quartz, feldspar 
and biotite. The structure of this kind of rock mass is massive, and it has very high hard-
ness and strong resistance to weathering. The metamorphic rocks in the study area are 
mostly granulite and schist, and biotite, muscovite, veinlet or banded feldspar are the main 
mineral components in the metamorphic rocks. Because there are many easily weatherable 
substances in this type of lithology, the strength of the lithology is generally poor, and it 
is easily weathered under the influence of temperature difference, rainfall and other fac-
tors, resulting in the development of internal fissures. With the continuous development 
of fissures, the rock mass is eventually decomposed into strongly weathered or completely 
weathered materials, which leads to the fact that the surface of the hillside in the study area 
is mostly covered with residual clay of the Quaternary period. The soil type of the local 
area is one and only. According to the results of field investigation and interviews with 
local people, the soil type is mainly red soil. The soil depth is generally 0.4 ~ 6 m. The local 
government has strict protection policies for vegetation. Therefore, most of the local area is 
covered with vegetation.

3 � Methodology

Figure 4 shows the photographs of landslides in the study area. Figure 5 shows the overall 
flowchart of this study. Firstly, an accurate and reliable landslide inventory is established 
for study area based on multi-resource data. On the other hand, more detailed information 
related to the landslide events is collected through field surveys and interviews with local 
people. And then, 13 appropriate landslide conditioning factors are selected to conduct 
multicollinearity analysis. After that, five MLTs are used to generate LSMs, namely SVM, 
RF, CatBoost, XGBoost and LightGBM. At last, the area under the curve of ROC (AUC), 
accuracy rate (ACC), Kappa index and F1 score are applied to assess the MLTs capabili-
ties. All the MLTs analysis in this study is performed in the Python (3.7.0) environment, 
and map compilation and production are obtained by ArcGIS software (10.5).

3.1 � Preparation of datasets

The acquisition of accurate landslide data is the first step in predicting landslide-prone 
areas (Guzzetti et  al. 2012). According to official data, the location of some landslide 
events in this study is determined; the other part is obtained by interpreting satellite images 
in Google Earth pro. Figure 4 shows some typical examples of shallow landslides in the 
local area. Figure 4a-c shows the field survey photographs after the landslide events. Fig-
ure  4d shows the drone photograph taken during the on-site investigation. According to 
official landslide data provided by Key Laboratory of Geohazard Prevention of Hill Moun-
tains in March 2021, the data have not been made public before. The authors conduct a 
field survey in the northern part of Yanping in March of the same year. In order to ensure 
the accuracy of data in the landslide inventory, during the field investigation, the authors 
carry out drone aerial photography of each landslide point and record the soil type, lithol-
ogy, vegetation type and soil depth of each landslide in detail. Furthermore, some of the 
landslide event locations are obtained by interpreting satellite imagery in Google Earth 
Pro. But it is difficult to judge whether the exposed traces circled are shallow landslides 
only from the Google satellite images, or it may be a rockfall or rockslide. For landslides 
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Fig. 4   Photographs of landslides in the study area. a, b, c Photographs of the scene of the landslide events. 
d Drone photographs taken during site investigation

Fig. 5   The flowchart of this study
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that cannot be investigated at close range, drone photographs are undoubtedly a more reli-
able basis for judgment. As shown in Fig. 4d, although the vegetation has recovered to a 
certain extent after the 618 event, the traces of landslides can still be roughly seen from the 
drone photographs. For rockslides, vegetation is difficult to generate and restore due to the 
existence of exposed bedrock. Therefore, according to the situation of the on-site investiga-
tion and the analysis of the drone photographs, the samples that are mistaken for shallow 
landslides are excluded to ensure that all of the landslide types in the inventory are shal-
low landslides. The landslide conditioning factors are extracted from multi-resource data 
and stored in the spatial database utilizing a spatial analysis tool (ArcGIS software) with a 
pixel size of 12.5 m. The digital elevation model (DEM) data of the local area are mainly 
from the China Geographic Information Public Service Platform (https://​www.​tiand​itu.​gov.​
cn/) with a resolution of 12.5  m × 12.5  m. The types of landslides in the local area are 
mainly shallow landslides with a depth of less than 5 m caused by extreme rainfall (Comert 
et al. 2019). After screening, the landslide inventory containing 631 samples is randomly 
divided into training and testing datasets at a ratio of 7:3. (Pourghasemi et al. 2013).

3.2 � Landslide conditioning factors

The choice of landslide condition factors (LCFs) affects the predictive capabilities of MLT. 
Therefore, it is necessary to comprehensively consider the type of landslide, landslide 
mechanism and the characteristics of the geological environment in the study area to pre-
pare LCFs inventory (Merghadi et al. 2018; Wang et al. 2019). At present, researchers do 
not have a unified standard for the selection of LCF. The lithology, curvature, slope and 
aspect are widely used LCFs (Camilo et al. 2017). The 13 LCFs are selected from multi-
resource data, including profile curvature, plane curvature, slope angle, altitude, aspect, 
stream power index (SPI), topographic wetness index (TWI), slope length (LS), distance 
to drainages, distance to roads, distance to faults, lithology and rainfall. These LCFs are 
utilized based on field investigation and studies (Tseng et al. 2015; Youssef 2016; Keesstra 
et al. 2016; Kornejady et al. 2017; Ghorbanzadeh et al. 2019; Sevgen et al. 2019). Among 
them, the morphological parameters such as the slope, aspect, altitude and curvature are 
extracted from 12.5 m DEM utilizing ArcGIS 10.5 software. The SPI, TWI and LS are cal-
culated by editing formulas in ArcGIS 10.5 software. The lithology and faults are extracted 
from the geological map (1:50,000 scale) of Fujian Province. The distance to the drainages 
and the distance to the roads are extracted from the vector data of drainages and roads in 
Fujian Province. The Euclidean distance tool in ArcGIS 10.5 is utilized to generate dis-
tance to faults, drainages and roads map. The accumulated rainfall is obtained by inter-
polation of the ArcGIS 10.5 software using the rainfall data of the six rain gauge stations. 
There is no earthquake history record in the study area; therefore, this study does not con-
sider the earthquake as a factor. The soil type in the local area is relatively single. Accord-
ing to the field investigation and the interviews with local people, the soil type is red soil, 
and the soil depth is not large (usually 0.4 ~ 6 m). Almost all landslide events are located in 
the area of this type of soil. Therefore, the soil type and texture factors are excluded from 
the selection process of the conditioning factors. On the other hand, the land-use types are 
also relatively single, which can be roughly divided into farmland, forest, grassland, shrub 
forest, bamboo forest and construction land. Most of the local area is covered by forests, 
and only a small amount of farmland, grassland, shrubs and bamboo forests are distrib-
uted around the construction land. The local government has strict protection policies for 
vegetation and the local forest coverage rate has been maintained at a relatively high level 
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for many years. According to the on-site investigation, almost all landslide events occur in 
forest-covered areas. The farmland is usually located in an area with a slope of less than 
20°, and landslides are difficult to occur under such slope conditions. The grassland, shrubs 
and bamboo forests are also usually distributed in relatively flat areas around construc-
tion land, making landslides almost impossible in such flat areas. Therefore, the location of 
landslide events in this study is not related to vegetation types and the LU/LC factor is not 
considered in this study.

3.2.1 � Slope angle

The slope of the terrain affects the development of landslide events and determines the 
type of geological events, and it has an inseparable relationship with geological events. 
According to statistics, most shallow landslides mainly occur in areas with terrain slopes 
of 20° ~ 45° (Godt et al. 2008). Although the driving force of the slope movement increases 
with the increase in the slope angle (Guillard and Zezere 2012), if the slope is too large 
(> 45°), shallow landslides will hardly occur due to the thin soil layer. On the other hand, if 
the slope is too small (< 20°), shallow landslides may rarely occur due to insufficient grav-
ity driving force (Godt et al. 2008). In addition, slope gradient greatly affects slope seepage 
and surface runoff and is directly related to soil moisture content (Magliulo et al. 2008). 
The slope extracted in local area ranges from 0° to 78° (Fig. 6a).

3.2.2 � Curvatures

The susceptibility of landslides is affected by slope shape and topography (Haigh and 
Rawat 2012). The curvature can describe the contour of the terrain and is often utilized 
in various geomorphological surveys and studies (Evans 1979). The profile curvature has 
a direct effect on the surface runoff velocity, while the plane curvature affects the conver-
gence and dispersion of the surface runoff. The plane curvature and profile curvature in this 
research are in the range of −13.2 to 18.1 and −19.5 to 23.7 (Fig. 6b,6c).

3.2.3 � Altitude

According to former studies, the altitude is a vital element in landslide studies. (Ercanoglu 
and Gokceoglu 2004; Feizizadeh et al. 2014; Tien Bui et al. 2019). The different altitudes 
of the slopes reflect the different speeds of the crustal uplift in the area, that is, the different 
influences of geological structures, which will inevitably affect the stability of the slopes. 
In addition, wind speed, freezing and thawing, rainfall, temperature and other factors will 
change with the increase in altitude, which will have varying degrees of impact on slope 
stability. However, the effect of altitude on landslide susceptibility remains a topic for fur-
ther study. In this paper, altitude map is extracted based on 12.5 m DEM. The altitude of 
the study area ranges from 70 to 1363 m above sea level, as shown in Fig. 6d.

3.2.4 � Slope aspect

Although the aspect has no direct influence on the occurrence of landslides, various stud-
ies have shown that there is a correlation between the aspect and regional environmental 
factors (such as sunlight, soil moisture retention and vegetation cover), which may indi-
rectly affect soil erosion processes on the hillside surface (Van Den Eeckhaut et al. 2009; 
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Regmi et al. 2010; Quan and Lee 2012; Devkota et al. 2013). On the other hand, due to 
different slope directions, slopes have different wind-receiving surfaces, which may affect 
the weathering of rock and soil. The aspect in the study area is divided into flat (1), north 
(0 ~ 25; 335 ~ 360), northeast (25 ~ 70), east (70 ~ 115), southeast (115 ~ 160) and south 
(160 ~ 205), southeast (205 ~ 250), west (250 ~ 300) and northeast (300 ~ 335) (Fig. 6e).

Fig. 6   The LCFs maps used in this study: a slope angle, b profile curvature, c plan curvature, d altitude, e 
slope aspect, f TWI, g SPI, h slope length, i distance to drainages, j distance to roads, k distance to faults 
and l lithology
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3.2.5 � TWI

The topographic wetness index (TWI), which is correlated with soil type and surface 
runoff (He et al. 2019), has been widely utilized to describe the influence of terrain con-
ditions on the scale and location of a saturation sources. The pore water pressures and 
soil strength will be affected by the soil moisture, which directly affects the instability 
of the slope and increases the possibility of landslides. The TWI is shown in Eq. 1.

where � is the cumulative upslope area, and � is the slope of that point. The TWI in the 
study area is shown in Fig. 6f.

3.2.6 � SPI

The stream power index (SPI) is an index to quantify water erosion capacity under the 
assumption that the runoff velocity and flow are proportional to the specific catchment 
area and slope gradient (Gessler et  al. 1995). The larger the specific catchment area 
and the slope, the greater the amount of water and flow velocity contributed by the 
upslope area. Therefore, the SPI value increases, which reflects the increased risk of 
slope erosion. The increased risk of slope erosion means that the possibility of land-
slides increases, as shown in Eq. 2:

where As is the specific catchment area, and � is the local slope. The SPI is shown in 
Fig. 6g.

3.2.7 � Slope length (LS)

Slope length is the slope distance affected by uninterrupted surface water flow. The 
combination of slope steepness factor and slope length factor affects soil loss and hydro-
logical processes in mountainous areas (Pourghasemi and Rahmati 2018). Slope length, 
which is considered as a sediment transport capacity index, can quantify the impact of 
surface runoff velocity on erosion. There are many approaches to determine the LS fac-
tor based on grid DEM. One of them is based on the uphill contribution area of each 
cell, which is extracted from DEM according to Eq. 3 (Moore and Birch 1986):

where As is specific catchment area and � is in degree. The LS in the study area ranges 
from 0 to 34.3, as shown in Fig. 6h.

(1)TWI = log

(

�

tan �

)

(2)SPI = As × �

(3)LS =

(

As

22.13

)0.4(
sin �

0.0896

)1.3
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3.2.8 � Distance to drainages

The proximity of the slope to the drainages has a potential influence on the stability of 
the slope. The stream may cause erosion of the slope or saturation of the lower part of 
the material, which adversely affects the stability of the slope (Gokceoglu and Aksoy 
1996; Dou et  al. 2019a). In order to evaluate the impact of this hydrological-related 
factor, distance to drainages is considered. The Euclidean distance operation is utilized 
to extract the distance to drainages in ArcGIS 10.5 software, and the range of result is 
from 0 to 1813 m (Fig. 6i).

3.2.9 � Distance to roads

Human engineering activities (such as mountain road construction and urban construc-
tion) will excavate or cut slopes, which causes the original geological conditions to be 
changed and the natural stability of the slope to decrease. These ergonomics have sig-
nificant negative effect to the slope stability (Wang et al. 2016). Therefore, distance to 
roads could be a potential indicator for evaluating slope stability. The distance to roads 
in the local area has a range from 0 to 3264 m and is developed utilizing the Euclidean 
distance tool in ArcGIS 10.5 software (Fig. 6j).

3.2.10 � Distance to faults

The structural discontinuities, including faults, folds, cracks and joints, play an impor-
tant role in reducing rock mass strength and increase the risk of landslides (Kanungo 
et al. 2006). Therefore, the distance to faults may be one of the main influencing factors 
of the landslide. In this paper, the geological map (1:50,000 scale) is utilized to extract 
the faults. The Euclidean distance tool in ArcGIS 10.5 is utilized to generate distance to 
faults map. Distance to faults has a range of 0 ~ 2851 m (Fig. 6k).

3.2.11 � Lithology

The lithological characteristics have a certain degree of influence on landslide suscep-
tibility, such as the degree of weathering of different rock masses (Duna et al. 2018). In 
this study, the geological map of Fujian Province (1:50,000 scale) is utilized to extract 
the lithology. Six lithological units are identified including, tuffaceous glutenite, por-
phyritic biotite granite, monzonite, granulite with quartzite, schist, gneissic granite, glu-
tenite and siltstone (Fig. 6l).

3.3 � Machine learning models

In recent years, the machine learning technology (MLT) has become an important 
means to solve modeling problems in the field of natural disasters (Sevgen et al. 2019). 
The MLT can automatically extract knowledge from huge databases and build classi-
fication and regression models. Compared with traditional methods, machine learning 
models are more efficient and accurate and can perform big data processing and analy-
sis. In this study, five advanced MLTs with different levels of complexity are utilized to 
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generate landslide susceptibility models, including the SVM, RF, CatBoost, XGBoost 
and LightGBM models.

3.3.1 � Random forest (RF)

The RF is a machine learning algorithm that utilizes decision trees for classification and is 
widely utilized in landslide sensitivity modeling (Breiman 2001; Zhang et al. 2020a, b). Its 
core idea is to generate a large number of different decision trees through random sampling 
of samples and random extraction of classification attributes and use decision tree voting 
to improve the veracity of the model results. The algorithm does not regard all attributes 
as classification attributes when constructing decision trees, but randomly selects a part of 
the attribute set as classification attributes, so that there are differences between decision 
trees. The difference between decision trees is exactly the significance of the random forest 
algorithm using multiple weak classifiers to vote. The RF has some advantages including 
(a) it is not prone to the risk of overfitting and has strong ability of anti-noise, and (b) it can 
handle very high-dimensional data and does not need to make feature selection, and (c) it 
has strong adaptability to data sets and can handle both discrete data and continuous data, 
and (d) the training speed of the RF is very fast, and the importance of the output variables 
can be ranked.

3.3.2 � Support vector machine (SVM)

The SVM is a binary classifier based on statistical theory that can be used to identify the 
best separating hyperplane for dividing two regions (Drucker et al. 1997). The classifica-
tion function obtained by the SVM has the similar form as the neural network, and its out-
put is a linear combination of several intermediate layer nodes, and each intermediate layer 
node corresponds to the inner product of the input sample and a support vector. Therefore, 
it is also called support vector network. Some researchers have applied the SVM method 
to LSM and provided good prediction results (Kumar and Anbalagan 2016; Kalantar et al. 
2018; Colkesen et  al. 2016). The four kernel function groups commonly utilized in the 
SVM include linear kernel (LN), polynomial kernel (PL), radial basis function (RBF) ker-
nel and sigmoid kernel (SIG). In the current study, we use the SVM with RBF, which is the 
most commonly used kernel function for SVM models to construct landslide susceptibility 
model (Pourghasemi and Rahmati 2018).

3.3.3 � Extreme gradient boost (XGBoost)

XGBoost is a gradient boosting machine (GBM), which grows a tree according to feature 
splitting and continuously adds trees (Zhang et al. 2020a, b). In fact, every time one tree is 
added, a new function will be obtained by fitting the residual value of the previous round 
of predictions and the performance of the model can be significantly improved through 
iterative calculations. The K trees are obtained through model training, and the leaf node 
of each tree corresponds to a score, and the predicted value of the sample is the sum of the 
scores of all trees. Therefore, the goal of the model is to make the predicted value of the 
tree group as close as possible to the true value through good generalization ability, which 
is a functional optimization problem from a mathematical point of view. Minimization of 
the loss function of the training data is a common method to construct the optimal model, 
as shown in Eq. 4 (Wang et al. 2020).
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where i is the number of a given predicted value ŷi(i = 1, 2, 3,⋯ , n) ; n represents the 
total number of y values; t is the iteration number; l

(

yi, ŷi
)

 is the loss function between the 
actual value yi and predictive value ŷi ; Xi is the features for the ith sample, ft

(

Xi

)

 is the base 
learner added at the tth iteration; Ω

(

ft
)

 is the regularization term to prevent overfitting; and 
�t is the objective function at the tth iteration.

As the winner of many Kaggle competitions, the XGBoost has become a reliable algorithm 
with its excellent capability. However, the XGBoost is rarely utilized in landslide susceptibil-
ity modeling. Therefore, in this paper, the XGBoost will be tried to generate landslide suscep-
tibility model.

3.3.4 � Light gradient boosting machine (LightGBM)

The LightGBM, which can be utilized for classification and regression tasks, is a distributed 
gradient boosting framework based on decision tree algorithm (Ke et al. 2017; Ma et al. 2018). 
Therefore, for the LightGBM which utilizes the optimal leaf-wise strategy to split leaf nodes, 
the leaf-wise algorithm reduces more loss than the level-wise algorithm when it grows to the 
same leaf node. On the other hand, the LightGBM uses the histogram algorithm that dis-
cretizes continuous floating point eigenvalues into k integers. The optimal split point can be 
found according to the discrete value of the histogram with width k. In summary, the Light-
GBM uses the histogram algorithm for feature selection and leaf-wise decision tree growth 
strategy, which makes its training more efficient, occupies less memory, has higher accuracy 
and supports parallel learning and large-scale data processing.

3.3.5 � Categorical boosting (CatBoost)

The CatBoost, which is a GBDT framework based on symmetric oblivious trees, is originally 
developed by the Russian company Yandex in 2017 (Prokhorenkova et al. 2018). It has the 
following advantages: (a) It supports both numerical and categorical features, (b) it has faster 
GPU and multi-GPU support, (c) it contains visualization tools, and (d) it overcomes gradi-
ent bias. In CatBoost, the input sample set is sorted randomly and the average value of the 
labels is calculated. The average label value obtained through settlement has the same cate-
gory value. (Huang et al. 2019; Zhang et al. 2020a, b). It is expressed as Eq. 5 (Prokhorenkova 
et al. 2018):

Suppose a set of data with samples D =
{

xi, Yi
}

, i = 1, 2, ..n. If a random permutation is 
� =

(

�1,⋯ , �2
)

 , the kth feature of the pth data is shown in Eq. 6 (Prokhorenkova et al. 2018):
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where xi,k is the kth feature of the ith training sample, Yi is the target variable of the ith sam-
ple, P is a prior value (i.e., the average target value in the dataset for a regression task), and 
� is the weight of the prior value.

3.4 � Conditioning factors analysis

There are many factors used in the evaluation of landslide susceptibility. However, the con-
ditioning factors may not be independent in the data set since they are highly correlated, 
which leads to erroneous results (Dormann et al. 2012). Therefore, some researchers have 
proposed several methods for the quantization problem of multicollinearity, such as the 
Pearson correlation matrix (Booth et al. 1994), conditional index (Belsley 1991), variance 
inflation factors (VIFs) and tolerate (TOL) (Liao and Valliant 2012).

Multicollinearity testing can be utilized to minimize the number of LCFs and reduce 
high-dimensional data. In this paper, the Pearson correlation matrix, the VIF and TOL are 
utilized to detect conditioning factors (i.e., multicollinearity) in statistical tests. The VIF 
and TOL pay attention to the change of the standard error of the landslide influencing fac-
tor, which means that the lesser the standard error value, the lower the possibility of multi-
collinearity, and the more reliable the conditioning factor is to use (Eqs. 7, 8).

where the R2 is the proportion of the variance in the target variable.
The Pearson correlation matrix normalizes the contribution of each variable on the basis 

of covariance, in order to only measure the correlation of variables and not be affected by 
the scale of other variables. The output range is from −1 to 1. When one variable increases 
with the increase in another variable, it indicates that there is a positive correlation between 
them, and the coefficient is greater than 0; if one variable decreases with the increase in 
another variable, it indicates that there is a negative correlation between them, and the cor-
relation coefficient is less than 0; if the correlation coefficient is equal to 0, it means that 
there is no correlation between the two variables. In the Pearson correlation coefficient 
matrix, when the correlation coefficient of two variables exceeds a certain threshold, it 
means that there is excessive correlation between the two variables, which will cause a 
large error in the results, so one of the variables should be discarded. The Pearson cor-
relation matrix is defined as the quotient of the covariance and standard deviation between 
variables (Eq. 9):

where n is the number of samples;xi , yi are conditioning factors indexed with i ; and x is the 
mean of xi , where: x = 1

n

∑n

i=1
x
i
 , and analogously same applies to y . The VIF value is > 5, 

and TOL value < 0.2 or the Pearson correlation matrix is greater than 0.7 (Dou et al. 2020), 
which indicates that the predisposing factors have multicollinearity problems (O’Brien 
2007; Dormann et al. 2012).
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3.5 � Model metrics

According to former research results, there are many statistical indicators that can evalu-
ate the performance of MLTs and check the predictive accuracy of the developed LSM 
(Pham et al. 2019a; Tien Bui et al. 2019; Moradi et al. 2019; Yousefi et al. 2020; Ghasem-
ian et al. 2020). In this study, the area under the curve of ROC (AUC), the accuracy rate 
(ACC), F1 score, Kappa index are utilized to assess the capabilities of MLTs. True positive 
(TP) and true negative (TN) are utilized to indicate the number of pixels correctly clas-
sified as landslide and non-landslide, respectively; the false positive (FP) and false nega-
tive (FN) are used to indicate the number of pixels that are misclassified as landslides and 
non-landslides.

The accuracy rate, which refers to the proportion of the number of correctly classified 
records to the total number of records, is the most commonly used indicator in the evalua-
tion of MLTs (Eq. 10).

F1 score refers to the harmonic mean of accuracy and recall. It is often used in statistics 
to measure the accuracy of a two-class model. The value of F1 score ranges from 0 to 1. 
A model is reliable if the value of F1 score is close to 1. It can be formulated as follows 
(Eqs. 11, 12, 13):

In this study, another used evaluation indicator is the Kappa index, which is a method 
used in statistics to assess consistency and accuracy of classification models. The value 
range of the Kappa index is [−1,1]; if the value is close to −1, the model is unreliable. 
While the closer the value is to 1, the more reliable the model is. The formula is as follows 
(Eqs. 14, 15, 16):

The range of Kappa calculation results is from −1 to 1, but usually the value is between 
0 and 1. The Kappa index result is less than 0, indicating that the consistency of the model 

(10)Accuracy =
TP + TN

TP + TN + FP + FN

(11)F1 = 2 ⋅
precision ⋅ recall

precision + recall

(12)precision =
TP

TP + FP

(13)recall =
TP

TP + FN

(14)Kappa =
Pa − Pexp

1 − Pexp

(15)Pa =
TP + TN

TP + TN + FN + FP

(16)Pexp =
(TP + FN)(TP + FP) + (FP + TN)(FN + TN)

(TP + TN + FN + FP)2
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is poor. On the other hand, the values can be divided into five groups to indicate different 
levels of consistency: 0 ~ 0.2, 0.2 ~ 0.4, 0.4 ~ 0.6, 0.6 ~ 0.8 and 0.8 ~ 1 represent slight, fair, 
moderate, substantial and almost perfect, respectively.

In the studies of landslide susceptibility assessment, the ROC curve is a common 
method utilized to evaluate the capability of machine learning model (Beguería 2006; 
Mathew et al. 2009). The ROC is a comprehensive indicator reflecting susceptibility and 
specificity of continuous variables (Hanley et  al. 1982; Avand et  al. 2022). It calculates 
a series of susceptibility and specificity through setting many different critical values for 
continuous variables and then draws a curve with susceptibility as the y-axis and 1-speci-
ficity as the x-axis. The more the area under the curve, the better the presentation of the 
model becomes. The exactness group rankings are as follows: 0.9 ~ 1, 0.8 ~ 0.9, 0.7 ~ 0.8, 
0.6 ~ 0.7, 0.5 ~ 0.6 represent excellent, good, fair, poor, fail, respectively (Eqs. 17, 18) (Hos-
mer and Lemeshow 2000).

The area under the curve (AUC) has been widely utilized as a popular tool in the clas-
sification performance. It is utilized to quantify the results of the ROC curve model (Mason 
and Graham 2002). The AUC value is positively correlated with the performance of the 
model. The larger the AUC value, the more excellent the performance of the model. But 
AUC is less than or equal to 0.5 means that the model is unreliable (Youssef 2016).

4 � Results and analysis

4.1 � Conditioning factors analysis

In this paper, the VIF, TOL and the Pearson correlation matrix are utilized to test whether 
there is multicollinearity between the conditional factors. According to the research results, 
the highest VIF value is 4.201 (< 5) and the lowest TOL value is 0.238 (> 0.2), which 
shows that there is no multicollinearity relationship between these 13 factors (Table 1).

Based on the output of the Pearson correlation matrix, there are positive or negative 
correlations among the 13 selected variables, but none of their values exceed the allowable 
threshold of correlation 0.7 (Fig. 7) (Dou et al. 2020). The Pearson correlation coefficient 
matrix is designed to reflect the relationship between variables in terms of data, not mecha-
nism. For example, parameters such as the altitude, cumulative rain, distance to roads, SPI, 
TWI and lithology have good relationships with each other. Among them, for the local 
area, the altitude is negatively correlated with cumulative rainfall, which may be related 
to the long-term rainfall type in the study area, while SPI and TWI, lithology and distance 
to roads, slope length and elevation, lithology and distance to drainages all have a certain 
degree of positive correlation. All in all, all the above results show that the above variables 
utilized in LSM studies are valid.

The novel method CatBoost is utilized to evaluate the importance of all selected influ-
encing factors (Fig.  8). The results show that the distance to faults, distance to drain-
ages and slope are the top three important conditioning factors. The fault is a geological 

(17)Sensitivity =
TP

TP + FN

(18)Specificity =
TN

FP + TN
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structure that undergoes significant relative displacement along both sides under the action 
of the crustal force. The fault area tends to have strong crustal activity. Therefore, the tec-
tonic breaks including faults play an important role in decreasing rock strength and causing 
landslides. In addition, runoff along drains enhances the undercut phenomenon, thereby 
increasing pore water pressure in the area near the drain, which plays an important role 
in triggering landslides. The slope factor is still the main factor affecting landslides. The 

Table 1   Multicollinearity 
analysis for the 13 LCFs

Number Landslide conditioning factor Tolerance VIF

1 Plan curvature 0.785 1.273
2 Profile curvature 0.773 1.294
3 Slope 0.382 2.616
4 Aspect 0.846 1.183
5 Altitude 0.238 4.201
6 TWI 0.565 1.771
7 SPI 0.564 1.772
8 Slope length 0.248 4.036
9 Lithology 0.943 1.061
10 Distance to drainages 0.416 2.405
11 Distance to roads 0.757 1.321
12 Distance to faults 0.493 2.028
13 Cumulative rain 0.358 2.793

Fig. 7   The output results of the Pearson correlation matrix
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greater the slope angle, the greater the driving force for mass movement, which leads to 
an increased possibility of landslides. Other factors such as cumulative rainfall and lithol-
ogy also have a great influence on the susceptibility model, which shows that the rainfall, 
as a triggering factor for landslides, plays an important role in controlling the occurrence 
of geological events. In the study area, landslide events are more likely to occur in meta-
morphic rock areas with relatively fragile lithology. The degree of weathering of differ-
ent parent rocks roughly determines the type, probability and scale of landslides. The soil 
structure formed after weathering in metamorphic rock areas is relatively loose, which is 
conducive to rainwater infiltration and is easy to soften in contact with water. The above 
reasons lead to the reduction of shear strength. The interface between the upper loose soil 
mass and the underlying relatively stable bedrock is a potential structurally weak surface, 
which is very easy to slide along the rock–soil interface, resulting in landslides and col-
lapses. However, compared to the other categories, SPI and TWI are the two least impor-
tant categories. The SPI and TWI factors have strong control effects on soil erosion and 
material transport. In areas with barren or sparse vegetation, the soil physical and chemical 
properties are poor and the erosion resistance of the soil is significantly weakened, which 
leads to the most prone to soil erosion. The root system of vegetation can hold the soil, 
which can enhance the shear strength of the soil and improve the stability of the slope. On 
the other hand, vegetation with high coverage can improve hydrological conditions and soil 
properties. The tree canopy can intercept rainfall, which reduces the flow rate of surface 
water and groundwater on slopes, thereby reducing the occurrence of landslides. Fujian, as 
the province with the largest forest coverage area in China, is less affected by soil erosion 
on the hillside surface.

4.2 � Landslide susceptibility models

The RF, CatBoost, SVM, XGBoost and LightGBM models are successfully generated 
utilizing the training landslide datasets, and susceptibility index values for every pixel 
(12.5 m × 12.5 m) in study area are obtained by calculation. The natural breaks classifier 

Fig. 8   Important order of conditioning factors according to CatBoost method
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can identify breakpoints by picking the categorical breakpoints that best group similar val-
ues and maximize the differences between classes (Ayalew et  al. 2004; Suzen and Doy-
uran 2004). In this paper, the natural breaks classifier method is utilized to reclassify the 
LSMs into four susceptibility levels including low, medium, high and extremely high. For 
comparative analysis, Fig.  9 shows the five LSMs provided by the RF, CatBoost, SVM, 
XGBoost and LightGBM models. The relative area ratio calculations for the susceptibility 
categories for each model are shown in Fig. 10.

When all maps based on MLTs are analyzed visually, the central and western regions 
of the study area are at high and very high susceptibility levels, while most of the east-
ern and northeastern regions are at medium and low susceptibility levels (Fig.  10). The 
reason may be that there are two large faults in the west and the terrain in the west of the 
study area is significantly steeper than in the east (Fig. 7a; Fig. 7l). All LSMs show that 
the southwestern of the local area has a very high susceptibility level. The LSM using the 
LightGBM model and the RF model classifies more northern and central regions into very 
high susceptibility level. The LSM of the XGBoost model and the SVM model divides 
more northwestern and southern regions into low susceptibility level. The LSM using the 
CatBoost model seems to show more detailed classification results, with more high and 
medium susceptibility areas in the central and eastern regions.

Fig. 9   Landslide susceptibility maps using: a RF, b CatBoost, c SVM, d XGBoost and e LightGBM
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Figure 10 shows the divided areas of the LSMs prepared by MLTs. Different LSMs have 
different proportions of grade areas. Among them, a total of 11 ~ 13% of the areas are clas-
sified as low susceptibility, 27 ~ 34% are moderately susceptible areas, and the remaining 
54% ~ 62% are considered to have high and very high susceptibility. In the study area, the 
areas with high and very high susceptibility accounted for more than 50%, while areas with 
low susceptibility accounted for less than 15%, which also further explains why the study 
area is the most severely affected area in the 618 event.

4.3 � Model performance and comparison

The AUC, ACC, Kappa index and F1 score are utilized to evaluate the model perfor-
mance (Table 2). The LSMs generated by five models are compared and evaluated. The 
ROC curves and AUC values of the training and testing datasets are utilized to compare 
and evaluate the results of the process. Figure  11 shows the comparison and evaluation 
results of LSMs. The results from the prediction rate curve (Fig. 11b) show that the Cat-
Boost (AUC = 0.917, ACC = 0.892) has the most excellent capability. Followed by the 
SVM (AUC = 0.894, ACC = 0.873), XGBoost (AUC = 0.881, ACC = 864), LightGBM 
(AUC = 0.852, ACC = 0.826) and RF (AUC = 0.848, ACC = 0.821) models. The perfor-
mance results show that all models produce very good results (AUC > 0.750). The Kappa 

Fig. 10   Landslide susceptibility classes’ areas percentage for all applied MLTs

Table 2   Performance results of 
the implemented models

Number Landslide models AUC​ ACC​ F1 score Kappa index

1 SVM 0.894 0.873 0.885 0.744
2 RF 0.848 0.821 0.843 0.639
3 XGBoost 0.881 0.864 0.879 0.723
4 LightGBM 0.852 0.826 0.844 0.646
5 CatBoost 0.917 0.892 0.905 0.781
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index varies from 0.639 to 0.781, and the F1 score varies from 0.843 to 0.905. Based on 
these results, there is a strong correlation between the investigated landslide areas and the 
predicted landslide areas. In general, the capability of the CatBoost is significantly out-
standing than other models; followed by the SVM, XGBoost and LightGBM, RF achieved 
the lowest performance among the five implemented models. 

5 � Discussion

The selection of LCFs and the determination of their categories have a crucial impact on 
the quality of the landslide susceptibility model (Irigaray et  al. 2007). Although many 
researchers have proposed some methods for selecting condition factors, such as Good-
man–Kruskal and Kolmogorov–Smirnov test (Fernández et al. 2003) and GIS matrix com-
bination method (Cross 2002), the criteria for the choice of condition factors are still con-
troversial. In most of the previous studies, many researchers believe that the slope angle, 
altitude and curvature are the most important factors affecting the occurrence of landslides. 
(Pham et  al. 2019b; Merghadi et  al. 2018; Hadji et  al. 2013). However, a growing body 
of research demonstrates that the relative importance of LCF in the model tends to cor-
relate with characteristics of the study area (Park 2015). For example, in a study about 
landslide susceptibility in the mountainous area of Gangwon-do, Korea, researchers find 
that the SPI, slope length, slope aspect, slope and TWI have a positive impact on landslide 
susceptibility in the Inje region. However, in the Pyeongchang region, the aspect, land use, 
SPI, slope and TWI have relatively positive effects on the landslide susceptibility map (Lee 
et al. 2017). In the study about landslide susceptibility in the Abha Basin in the Asir region 
of Saudi Arabia, the results show that the conditioning factors such as slope, aspect, length, 
distance to roads and distance to rivers contribute significantly to landslide susceptibility, 
while the plane curvature, profile curvature and LU/LC have little effect on landslide sus-
ceptibility (Youssef et al. 2021). In a regional-scale landslide susceptibility case study on 
the volcanic islands of Izu-Oshima, Japan, the researchers find that the top two most impor-
tant factors that predispose to landslides are lithology and rainfall (Dou et al. 2019b). From 
previous studies, it can be concluded that the importance of conditioning factors varies 

Fig. 11   a ROC curves and AUC for the five models with training dataset. b ROC curves and AUC for the 
five models with testing dataset
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with different study areas. According to the results of this study, tectonic faults may have 
an extremely important influence on the occurrence of landslides due to the specific tec-
tonic setting of the local area (Fig. 8). The terrain in the central and western regions of the 
study area is significantly steeper than that in the east, and there are two larger fault zones 
in the western region. The development degree of geological events is obviously affected 
by the fault structure, which directly affects the main section and surrounding rock masses. 
The lithology of the strata on both sides of the fault zone is subjected to strong mechanical 
action, so that the width of the fractured rock zone and the fractured development zone is 
several meters or even more than ten meters. The rock mass has low strength and strong 
water permeability and is prone to various geological events under rainfall conditions. The 
above reasons may cause landslides in the central and western regions to be more signifi-
cant than in the eastern regions. Based on previous research (Pourghasemi and Rahmati 
2018), the slope angle, distance to roads, distance to faults and distance to drainages are 
the first four important factors in landslide susceptibility prediction. The results obtained 
in the importance analysis of this paper are consistent with those of previous studies. Slope 
angle, distance to faults and distance to drainages are indeed the relatively most important 
categories. The slope angle factor is still the relatively main factor leading to the occur-
rence of landslides. The increase in the slope angle will lead to an increase in the driving 
force of the soil movement, resulting in a greater probability of landslides (Guillard and 
Zezere 2012; Tien Bui et al. 2017). In addition, the landslide susceptibility is also greatly 
affected by rainfall factors and lithology factors, which indicates that rainfall, as an induc-
ing factor leading to the occurrence of landslides, plays a significant role in the occurrence 
of geological events. The landslide events mostly occur in glutenite, siltstone and schist 
areas, but rarely occur in granite areas. The reason may be that igneous rocks are gener-
ally more resistant to weathering than metamorphic rocks and sedimentary rocks. How-
ever, compared with other categories, the SPI and TWI are the two least important catego-
ries, and Pradhan et al. also obtain similar conclusions in landslide susceptibility studies in 
Deokjeokri and Karisanri watersheds (Pradhan et al. 2019). The reason for this may be that 
areas with high vegetation cover are less susceptible to soil erosion than areas with poor 
or sparse vegetation. The roots of vegetation can increase the shear strength of the soil by 
stabilizing the moisture in the soil to protect the soil. The tree canopy can intercept rainfall, 
which reduces the flow rate of surface water and groundwater on slopes, thereby reducing 
the occurrence of landslides.

On the other hand, in recent years, the gradient boosting algorithm has received exten-
sive attention from more and more researchers. Although previous studies have shown that 
the RF algorithm performs well in some research fields (Shrestha et al. 2017; Pham et al. 
2019b; Lagomarsino et al. 2017). However, with the increasing use of gradient boosting 
algorithms for landslide susceptibility studies (Kim et  al. 2018; Lombardo et  al. 2015; 
Song et al. 2019). The researchers find that the gradient boosting algorithms perform bet-
ter than the RF model. Furthermore, the selection of model type depends on the specific 
study area. The landslide susceptibility model depends on the variables utilized for imple-
mentation. Due to the different implementation variables of the model, the applicability 
of the model may be different. For example, the results of related studies have shown that 
some models (such as RF) have excellent performance in certain domains, but mediocre 
performance in others (Hong et al. 2016). According to previous studies, in the multi-haz-
ard susceptibility study of Jiuzhaigou, some researchers have proved that the capability of 
XGBoost is more excellent than RF through the results of the AUC evaluation index. (Cao 
et  al. 2020). In the study of debris flow susceptibility in Shigatse, Tibet, the researchers 
compare the prediction performance of BPNN, XGBoost and RF algorithms and conclude 
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that the XGBoost algorithms has the best prediction performance according to the results 
(Zhang et al. 2019a, b). In this study, results for the predicted value of RF (AUC = 0.853) 
are much lower than those obtained in the related literature (Youssef 2016). In addition, 
the predicted values of XGBoost and SVM are also slightly higher than those obtained in 
related studies (Cao et al. 2020; Lee et al. 2017), and we believe that these differences in 
prediction rates are likely due to the specific characteristics of each study area. Therefore, 
having a clear understanding of the differences between the various MLTs is very ben-
eficial for selecting the best model for a specific region. The CatBoost and LightGBM, as 
new gradient boosting algorithms based on decision trees (Prokhornkova et al. 2018, Ke 
et al. 2017), have many advantages and have been utilized in some industries. In this paper, 
four indicators, AUC, ACC, Kappa index and F1 score, are used for model evaluation. The 
output results show that the performance of SVM in landslide susceptibility evaluation is 
slightly better than that of XGBoost, and the obtained findings are consistent with previous 
studies (Cao et al. 2020). But the calculation time of SVM algorithms is much longer than 
that of the XGBoost algorithms. Nevertheless, when the results of the two algorithms are 
not much different, the XGBoost model should still be the preferred algorithm, because the 
XGBoost with regularization has obvious advantages over SVM in solving the overfitting 
problem (Yao et al. 2008, Cheng et al. 2018). The prediction capability of the CatBoost 
model is the best, followed by SVM, XGBoost, LightGBM and RF. The CatBoost model 
significantly outperformed the other models in overall performance, while the RF model 
had the weakest predictive capability among these models. Similar conclusions are reached 
by previous research, the LightGBM and CatBoost are utilized for the first time to predict 
flash flood susceptibility (FFS) of the Wadi system (Hurghada, Egypt) (Saber et al. 2021). 
The results show that LightGBM and CatBoost prove to be more effective in flash flood 
prediction in arid regions. Compared with the RF algorithm based on the set of indepen-
dently voted trees, the CatBoost model relies on the gradient boosting method to improve 
the model accuracy. Although different parameters may lead to different prediction accu-
racy, according to the research results, CatBoost, as a relatively novel machine learning 
algorithm, can generate LSMs more efficiently and robustly. And the LightGBM, by using 
histogram-esque algorithm to achieve extremely fast calculation speed and extremely low 
memory footprint may be more suitable for processing larger datasets. Therefore, the rela-
tively small amount of data may be the main reason for the poor performance of this algo-
rithm in this study. In this paper, these five MLTs are utilized for the first time in landslide 
susceptibility studies in the hilly area of Fujian Province, China. Furthermore, few related 
papers deal with the performance comparisons of novel gradient boosting algorithms (such 
as CatBoost and LightGBM) with the previously popular MLTs. As far as the current 
research results are concerned, due to the robustness of these novel gradient boosting algo-
rithms, the gradient boosting algorithms may be more accurate for landslide susceptibility 
studies and may show better prospects in the future.

There are also some limitations in this paper, which need further research. Firstly, this 
study only selects the most severely affected area in the 618 event as the research object, 
and the area is relatively limited. Although this approach increases the pertinence of the 
results, whether the model is applicable to a wider range of areas is still worthy of further 
research. Secondly, changes in the geological environment in the region will exacerbate the 
evolution of unstable geological events. Therefore, it is necessary to regularly update the 
landslide list and adjust the factors. Thirdly, the results of factor importance analysis in this 
paper can be utilized as a reference for the evaluation of landslide susceptibility in other 
hilly areas in Fujian Province. But for other hilly areas, whether the reference factor is 
reliable remains to be further research. Finally, landslide susceptibility should be analyzed 



989Natural Hazards (2022) 113:965–995	

1 3

in the future with more detailed geological information or high-resolution datasets, which 
may lead to more accurate results.

6 � Conclusions

LSM maps can be used as information maps for environmental management, land-use 
planning and infrastructure development. Therefore, it is important to generate a robust 
and accurate model to reduce errors in landslide susceptibility assessment. The novelty of 
this study is that these machine learning methods (RF, SVM, CatBoost, LightGBM and 
XGBoost) are utilized for the first time in landslide susceptibility studies in the hilly area of 
Fujian, China. Moreover, there are few related papers that incorporate such novel gradient 
boosting algorithms such as CatBoost and LightGBM which are compared with previous 
studies. This study is based on the landslide events that occur in the 618 event and 13 land-
slide conditioning factors. The CatBoost algorithm is utilized to analyze the importance 
of the conditioning factors leading to the landslide events. According to the results of the 
factor importance analysis, the slope, distance to faults and distance to drainages are the 
top three most important categories. The results of various evaluation indicators show that 
the prediction capability of CatBoost is the best, followed by SVM, XGBoost, LightGBM 
and RF models. The Kappa index ranges from 0.639 to 0.781, and the F1 score ranges 
from 0.843 to 0.905. On the other hand, these results indicate that the observed landslides 
are in strong agreement with the predicted landslides. While all five models are suitable 
for landslide modeling, the CatBoost model has significantly better prediction accuracy, 
which can improve the reliability of the landslide susceptibility map. The landslide sus-
ceptibility maps generated utilizing high-accuracy MLT are critical for policymakers, plan-
ners and engineers to identify landslide-prone areas, prevent and mitigate landslide risks, 
identify suitable land-use planning areas and establish early warning systems. According 
to the distribution of the landslide susceptibility map in this paper, the high- prone areas of 
landslide are mainly located in the southwest, especially near the two faults. Therefore, the 
local government should organize local residents to relocate to low-risk areas in the east. 
Moreover, they should also pay close attention to these high-risk areas and take positive 
and effective measures, such as rainstorm monitoring and early warning, to reduce losses 
caused by landslides in the future. Although CatBoost, XGBoost and LightGBM have been 
utilized to some extent in other fields, they are still rarely utilized in landslide susceptibility 
assessment research, so further research is needed to verify the capability of these algo-
rithms on different types of landslide datasets. In addition, it requires further investigation 
on whether these new models can be successfully utilized in other similar geological and 
rainfall-triggered cases or regions around the world. However, as far as the current research 
results are concerned, we can be sure that the CatBoost method is significantly better than 
the other four. As for whether this result depends on the datasets used, more follow-up 
research is needed. In conclusion, the CatBoost model is a very promising method in land-
slide research, which also means that for landslide susceptibility research, the gradient 
boosting algorithm may achieve better results and show better prospects in the future.
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