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Abstract
Landslide susceptibility assessment is crucial to the development of appropriate strate-
gies to mitigate the risk of landslide fatalities and economic losses. The selection of spa-
tial extent for non-landslide samples has an important role in the statistical-based landslide 
susceptibility modelling (LSM). In this study, two different non-landslides sampling areas 
(the entire area and the mountainous area of ​​Anhui Province, China) were designed to 
explore the influences of the different spatial extent for non-landslides sampling on LSM. 
Six categories of influencing factors including climatic, morphological, geological, hydro-
logical, vegetation, and human activities were considered. The dominant influencing fac-
tors that are more closely related to the distribution of historical landslides were selected 
based on the GeoDetector. The landslide inventory samples and the non-landslide samples 
generated on two selected areas were divided into a training set (70%) and a validation set 
(30%) for establishing the entire area LR model (EaeraLR) and the mountainous area LR 
model (MareaLR) based on the logistic regression (LR) model. The performance of the 
models was evaluated by the confusion matrix and the area under the receiver operating 
characteristic curve (AUROC). The results showed that the EareaLR model outperformed 
the MareaLR model by various evaluation metrics and the appearance of the final landslide 
susceptibility map. Hence, we conclude that the potential influence of the spatial extent of 
the non-landslide sample selection needs to be taken into account while comparing the reli-
ability of different data-driven landslide  susceptibility models.
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1  Introduction

Landslide disasters are widely distributed around the world and resulting in serious casual-
ties (Petley 2012; Froude and Petley 2018). In recent years, recorded non-seismic induced 
landslides cause approximately 4300 deaths worldwide each year (Petley 2012; Froude and 
Petley 2018). China is one of the countries where landslide disasters are most frequent. 
There were 88,084 reported landslides, resulting in 3226 injuries and 4856 deaths, and 
severe direct economic loss (approximately 4.5 billion Chinese Yuan) during the period 
from 2010 to 2019 (National Bureau of Statistics 2020). Statistics of the Fatal Landslide 
Event Inventory of China (FLEIC) show that there were about 650 fatalities each year 
resulting from landslides during the period from 2000 to 2018, which accounts for about a 
quarter of all fatalities caused by natural disasters in the same period (Lin and Wang 2018; 
National Bureau of Statistics 2020). For Anhui Province, there were 23 reported rainfall 
triggered fatal landslides resulting in 117 fatalities according to the FLEIC. The recorded 
fatal landslides in the past ten years have become more frequent (Lin and Wang 2018). 
Moreover, the landslide occurrence is projected to increase due to more extreme precipita-
tion events under climate change scenarios and more exposed populations under the rapid 
urbanization processes in mountainous areas (Gariano and Guzzetti 2016; Lin et al. 2017b; 
Lin et al. 2020; Zhang et al. 2021). Therefore, it is crucial to better identify the high-risk 
areas of landslide in Anhui Province for formulating effective landslide risk mitigation 
measures.

Landslide susceptibility is defined as the propensity for landslides to happen in an area, 
i.e., the spatial probability of landslide occurrence (Guzzetti et  al. 1999). Landslide sus-
ceptibility modeling is an assessment of the spatial probability of landslide occurrence on 
a single landslide or the areas of different spatial scales using qualitative or quantitative 
methods, by considering many landslides environmental factors (Guzzetti et al. 1999; Guz-
zetti et al. 2005; Guzzetti et al. 2006). At present, statistical-based (Logistic regression, LR; 
Generalized additive model, GAM, etc.) and machine learning-based (Random Forest, RF; 
Support Vector Machine, SVM, etc.) landslide susceptibility mapping is the most widely 
used methods (Brenning et al. 2015; Steger et al. 2016, 2017; Lin et al. 2017a; Xiao et al. 
2020; Zhou et al. 2021). In the process of a statistical landslide susceptibility modeling, 
many aspects such as the sampling strategies for landslides and non-landslides (Regmi 
et al. 2014; Nefeslioglu et al. 2008; Hussin et al. 2016; Pourghasemi et al. 2020; Shao et al. 
2020; Sameen et al. 2020), the selection of the landslide influencing factors (Iovine et al. 
2014), the quality of the landslide inventory database (Steger and Glade, 2017; Lin et al. 
2021), the selection of statistical classification method (Devkota et al. 2013; Goetz et al. 
2015) and the evaluation indicators (Chung and Fabbri 2003; Guzzetti et al. 2006; Frattini 
et  al. 2010) would influence the final results. Among these studies, it has been demon-
strated that the non-landslide sample selection would have a significant effect on landslide 
susceptibility models (Shao et al. 2020; Xie et al. 2021; Zhou et al. 2021). However, the 
potential effects of spatial extent selection for the non-landslide samples on the statistical-
based landslide susceptibility modeling have seldom been investigated (Steger and Glade 
2017). Thus, the hypothesis that this study attempts to investigate is whether the selec-
tion of the spatial extent for non-landslide samples will have an influence on the valida-
tion results of the statistical landslide susceptibility model, the modelled relationship of the 
explanatory factors, and the appearance of the derived susceptibility map. For this purpose, 
the Anhui Province, located in East China is selected as the study area, which has diverse 
geomorphological types and apparent spatial heterogeneity of landslide distribution. Then, 
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the dominant influencing factors of the landslide were selected based on the GeoDetector 
(Wang and Xu 2017). The respectively generated non-landslide samples from the entire 
study area (i.e., region-wide including flatter terrain areas and mountainous area) and the 
mountainous study area combined with landslide samples to form the training and valida-
tion datasets of the entire area and the training and validation datasets of mountainous area, 
respectively, and introduced into the Logistic Regression (LR) model to build the entire 
area LR model (EareaLR) and the mountainous area LR model (MareaLR). Finally, the 
performances of the two landslide susceptibility models based on different non-landslide 
sampling spatial extents are explored using multiple evaluation indicators, and the influ-
ence of the selection of the spatial extent for non-landslide samples on statistical-based 
landslide susceptibility models is discussed.

2 � Study area and dataset

2.1 � Study area

Anhui Province is in the East China, surrounded by the Huang-Huai-Hai Plain in the south-
ern part, the eastern side includes the extension of the Qinling Mountains, the plain in 
the middle and lower reaches of the Yangtze River basin and the Jiangnan hills are in the 
northern part, covering an area of about 140,000 km2. It has various geomorphic types, 
such as high terrain in the south, low terrain in the north, and steep mountains in moun-
tainous areas. The elevation of the study area varies from − 92 to 1786 m above sea level 
(Fig. 1b). The Yangtze and Huaihe rivers are the main drainage systems in the study area. 
The climate regime is divided into two categories with the Huai River as the dividing 
line. The north belongs to the warm, temperate, semi-humid monsoon climate, while the 
south belongs to the subtropical humid monsoon climate. The mean annual precipitation is 
approximately 800–1600mm, which is significantly affected by the monsoon climate, with 
continuous rainfall and heavy rainfall during the rainy season.

Landslides have occurred frequently in Anhui Province in recent years. For instance, 
multiple landslides were triggered by heavy rainfall in Yuexi and Jinzhai counties in July 
2016 (He et al. 2019). In 2017, landslide was triggered by continuous rainfall in Jixi county 
in June. Landslide in Taihu Province Road in March and landslides caused by strong rain-
fall in Jinzhai and Huoshan counties in June in 2020. In 2021, a landslide caused by heavy 
rainfall under the influence of a typhoon in Ningguo city in July. The recorded landslides 
are mainly concentrated in the mountainous areas of southern and southwestern Anhui 
Province (Fig. 1c).

2.2 � Landslide inventory and influencing factors

The historical landslide inventory in this study was obtained from the National Geological 
Hazard Detailed Survey Database conducted by the China Geological Survey. The China 
Geological Survey investigated six categories of geological hazards  in detail, including 
landslides, debris flow, rockfall, ground fissure, ground subsidence, and ground collapse. 
A total of 3286 rainfall-triggered landslides of the slide-type movement obtained from the 
National Geological Hazard Detailed Survey Database are used for statistical landslide sus-
ceptibility mapping in this study. Each landslide is mapped as a point and contains infor-
mation including the latitude, longitude, geographical location, landslide type, geological 
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environmental conditions, natural environment conditions, and causes of the landslide (Lin 
et  al. 2021). The spatial distribution of the landslide inventory is shown in Fig. 1c. The 
landslide density derived from the landslide inventory (Fig. 2l) is used to analyze the rela-
tionship with the distribution of each influencing factor in the GeoDetector model, and is 
not used as the landslide predictor in the landslide susceptibility model.

The landslide environmental factors can be divided into climatic factors, geological 
and soil factors, topographic factors, vegetation coverage factors, hydrological factors, 
and human activities factors (Reichenbach et al. 2018). Climatic factors are mainly used 

Fig. 1   Study area of Anhui Province, China and historical landslide inventory a Location of the study area 
b topography of Anhui Province c spatial distribution of historical landslide inventory in Anhui Province
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to represent the spatial variation in precipitation patterns that trigger landslides. The pre-
cipitation indicators including average annual precipitation (1981–2010), maximum annual 
daily precipitation, annual average daily maximum precipitation, annual average precipita-
tion over 10mm (days), annual average precipitation over 25mm (days), and annual average 
precipitation over 50mm (days), annual average precipitation above 95% quantiles (days) 
and annual 95% quantile daily precipitation were calculated based on CN05.1 grid obser-
vation daily precipitation data (Wu and Gao 2013). Since the spatial patterns of these fac-
tors are relatively similar, this study here only presents the annual average precipitation 
over 10 mm (days) (Fig. 2k), which is more closely related to the distribution of landslides.

Geological and soil factors include soil types and lithology. Soil type affects the degree 
of drainage, erosion, and damage which influence the occurrence of landslides (Nhu et al. 
2020). Lithology is often regarded as one of the significant factors in landslide suscep-
tibility modeling due to it directly affects the strength and permeability of rock and soil 

Fig. 2   Spatial distribution of landslide density and influencing factors a Slope b curvature c terrain relief d 
NDVI e drainage density f CN g soil type h lithology i GDP j population density k average annual precipi-
tation over 10 mm days l landslide density
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(Kavzoglu et al. 2014). The soil type data was obtained from the Resource and Environ-
mental Science and Data Center (RESDC) and the lithology data was obtained from the 
Global Lithological Map Database (Hartmann and Moosdorf 2012). Morphological factors 
are used to characterize the geomorphic characteristics of landslide occurrence. The digital 
elevation model data in this study was the SRTM 30 m DEM (USGS 2015). Three ter-
rain indicators namely slope, terrain relief, and curvature were derived based on the DEM 
(Fig. 2a and b, and c). The Normalized Difference Vegetation Index (NDVI) was selected 
to represent the vegetation coverage that influences the occurrence of landslides (Choi 
et al. 2012). The annual average normalized vegetation index (NDVI) (1981–2010) product 
with a spatial resolution of 1 km was obtained from the RESDC. Curve number (CN) and 
drainage density were selected as the hydrological factors. CN is a comprehensive dimen-
sionless parameter that can reflect the characteristics of the underlying surface of the basin 
before rainfall, it is related to soil type, previous soil moisture, land use, slope, and other 
influencing factors (Wang and Xu 2017). And the greater the drainage density, the greater 
the impact of river slope cutting and the higher the possibility of landslide occurrences. 
The drainage density data was obtained from the HydroSHEDS data set (Linke et al. 2019) 
and the CN data was obtained from Zhao et  al. (2018). Human activities also have sig-
nificant influences on landslide occurrence (Wang et al. 2018). The high population den-
sity and the production of GDP are often accompanied by the exploitation and destruction 
of natural resources (Wang et al. 2018). Two indicators including gross domestic product 
(GDP) and population density were selected as a proxy to represent the potential influ-
ences of human activities on the landslide occurrence. The GDP and population density 
data were obtained from the RESDC.

3 � Methods

The methodological framework is shown in Fig. 3, it mainly includes four steps. Firstly, the 
dominant influencing factors with high correlation on landslide distribution are analyzed 
and selected based on the GeoDetector (Wang and Xu 2017). Then, the selected influenc-
ing factors are introduced into the logistic regression (LR) model to establish the land-
slide models based on different non-landslide samples generated from the entire area and 
the mountainous area of Anhui Province, separately. Thirdly, the model performance is 
evaluated by using confusion matrix, ROC curve and k-fold cross-validation. Finally, the 
established model is applied to landslide susceptibility mapping, and the influence of the 
spatial extent selection for non-landslide samples on statistical-based landslide susceptibil-
ity mapping is compared and discussed. Each method is described in detail in the following 
sections.

3.1 � Selection of landslide influencing factors based on GeoDetector

GeoDetector is developed by Wang and Xu (2017) to detect spatial differentiation based on 
statistical principles. It is a tool for detecting the spatial differentiation which can quantita-
tively reveal the driving forces behind spatial differentiation (Wang et al. 2010). GeoDetec-
tor detects the interpretation degree of the spatial distribution of the dependent variable Y  
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by the respective variables Xi , and tests the confidence degree of the respective variables. 
The degree of interpretation is represented by q . Equation (1) is as follows:

 where SSW =
∑L

h=1
Nh�

2

h
 , SST = N�2 ; h = 1,… , L refer to the stratification of variable 

Y  or factor X , that is, classification or partition, Nh refers to the number of units in layer 
h and N refers to the number of units in the entire area, �2

h
and σ2, respectively refer to the 

variance of the Y  value of the layer h and the variance of the Y  value of the entire region. 
SSW represents the within the sum of squares (SSW) and SST  represents the total sum of 
squares (SST).

The closer the q-value is to 1, that is, the larger the q-value, the more significant the spatial 
distribution of Y are explained by the self-variable Xi.

A simple transformation of q satisfies the non-central F distribution with the following 
Eqs. (2) and (3):

(1)q = 1 −
1

N�2

L
∑

h=1

Nh�
2

h
= 1 −

SSW

SST
, q ∈ [0, 1]

(2)F =
q(N − L)

(1 − q)(L − 1)
∼ F(L − 1,N − L;�)

Fig. 3   The methodological framework of this study
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 where the � refers to a non-central parameter, 
−

Yh refers to the mean value of Y  value of the 
h layer. According to Eq. (3), the GeoDetector software can be used to evaluate whether the 
q-value is significant.

The relationship between the spatial distribution of historical landslides and the candi-
date landslide environmental factors in Anhui Province is quantitatively analyzed by Geo-
Detector. The spatial distribution of historical landslides (Fig. 2l) as the dependent vari-
able in GeoDetector is produced with a spatial resolution of 1 km based on the ArcGIS 
spatial analysis tool kernel density. At the same time, all candidate landslide environmental 
factors were resampled to the same spatial resolution of 1 km. Regarding the categorical 
independent variables, the relationship between them and landslide density was analyzed 
directly by the GeoDetector. For continuous independent variables, the classification num-
ber was set to 3–10 categories, and three classification methods of quantile classification, 
natural breaks classification, and isometric classification were used in turn. The optimal 
discrete classification method and the number of classification categories for continuous 
variables are determined by the highest q value. Then the relationship between the histori-
cal landslide density and the landslide environmental factors under each optimal discrete 
classification is analyzed.

3.2 � Logistic regression model

Logistic regression (LR) model is a kind of regression analysis with a binary dependent 
variable. In the landslide susceptibility assessment, various landslide environmental factors 
can be used as categorical or continuous independent variables (Wang et al. 2016), and the 
occurrence of landslide can be represented by 0 (absence of landslide) and 1 (presence of 
landslide) as dependent variable (Kalantar et al. 2018; Ma et al. 2019). The advantage of 
the LR model is that the dependent variable can be binary, and the result ranges from 0 to 
1. Independent variables can be continuous or categorical variables. The continuous vari-
ables can be directly added to the model, and categorical variables can be transformed into 
dummy variables, and then, introduced into the model. The formula of the LR model is as 
follows:

 where P(y = 1|x1,… , xi) refers to the occurrence probability of the event, xi is the inde-
pendent variable, �i refers to the linear function of the factors influencing the occurrence of 
the event, � refers to the logarithm of the ratio of event occurrence to non-occurrence with-
out the influence of any factor, �k refers to the logistic regression coefficient representing 
the change value of the occurrence/non-occurrence probability ratio when the independ-
ent variable changes. According to this model, the occurrence probability P of landslide is 

(3)� =
1

�2

⎡

⎢

⎢

⎣

L
�

h=1

−

Y2

h
−

1

N

�

L
�

h=1

√

Nh

−

Yh

�2
⎤

⎥

⎥

⎦

(4)P
(

y = 1|x1,… , xi
)

=
e�i

1 + e�i

(5)�i = � +

k
∑

k=1

�kxk



1975Natural Hazards (2022) 112:1967–1988	

1 3

assumed to be [0, 1]. The occurrence probability of landslide is the dependent variable, the 
landslide environmental factors x1,… , xi are the independent variables. The logistic regres-
sion model of the occurrence probability of landslide is as follows:

Training set and validation set are needed for statistical-based landslide susceptibility 
modeling. For this study, the landslide inventory was randomly divided into 70% (2300 
landslides) of the training dataset and the remaining 30% (986 landslides) of the validation 
dataset (Steger et al. 2021). Regarding the non-landslide samples, the same number of non-
landslides were generated for training and validation datasets, respectively from different 
spatial extents (i.e., the selected entire area and the mountainous area of ​​Anhui Province) 
as shown in Fig. 4a and b. The extent of the mountainous area for this study was derived 
from a geomorphological classification map obtained from the RESDC. The GeoDetector 
is implemented based on the “GD” package in R programming language with the version 
of 3.6.3 and the LR model is implemented based on the “stats” package in R (Song et al. 
2020; R Core Team 2020).

3.3 � Evaluation methods

The confusion matrix, receiver operating characteristic (ROC) curve, k-fold non-spatial 
cross-validation (CV), and k-fold spatial cross-validation (SCV) were used to evaluate 
the predicted performance of the established landslide susceptibility models (Frattini 
et al. 2010). The match ratio between the prediction value of the models and the corre-
sponding actual value is presented in a table called the confusion matrix (Table 1).The 
ROC curve takes each prediction result as a possible judgment threshold and calculates 

(6)P =
e�+

∑k

k=1
�kxk

1 + e�+
∑k

k=1
�kxk

Fig. 4   Non-landslide sampling spatial extent on a the entire area and b the mountainous area
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the corresponding sensitivity and specificity according to the threshold, and it draws 
the abscissa with the false positive rate (1-specificity) and the ordinate with the true 
positive rate (sensitivity) (Frattini et  al. 2010). The area under the ROC curve is the 
AUROC value. The AUROC value range is [0.5, 1]. The larger the value is, the higher 
the predicted ability of the model is (Frattini et al. 2010). The K-fold non-spatial cross-
validation refers to randomly divide the original data set into K subsets with the same 
number of samples, and combine K-1 of them as the training data set to train the model 
in turn. The remaining one subset is the test dataset. The MSEi of the model on the test 
dataset is calculated in each test, and the MSEiobtained after k times of test are aver-
aged to obtain the MSE to evaluate the robustness of prediction performance (Brenning 
2012). The K-fold spatial cross-validation refers to randomly divide the original data 
set into K subsets with the same number of samples by considering the spatial location 
of each sample. Then the same as the non-spatial CV, the average of the MSE was cal-
culated to evaluate the robustness of prediction performance by considering the spatial 
distribution of the samples

4 � Results and discussion

4.1 � Analysis of influencing factors of landslide susceptibility

4.1.1 � Relationship between landslide density and various influencing factors

In terms of morphological factors, Fig. 5 shows that the frequency of landslides in Anhui 
Province increases with the increase in slope and terrain relief. For the curvature, the land-
slide appears more in the areas where the curvature is concave or convex. For hydrological 
factors, most of the landslides occur in areas with a CN value of 20–70, and the density 
of landslides rises as the drainage density increases. In terms of vegetation coverage, the 
frequency of landslides increases with the increase of NDVI. In terms of the climatic fac-
tors, the greater the annual average precipitation and the higher the number of extreme pre-
cipitation days, the higher the occurrence of landslides. Among the soil types, landslides 
mainly occur in luvisol, primary soil, and ferrallitic soil areas. For lithology, landslides 

(7)CV(k) =
1

k

k
∑

i=1

MSEi

Table 1   Confusion matrix Actual value Predicted value

0 1 Percent-
age 
correct

0 f11 f12
f11

f11+f12

1 f21 f22
f22

f21+f22

Overall percentage f11+f22

f11+f12+f21+f22
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mainly occur in sedimentary rocks, hypogene rocks, and volcanic rock areas. For popula-
tion density, the conditional probability of a landslide shows an increase followed by a 
decrease with increasing population density. While for GDP, the conditional probability of 
landslide increases with the increase of GDP.

Fig. 5   Conditional frequency plots displaying empirical relations between landslide and variousenviron-
mental factors a Slope b terrain relief c curvature d NDVI e drainage density fCN g annual average precipi-
tation h annual 95% quantile daily precipitation i maximumannual average precipitation j annual average 
daily maximum precipitation k annual averageprecipitation over 1 0mm days l annual average precipitation 
over 25mm days m annualaverage precipitation over 50mm days n annual average precipitation above 95% 
quantile dayso GDP p population density r lithology s soil type
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4.1.2 � The q‑value of each landslide environmental factor

The effects of landslide influencing factors with the spatial distribution of landslide den-
sity in Anhui Province were detected using the GeoDetector (Fig.  6). The q-value of 
each environmental factor is greater than zero and significant with a 95% confidence 
level, indicating that there is a significant relationship between the zoning of each land-
slide environmental factor and the spatial distribution of the landslides in Anhui Prov-
ince. The q-value of each influencing factor is sorted from large to small in Fig. 6. The 
first two variables with the strongest interpretation of the spatial distribution of land-
slides in Anhui Province are morphological factors, which reflects that the morphology 
has the most obvious influence on landslides in Anhui Province. The following is the 
annual average precipitation days greater than 10mm and the average annual precipita-
tion, these two environmental factors reflect the spatial pattern of extreme precipitation 
and long-term precipitation in Anhui Province, indicating that rainfall triggering condi-
tions have a significant influence on the occurrence of landslide in Anhui Province.

For the selection of factors environmental landslides, if the q-value of the GeoDetec-
tor was used as the only criteria, more than half of the selected environmental factors 
would be climatic factors. This would result in multicollinearity during the modeling 
process, which may make the model prediction distorted. To avoid such problems, the 
dominant landslide environmental factors were selected according to their categories as 
follows: Climatic (precipitation), geological and soil (soil and lithology), topography 
(slope, terrain relief and curvature), vegetation coverage (NDVI), hydrological (drain-
age density and CN), human activities (population density and GDP). In each category, 
the q value was compared, and the dominant landslide environmental factor with the 
highest q value in each category was selected to enter the model training. Finally, the 
dominant landslide environmental factors were selected ​​as follows: annual average pre-
cipitation days greater than 10mm, lithology, slope, NDVI, and population density.

Fig. 6   The q-value of each landslide environmental factors
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The dominant landslide influencing factors were selected in this work based on the Geo-
Detector which has been applied for identifying the conditional factors of landslide suscep-
tibility modeling (Yang et al. 2019; Rong et al. 2020; Xie et al. 2021). The results in this 
study show that the slope and extreme precipitation are most closely related to the spatial 
distribution of historical landslides in Anhui Province. While Xie et al. (2021) show that 
the elevation, slope and land use are the most relevant factors for landslide susceptibility 
mapping (LSM) in Xiaojin County, Sichuan Province, China. Yang et al. (2019) indicate 
that the most closely related landslide environmental factors in the surrounding areas of 
Duwen highway in Sichuan Province are lithology, slope, elevation, seismic intensity, and 
distance from settlements. Rong et al. (2020) show that the dominant influencing factors of 
the occurrence of landslides in Shuicheng County, Guizhou Province, China are elevation, 
slope, lithology, and distance to faults. The comparison with the existing studies shows that 
the dominant influencing factors of the spatial distribution of historical landslides have sig-
nificant spatial heterogeneity in different regions. The GeoDetetor is applicable to identify 
the dominant influencing factors in different study areas. However, selecting the dominant 
factors into the model purely by the order of importance obtained by GeoDetetor may lead 
to some co-linearity troubles. It would be more appropriate to incorporate the heuristics to 
select the dominant factors that are eventually employed for modeling.

4.2 � Landslide susceptibility modeling results

4.2.1 � Landslide susceptibility models

The five dominant influencing factors were finally selected and introduced into the logistic 
regression model. For lithology, the Unconsolidated Sediments are regarded as the refer-
ence category. The coefficients of the influencing factors of the EareaLR model and the 
MareaLR model are shown in Table 2. The results of the variables of the two models show 
that the slope and the annual average precipitation days greater than 10mm will increase 
the occurrence possibility of landslide, and the NDVI will reduce the occurrence possi-
bility of landslide. Regarding the lithological types, most lithology types such as acidic 
volcanic rock, basic volcanic rock, and mixed volcanic rock will increase the probability 
of landslide occurrence compared with unconsolidated sedimentary rock. The two models 
are in line in the direction of the influence of each factor on landslide occurrence. However, 
comparing the coefficient sizes of the two models reveals that the coefficients of MareaLR 
model are significantly lower than those of EareaLR model for each lithological category 
and slope. This is mainly because the EareaLR model selects the non-landslide samples in 
the entire region (i.e., region-wide including flatter terrain areas) so that the non-landslide 
samples are more commonly located in the lithological category of Unconsolidated Sedi-
ments (Fig. 2h) where landslides are less likely to occur and also in areas with lower slopes 
(Fig. 2a). It results in the EareaLR model having a better explanatory capability in terms of 
the predictors lithology and slope.

4.2.2 � Evaluation results of the landslide susceptibility models

The confusion matrix reflects the prediction accuracy of the landslide susceptibility 
model. By setting the threshold value to 0.5, the model prediction result P is divided into 
the occurrence of landslide (P ≥ 0.5) and non-occurrence of landslide (P < 0.5) (Xiong 
et al. 2019). The accuracy of the confusion matrix of the training and validation set for the 
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EareaLR model and the MareaLR model are shown in Fig. 7. It is found that the accuracy 
of the EareaLR model is much higher than that of the MareaLR model. The overall accu-
racy is 79.2% of the training dataset and is 78.1% of the validation dataset for the EareaLR 
model. While the overall accuracy of the training set of the MareaLR model is only 67.4%, 
and the corresponding accuracy of the validation set is only 66.8%. Compared with the 
MareaLR model, the classification accuracy of the EareaLR model is improved by 11.8% 
in the training dataset and 11.3% in the validation dataset. This shows that the classification 
accuracy of the training dataset and validation dataset of the EareaLR model is better than 
that of the MareaLR model.

The ROC curves of the EareaLR model and the MareaLR model are shown in Fig. 8. 
The area under the ROC curve (AUROC) of the training dataset and validation dataset 
of the MareaLR model are 0.736 and 0.732, respectively. Compared with the MareaLR 
model, the EareaLR model has higher accuracy in landslide susceptibility modeling. The 
AUROC of the training dataset and the validation dataset of the EareaLR model are 0.845 
and 0.830, respectively, which are 10.9 and 9.8% higher than that of the MareaLR model. 
This shows that compared with the spatial selection of non-landslide samples in the moun-
tainous area of Anhui Province, the landslide susceptibility model trained by the spatial 
selection of non-landslide samples in the entire area of Anhui Province has a higher predic-
tion accuracy. 

To further evaluate the robustness of the models, the CV and SCV (5 folds 30 times, 
total 150 times) were used to evaluate the performance of the EareaLR model and the Mar-
eaLR model. The results are shown in Fig. 8. The CV average of AUROC for the EareaLR 
model is 0.834, and the SCV average of AUROC is 0.797. The CV average of AUROC 
for the MareaLR model is 0.732, and the SCV average of AUROC is 0.678. Compared 
with the MareaLR model, the CV and SCV average of AUROC for the EareaLR model 

Table 2   Coefficients of the influencing factors

Independent variable EareaLR MareaLR

� Sig. Exp(�) � Sig. Exp(�)

Intercept − 3.755 0.0000 0.023 − 2.732 0.0000 0.065
Slope (°) 0.026 0.0000 1.027 0.005 0.3399 1.005
Annual average precipitation days 

greater than 10 mm (days)
0.114 0.0000 1.121 0.104 0.0000 1.110

Lithology 0.0000 0.0000
  Clastic sedimentary rock 1.179 0.0000 3.251 0.822 0.0000 2.276
  Mixed sedimentary rock 2.182 0.0000 8.864 1.249 0.0000 3.487
  Pyroclastic rock 1.451 0.0000 4.267 1.006 0.0000 2.735
  Carbonate sedimentary rock 1.862 0.0000 6.437 1.566 0.0000 4.787
  Acidic hypogene rock 1.805 0.0000 6.080 0.974 0.0000 2.650
  Neutral hypogene rock 1.757 0.0000 5.795 0.719 0.0477 2.053
  Basic hypogene rock 1.789 0.0000 5.983 1.251 0.0000 3.494
  Acid volcanic rock 2.444 0.0000 11.519 2.405 0.0003 11.078
  Intermediate volcanic rock 1.938 0.0009 6.945 1.512 0.0004 4.536
  Basic volcanic rock 2.354 0.0000 10.528 1.961 0.0000 7.106

Population density (human/km2) 0.000 0.2950 1.000 0.000 0.3190 1.000
NDVI − 3.111 0.0000 0.045 − 3.647 0.0000 0.026
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are increased by 10.21 and 11.85%, respectively, which suggested that the selection area 
of non-landslide samples has more robustness modeling performance and higher predic-
tion ability in the entire area of Anhui Province (i.e., region-wide including flatter terrain 
areas).

Fig. 7   The confusion matrix of the training data set of a EareaLR and b MareaLR and thevalidation data set 
of c EareaLR and d MareaLR

Fig. 8   The ROC curves of a the EareaLR model and b the MareaLR model and c the CV andSCV of the 
EareaLR and the MareaLR model
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The EareaLR model and the MareaLR model were applied to the landslide susceptibil-
ity mapping in Anhui Province, and the landslide susceptibility values were divided by 
using the quantile method ​​corresponding to the 50%, 75%, 90%, and 95% quantiles. The 
landslide susceptibility levels were reclassified into five levels such as very low, low, mod-
erate, high, and very high. The results are shown in Fig. 9.

In comparison between Fig. 9a and b, most of the areas with very high and high land-
slide susceptibility areas produced by the MareaLR model are distributed in high-alti-
tude mountainous areas and scattered in flatter terrain areas in northern Anhui Province 
(Fig. 9b). In the landslide susceptibility map produced by the EareaLR model, landslide 
susceptibility areas with very high and high susceptibility levels were mainly distributed 
in the southern mountainous area and part of the southwestern mountainous area (Fig. 9a). 
Compared with the recorded distribution of historical landslides in Anhui Province 
(Fig. 1c) and the geomorphology characteristics of Anhui Province, the spatial distribution 
of landslide susceptibility produced by the EareaLR model was geomorphologically more 
plausible.

The statistical results of the distribution of landslide susceptibility levels for the Ear-
eaLR model and MareaLR model are shown in Table  3. About 80% of the historical 
landslides are distributed in very high, high, and moderate landslide susceptibility areas 
produced by the EareaLR model, which only accounts for 25% of the total area of Anhui 
Province. And the area with low and very low landslide susceptibility levels accounted 
for about 75% of Anhui Province, which only accounted for about 20% of historical land-
slides. The area with the moderate, high and very high landslide susceptibility produced 
by the MareaLR model also accounted for 25% of the total area of Anhui Province, but the 
historical landslides in this area only account for 74.66%, and the area with low and very 

Fig. 9   Spatial distribution of landslide susceptibility in Anhui Province obtained by a theEareaLR model 
and b the MareaLR model



1983Natural Hazards (2022) 112:1967–1988	

1 3

low susceptibility levels also accounts for 75% of the area of Anhui Province, and there are 
about 25% of historical landslides.

Comparing the results of the recorded landslides distribution of each susceptibility level 
of the EareaLR model and the MareaLR model, it is found that the moderate, high and 
very high susceptibility areas of the landslide susceptibility model calibrated by the selec-
tion area of non-landslide samples in the entire area of Anhui Province can explain more 
historical landslides and there are fewer landslides in low and very low susceptibility areas 
when the area of ​​each susceptibility zone is the same. This suggests that the landslide sus-
ceptibility model established by taking the entire area as the selected spatial extent of non-
landslide samples has better prediction performance.

Various evaluation metrics reveal that the EareaLR model performs significantly bet-
ter than the MareaLR model in terms of predictive performance. This is attributed to the 
fact that the non-landslide samples in the EareaLR model are selected on a region-wide 
extent, and these non-landslide samples have a large number of lithological categories 
(Unconsolidated Sediments) that differ from the landslide samples. At the same time, these 
non-landslide samples are mostly located in low-slope areas. These two together enable the 
lithology and slope predictors to better discriminate between landslide and non-landslide 
samples in the EareaLR model compared to the MareaLR model, resulting in higher pre-
diction performance. This high predictive performance and the capability to discriminate 
between landslide and non-landslide samples in the EareaLR model is further presented in 
the appearance of the final landslide susceptibility map. It results in landslide susceptibility 
maps obtained from the EareaLR model that better coincide with historical landslide dis-
tributions and propensity to predict lower landslide susceptibility levels in Unconsolidated 
Sediments lithological categories and low-slope areas. These results suggest that when 
comparing the performance of different data-driven landslide susceptibility models, the 
extent of non-landslide sample selection also has a significant effect, and the performance 
of the models cannot be judged by only quantitative evaluation metrics.

There are no universal criteria for non-landslide sampling schemes in the statistical-
based landslide susceptibility model (Dou et al. 2020). It has been demonstrated that dif-
ferent non-landslide sampling strategies have significant effects on landslide susceptibility 
modeling results, such as different non-landslide/landslide sample ratios (Shao et al. 2020), 
different sampling intensity (Shao et al. 2020), different sampling scales (Yi et al. 2020) 
and different sampling method (Erener et  al. 2017). This study attempts to explore the 
influence of different spatial extent selection for non-landslide samples on the statistical-
based landslide susceptibility model. The results showed that different spatial extent of the 
non-landslide samples had significant effects on the explanatory power of the predictors, 

Table 3   Distribution of historical landslides in various landslide susceptibility levels in Anhui Province

Landslide sus-
ceptibility

Area propor-
tion (%)

Number of landslides (proportion %) Landslide density
(landslides/10000 m2)

EareaLR MareaLR EareaLR MareaLR

Very low 50.0 140 (4.29%) 127 (3.89%) 0.201 0.182
Low 25.0 517 (15.82%) 701 (21.46%) 1.482 2.010
Moderate 15.0 1295 (39.64%) 1374 (42.06%) 6.189 6.567
High 5.0 603 (18.46%) 548 (16.77%) 8.645 7.857
Very high 5.0 712 (21.79%) 517 (15.82%) 10.208 7.412
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the predictive performance of the model, and the appearance of the final landslide sus-
ceptibility map. The entire area (i.e., region-wide including flatter terrain areas) for non-
landslide sampling could yield better evaluation performance and more geomorphologi-
cally plausible distribution of landslide susceptibility. The results of this study adequately 
validate, at a larger spatial scale and based on more abundant evaluation metrics, the argu-
ment proposed in the literature that the introduction of “trivial terrain” into data-driven 
landslide susceptibility models can enhance the predictive performance of geomorphologi-
cally meaningless models (Steger and Glade 2017).

5 � Conclusions

This study investigates the potential influence of the selection of the spatial extent for non-
landslide samples on the landslide susceptibility models. The entire area (i.e., region-wide 
including flatter terrain areas) and the mountainous area of Anhui Province were designed 
for different non-landslides sampling areas. Then, the EareaLR model and MareaLR model 
representing different non-landslides sampling spatial extent were built based on the logis-
tic regression model and the selected dominant landslide environmental factors. The per-
formances of the two models for landslide susceptibility modeling and mapping were com-
pared and evaluated. The main conclusions are as follows:

The method of GeoDetector can effectively identify the dominant landslide environmen-
tal factors and quantify the relationship between each environmental factor and the spatial 
distribution of historical landslides in Anhui Province. However, determining the dominant 
factor to be introduced into the model solely by quantitative metrics such as importance 
obtained by GeoDetetor may increase the likelihood of introducing biased variables or the 
trouble of introducing multiple redundant variables. It would be more appropriate to incor-
porate a heuristic approach to select the ultimately dominant factors for modeling.

Different spatial extent of the non-landslide samples had significant effects on the 
explanatory power of the predictors, the predictive performance of the model, and the 
appearance of the final landslide susceptibility map. The non-landslide samples in the Ear-
eaLR model are selected on a region-wide extent to enable the lithology and slope predic-
tors to better discriminate between landslide and non-landslide samples in the EareaLR 
model, thus resulting in higher prediction performance and more geomorphologically plau-
sible appearance of the final landslide susceptibility map. This suggests that when com-
pared to the performance of different data-driven landslide susceptibility models, the per-
formance of the models cannot be judged by quantitative evaluation metrics alone but also 
the spatial extent of non-landslide sample selection needs to be considered.
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