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Abstract
This study proposes a novel ensemble empirical mode decomposition (EEMD) time-
dependent intrinsic cross-correlation (TDICC)-coupled framework to investigate the cor-
relation between monthly rainfall over India and Madden–Julian oscillation (MJO) in dif-
ferent timescales. EEMD first decomposes the monthly rainfall and MJO time series into 
different orthogonal modes namely intrinsic mode functions (IMFs) and a residue with 
specific periodicity representing the physical processes governing, independently. Then, 
the significant modes that can be used for rainfall predictions are extracted by executing 
time-dependent intrinsic correlation (TDIC) which follows the concept of running corre-
lation analysis. Finally, the lags significant for rainfall predictions at different scales are 
identified by invoking the TDICC analysis considering different time lags up to 12 months. 
Among the ten MJO indices considered in the study, indices 2 to 5 (longitudes 100° E, 
120° E, 140° E, 160° E) are strongly negatively correlated while MJO indices 8 to 10 (lon-
gitudes 10° W, 20° E and 70° E) are found to be strongly positively correlated with the 
rainfall at all the timescales. Contrary to this similarity in the nature of correlations, the 
correlation patterns can differ with lags both in the nature and strength of associations. 
The mode of rainfall at annual scale for all the indices can be predicted with lags 1, 2, 5–8 
while the mode of highest frequency can be predicted with lag 1 information alone. For the 
prediction of the low-frequency IMFs (mostly 5th IMF onward) of all the indices, all the 
12 lags are found to be significant, implied by the unchanging and stable lagged correlation 
pattern.
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1 Introduction

Accurate prediction of rainfall is one of the most challenging tasks for the hydrologists 
and meteorologists, due to the system complexity. Researchers have been studying many 
climatic drivers that have an impact on the behavior of rainfall pattern in India over the 
past century (Blanford 1884; Walker 1923). El-Niño southern oscillation (ENSO), quasi-
biennial oscillation (QBO), Pacific decadal oscillation (PDO), Atlantic multi-decadal oscil-
lation (AMO), Indian Ocean Dipole (IOD), Equatorial Indian Ocean oscillation (EQUI-
NOO), etc. were recognized to be some of the well-known large-scale climate oscillations 
operating at timescales varying from inter-annual to inter-decadal scales, influencing the 
rainfall pattern in India (Kripalani and Kulkarni 1997a, b; Saji et al. 1999; Krishnan and 
Sugi 2003; Gadgil et al. 2004; Kumar et al. 2006; Goswami et al. 2006). Madden–Julian 
oscillation (MJO) is an intra-seasonal climatic oscillation with typical periodicity of 
30–60  days, discovered in tropical regions in 1971 by Roland Madden and Paul Julian 
(Madden and Julian 1971, 1972, 1994).

The inextricable relationship between the Indian Summer Monsoon Rainfall (ISMR) 
and MJO was observed by researchers in the early 1970s (Murakami 1976). Since its rec-
ognition, many studies have been conducted on MJO, its underlying mechanisms, evolu-
tion, propagation characteristics, interannual variability (Yasunari 1979, 1980, 1981; Singh 
et  al. 1992; Li et  al. 2014; Chen and Wang 2018a,b; Wang et  al. 2018). The effects of 
MJO on various atmospheric variables like cloudiness, zonal wind, latent flux, etc. were 
also discovered (Krishnamurti et al. 1988). Zhang (2013) studied the influence of MJO on 
precipitation, cyclones, flood, lightning, monsoons and some of the large-scale climatic 
oscillations. Chakraborty and Krishnamurti (2003) employed the relationship between 
MJO and ENSO with ISMR and concluded that during the monsoon period in India, high 
MJO signals and low ENSO signals result in an above average normal rainfall whereas low 
MJO signals and high ENSO signals results in below average rainfall. Saith and Slingo 
(2006) reported that MJO had a dominant effect in the occurrence of deficit rainfall in India 
in 2002. As MJO modulates the behavior of climatic oscillations, one cannot ignore its 
impact on the behavior of complex Indian rainfall system. Seetharam (2008) correlated 
the monthly MJO with ISMR of 1979–2000 period at 29 meteorological subdivisions. The 
study observed spatial diversity in the influence of MJO on rainfall in different subdivi-
sions and linked this behavior with the 10 different MJO phases defined based on longi-
tudes. Some of the researchers provided scientific evidences of the role of intensity dif-
ferent phases of MJO on the rainfall pattern of India and attributed the rainfall anomalies 
during the various MJO phases with the moisture convergence anomalies (Pai et al. 2011; 
Mishra et  al. 2017). Many of the past studies also investigated the influence of MJO on 
the onset and retreat, seasonal and diurnal characteristics, regional rainfall extremes, etc. 
(Bhatla et al. 2017; Anandh et al. 2018; Singh and Bhatla 2018, 2020; Anandh and Vissa 
2020). However, the earlier studies have paid little attention in extracting the MJO-rain-
fall teleconnections in multiple timescales, and such an analysis may help to capture new 
evidences that contribute beneficially to rainfall predictions. Therefore, improved under-
standing of MJO may help for improving the accuracy of rainfall predictions in the Indian 
subcontinent.

Wavelet analysis has been used for investigating the climatic teleconnections of rainfall 
in multiple timescales at different parts of the globe (Ashok and Saji 2007; Narasimha et al. 
2010; Gaughan et al. 2016; Araghi et al. 2017). Even though wavelet transforms can satis-
factorily handle the complex nonlinear and non-stationary signals, choosing the appropriate 
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wavelet function and the level of decomposition are tedious tasks. Addressing this challenge, 
Huang et al. (1998) developed Hilbert–Huang transform (HHT) method by proposing a data-
adaptive multiscale decomposition method namely empirical mode decomposition (EMD) 
and subsequently integrating it with the Hilbert transform (HT). In EMD, each signal can 
be decomposed into a set of zero mean components called intrinsic mode functions (IMFs) 
and final residue, each with definite periodicity. Iyengar and Raghu Kanth (2005) investi-
gated the relationships of ENSO, QBO, tidal forcing and sunspot cycles with ISMR using 
EMD, by finding the overall correlation between modes with similar periodicities. But such 
a comparison can deliver only limited information on the teleconnections between 2 signals, 
as the strength of the association may vary over both the timescale and time domain when the 
processes are multiscale and signals are non-stationary. A running correlation analysis that 
accounts for the non-stationary and multiscale behavior of the time series can be a feasible 
solution to this issue. Chen et al. (2010) proposed HHT-based multiscale running correlation 
procedure, namely time-dependent intrinsic correlation (TDIC) to explore the relationship 
between two non-stationary time series. The TDIC method can capture the multiscale associa-
tion through EMD and subsequent running correlation operation and it can address the issue 
of non-stationarity by choosing the most appropriate size for sliding window. The technique 
was implemented successfully for teleconnection studies including hydro-climatic telecon-
nections (Huang and Schmitt 2014; Ismail et al. 2015; Adarsh and Janga Reddy 2016, 2018; 
Johny et al. 2019, Johny et al. 2020b).

From the review of literature, it is well evident that none of the past studies investigated the 
influence of MJO on monthly rainfall over India in multiple timescales in a time–frequency 
space, even though capturing such scale-specific information may help in improved rainfall 
predictions. In developing the statistical or data-driven models for rainfall predictions, iden-
tification of significant inputs is one of the crucial step. It is well understood that the rainfall 
of the present month need not be influenced by the climatic oscillations of the same month, 
instead it can be a concurrent effect of the oscillations of some of the past months (Maity and 
Nagesh Kumar 2008). The knowledge of such lagged influence of each climatic oscillation 
that modulates the variability in rainfall is expected to improve predictions. In decomposition-
based hybrid models for predictions, the time series is decomposed to a set of modes (compo-
nents), each mode will be predicted separately using linear or nonlinear regression methods 
and finally, the predicted components are aggregated. Therefore, retaining only the most rel-
evant modes and most significant lagged inputs for their predictions may considerably reduce 
the computational complexity of rainfall predictions using statistical or data-driven methods. 
In the past teleconnection studies of rainfall employing TDIC method, the lagged effects of 
climatic oscillations are not accounted. Time-dependent intrinsic cross-correlation (TDICC) 
proposed by Chen et al. (2010) is an extension of TDIC to capture such lagged influences, but 
its potential is not explored yet to capture the hydro-climatic teleconnections. Addressing the 
above research gaps, the current work attempts (i) to examine the teleconnection of MJO on 
the monthly rainfall pattern in India using the TDIC method; (ii) to investigate the influence 
of lagged values of predictor variables on monthly rainfall over India in multiple timescales, 
using the proposed EEMD-TDICC-coupled framework.
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2  Methods and materials

EMD proposed by Huang et al. (1998) decomposes a signal into a number of orthogonal 
zero mean components called IMFs and a final residue. Each mode generated by decom-
position is associated with specific periodicity, the lower-order modes are high-frequency 
modes (with shorter periodicity) and higher-order modes are low-frequency modes with 
longer periodicity. The decomposition process is purely data adaptive and unlike the pop-
ular discrete wavelet transform, the number of modes generated need not be specified a 
priori and the periodicity of successive modes need not be in dyadic powers (as power of 
2). The EMD operation comprises (i) identification of peaks and troughs of the signal; (ii) 
fitting of envelop curves through the peaks using cubic spline and determine its mean; (iii) 
subtraction of mean from the signal. These steps are performed iteratively (called as sift-
ing) till a zero mean signal is obtained, which are called as IMF. By subtracting the first 
IMF from the signal, the new signal can be obtained and the sifting can be continued. The 
process will be continued till a monotonic function is obtained, which is the final residue. 
More details of the algorithm can be found in the literature (Huang et al. 1998; Huang and 
Wu 2008). The original variant of EMD has serious shortcomings, as multiple frequency 
components may be associated with same mode or similar frequency components may pre-
sent in more than one mode (so-called mode-mixing). The mathematical transformations of 
such modes may result in negative frequency, which are having no physical meaning and 
it may lead to wrong conclusions while applying to real field datasets. To circumvent this 
issue, a number of improvisations of EMD were proposed in the past and such algorithms 
were found to be suitable for practical applications in hydrology and meteorology (Adarsh 
and Reddy 2021).

2.1  Ensemble empirical mode decomposition (EEMD)

Wu and Huang (2009) proposed a multiscale noise-assisted variant of EMD called ensem-
ble empirical mode decomposition (EEMD) that is capable of alleviating the mode-mixing 
problem on generating IMFs. The steps for executing EEMD are: (i) generate artificial sig-
nals from the given signal by adding white noise signal; (ii) extract the IMFs by employing 
EMD of each artificial signal; (iii) obtain the desired IMF by the method of ensemble aver-
aging. More details of the algorithm and details on selection of its control parameters can 
be found in the literature (Wu and Huang 2005; Huang and Wu 2008).

2.2  Time‑dependent intrinsic cross‑correlation (TDICC)

An adaptive correlation analysis can be performed on given two signals using HHT-based 
data-adaptive TDICC technique (Chen et  al. 2010). This method considers two × series 
x1(t) and x2(t) and their decomposition using EMD or its variants. The IMFs obtained 
are subjected to HT to get instantaneous frequencies (hence instantaneous periods) in a 
time–frequency space. TDICC accounts time lags while employing running correlation 
between IMFs of the signals in different timescales. In this method, the size of the slid-
ing window at each instant is fixed as maximum of the instantaneous periods of the IMFs, 
computed from HT, which ensure the stationarity within the sliding window. The mov-
ing window analysis is performed iteratively till the end of the signal gets reached. The 
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complete procedure of the algorithm is presented as a flowchart in Fig. 1. In the flowchart, 
x1(t) and x2(t) are two time series, c1i(t) and c2i(t) are IMFs of signals where t represents 
time whose value can change from 1 to the length of time series (N); t

d
 represents mini-

mum sliding window size; tn
w
 represents size of sliding window T1i and T2i are the instanta-

neous periods; t
k
 represents any instant of time, in which k can vary from 1 to N; τ is the lag 

used to determine the lead–lag correlation; n is any positive number and normally selected 
as 1 (Huang and Schmitt 2014).

In this procedure, the cross-correlations are computed for a large number of combina-
tions of timescale and time instants along the time domain. As a result, a TDICC matrix 
will be obtained, which will be in a triangular shape with time in the x-axis and the size of 
the moving window in the y-axis, when represented graphically. The instantaneous cross-
correlations can be identified from the color bar representation. The correlation coefficient 
between the modes with complete data length is equal to the correlation coefficient at the 
apex point of the triangle (Chen et al. 2010).

2.3  Proposed methodology

A realistic implementation that executes a running correlation between rainfall and MJO 
at monthly scale using TDICC analysis is followed in this study. Initially, a general cor-
relation analysis is performed for each pair of the IMFs of MJO indices and monthly rain-
fall over India to investigate a multiscale hydro-climatic teleconnection. Subsequently, the 
TDIC analysis is performed to identify the prominent modes required to develop the rain-
fall prediction models. Finally, the TDICC analysis is applied on the prominent modes, to 
identify significant predictors (lagged values) to predict rainfall at each timescale (i.e., to 
predict each IMF component). It is worth to mention that the final aggregation of predicted 
IMF components and residue will provide the information on rainfall at time step t.

The steps to be followed in the approach are:

1. Generate the IMFs of the monthly time series of rainfall and MJO index using the EEMD 
method.

2. Identify the correlation coefficient between the components of rainfall with components 
MJO indices by employing Pearson correlation analysis to infer the association between 
different pairs.

3. Identify the significant IMFs by using TDIC analysis performed on IMFs of similar 
periodicities.

4. Perform TDICC between the IMFs selected in step 3.
5. For each significant IMF obtained in step (4), select the TDICC plot, indicating a signifi-

cant correlation in long term and use the corresponding lags for the rainfall prediction 
of the corresponding timescale.

3  Study area and dataset

Indian Institute of Tropical Meteorology (IITM) Pune established a widespread network 
of rain gauge stations to measure the rainfall over India, in the 1990s. Considering rainfall 
homogeneity, IITM Pune demarcated 29 meteorological subdivisions in India and based 
on the data of 306 rain gauge stations, Parthasarathy et al. (1994) published monthly area 
weighted rainfall data of India. An updated version of this database available in Kothawale 
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and Rajeevan (2017) is used in the present study. For this study, All-India (considering 
Indian main land as a single unit) monthly rainfall data for 39  years (1978–2016) are 
retrieved from the website of IITM Pune (http:// www. tropm et. res. in). In order to examine 
the teleconnection of the MJO with monthly rainfall of All-India spatial scale, the MJO 
indices for ten time-lagged longitudes, namely, index-1, index-2, index-3, index-4, index-5, 
index-6, index-7, index-8, index-9 and index-10 at longitudes 80° E, 100° E, 120° E, 140° 
E, 160° E, 120° W, 40° W, 10° W, 20° E and 70° E, respectively, for the period 1978–2016 
were obtained from Climate Prediction Center (CPC), NOAA datasets (https:// www. cpc. 
ncep. noaa. gov). The hydro-climatic teleconnection studies can give proper insight only at 
larger spatiotemporal scales and it is advisable to perform such analysis at larger spati-
otemporal scales (Kashid and Maity 2012). Many of the past studies considered monthly 
to seasonal scale aggregation of daily time series of MJO indices followed by averaging 
operation (Seetharam 2008; Li et  al. 2018; Klotzbach et  al. 2019; Dasgupta et  al. 2020; 
Soria 2021). Accordingly, the monthly mean MJO indices derived from daily data aggrega-
tion for the period 1978–2016 were used for the teleconnection study.

4  Results and discussion

The multiscale decomposition of the rainfall or climatic oscillations will decipher the phys-
ical processes behind them. The modes obtained by decomposition will be with specific 
periodic scales. Firstly, EEMD is applied on all the ten indices, by setting the number of 
iterations, noise standard deviation and ensemble number as 10, 0.02 and 100, respectively, 
following the recommendations in the past studies (Beltr´an-Castro et al. 2003; Huang and 
Wu 2008; Wu and Huang 2009). We confirmed the evolution of distinctly separable and 
good quality modes without any mode-mixing for this combination of parameters, through 
a number of numerical experiments performed upon similar datasets, considering different 
control parameter sets (Johny et al. 2019, 2020). EEMD performed on index-7 and index-
10 resulted in 9 IMFs and a residue. For all the other indices and the monthly rainfall data, 
EEMD resulted in eight IMFs and a residue as presented in Fig. 2. The mean periods of 
the modes obtained by decomposition of different signals are presented in Table 1. It can 
be seen that mean period of different signals in non-dyadic powers from bi-monthly scale 
to inter-decadal scales indicates multiscaling behavior. Due to the non-dyadic powers, the 
number of modes may not be same for all the signals (for index 7 and 10 it is 9 IMFs), 
which is also depending on the data complexity. The IMF3 is representing annual periodic-
ity in all cases (varies from 11.32 to 12.81 months) for different signals.

To investigate the link between MJO and rainfall, first the cross-correlation between 
the modes of monthly rainfall and that of MJO indices are computed (Supplementary file 
Table S1). From the cross-correlation analysis, it is clear that certain MJO indices with rainfall 
are correlated differently for different IMFs and for different indices. MJO indices 1, 2 and 
10 show a positive correlation and MJO indices 4 to7 show a negative correlation, for all the 
IMFs. Strongest correlations (> 0.9) are observed for the MJO index-1. For indices 3, 8 and 
9, the correlations for most of the IMFs are primarily weak and the MJO-rainfall link retains 
strong correlations only in a very few IMFs. In general, low-frequency modes will always sus-
tain more stable relationship than high-frequency modes for the rainfall-climate oscillation tel-
econnections (Adarsh and Janga Reddy 2016). The strong (or weak) correlation between MJO 
and the rainfall need not be global (signal as a whole) in nature, but a local (part of the signal) 
one, which may vary with the time spells, i.e., we intend to demonstrate that the estimation of 

http://www.tropmet.res.in
https://www.cpc.ncep.noaa.gov
https://www.cpc.ncep.noaa.gov
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overall correlation will not be sufficient to capture the scale-dependent association between 
MJO and rainfall. At some process scale or time spell, it will be positive, while at some other 
scale/spell it will be negative, which mutually cancels each other and eventually leads to very 
small overall correlation between the two series. Such information will be misleading and 
because of this we need to follow a running correlation approach in multiscale teleconnection 
studies. To capture such evolution of the pattern of correlation, the TDIC method is help-
ful and the TDIC analysis is executed between the corresponding components of rainfall and 
MJO index to identify the relevant set of IMFs for rainfall prediction. Finally, in order to iden-
tify prominent lags influencing the rainfall at different process scales, the TDICC analysis is 
performed. The observations obtained from the multiscale correlation analysis are provided 
below and the results of TDICC analysis showing the most relevant lags for each relevant IMF 
are summarized in Table 2.

4.1  MJO index‑1

The TDIC analysis of MJO index-1 and monthly rainfall of India as presented in Fig. 3 
shows strong long-range correlations for IMF1 and IMF5. In IMF1, the association is 

Fig. 2  Orthogonal modes of different climatic indices: a MJO index-1, b MJO index-2, c MJO index-3, d 
MJO index-4, e MJO index-5, f MJO index-6, g MJO index-7, h MJO index-8, i MJO index-9 and j MJO 
index-10
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primarily positive, while in IMF5 it is negative. For remaining IMFs, one can notice multi-
ple transitions in the nature of correlations from positive to negative (and vice versa) over 
the time domain. In short, more consistent pattern of association between MJO1 and rain-
fall is noticed in IMF1 and IMF5. Therefore, these two IMFs are chosen to perform the 
TDICC analysis, in order to understand the lag-effect of MJO on rainfall (Fig.  4). Even 
though IMF1 in TDIC plot (Fig. 3) shows a fairly strong long-range positive correlation, 
i.e., the strong and positive correlation is prevailed for all the timescale. All the lagged cor-
relations of IMF1 on rainfall are found to be practically weak in this case. The correlations 
are weak and insignificant in different time spells and over the time domain in all the lags, 
except for lag 7 (Fig. 4). The pattern of correlations is stable for lag 7 and which is suf-
ficient to be considered as input for modeling of IMF1, i.e., for modeling rainfall process 
at the high-frequency space. In short, IMF1(t) can be predicted by considering IMF(t-7) 
as input. IMF5 follows a strong long-range negative correlation in TDIC analysis (Fig. 3). 
From TDICC analysis of IMF5 for different lags, it is noted that (Fig. 4) there exists a long-
range negative correlation for lags 1 to 4 and with more stable pattern for lag 2, followed 
by lag 1. The transition from negative to positive correlations is evident in lags 5–10with 
higher percentage of void spaces (insignificant correlations). This indicates more unstable 
and inconsistent role of MJO index on rainfall pattern at this process scale with these lags. 
A stable (unchanging) correlation pattern with time spells and over the time domain is 
brought back in lag 11. Hence, lags 1, 2 and 11 may be considered as potential predictors 
for IMF5.

4.2  MJO index‑2

TDIC plot of MJO index-2 depicts strong long-range negative correlation in all the six 
IMFs (Fig. 3), which emphasis the relevance of all IMFs of MJO index-2 for the prediction 
of monthly rainfall. To get an improved perception of the role of influences of different 
IMFs of MJOindex-2, TDICC is performed (Fig. 5). The long-range positive correlation 
(between 0.25 and 0.5) is noticed only at lag 1 and therefore IMF1 (t-1) is sufficient for 
the prediction of IMF1 of MJO index-2. Similarly, positive long-range correlation is noted 
for lag 2 and 3 and these lags are sufficient for prediction of monthly rainfall at the sec-
ond process scale. In the case of IMF3, the first two lags maintain a long-range negative 
correlation while lags 5–8 maintain a long-range positive correlation, with differences in 
the magnitudes of correlations. ForIMF4, first two lags bear a negative correlation while 
the lags 9 to 12 bear positive associations with the respective component of rainfall. For 
prediction of IMF5, all the lags up to 10 maintain strong negative correlation, while first 
four lags are sufficient for prediction of IMF6. The MJO index-2 and rainfall relation was 
positive at some of the lags, negative at some other lags in different high-frequency IMFs, 
which are associated with transitions in the nature /strength of their associations over the 
time domain. But for low-frequency modes, the MJO2-rainfall relation was found to be 
practically unchanging.

4.3  MJO index‑3

TDIC analysis of MJO index-3 shows a strong negative correlation in all IMFs revealing 
that all IMFs are relevant for monthly rainfall prediction. TDICC analysis performed on 
different IMFs of MJO index-3 showed that similar conclusions and interpretations as that 
of MJO index-2 can be drawn in this case also.
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4.4  MJO index‑4

Like for the previous two indices, all the six IMFs are found to be relevant with strong 

Fig. 3  TDIC plots of different MJO indices: a MJO index-1, b MJO index-2, c MJO index-6, d MJO 
index-7 and e MJO index-8
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negative association for index-4. The overall pattern of correlations and subsequent inter-
pretations for all the IMFs are found to be similar to that of the previous two cases except 
slight differences for IMF2 (Supplementary file Fig. S1). For IMF2, there exists a strong 
long-range negative association for lag 1, in addition to the stated positive associations of 
lags 2 and 3 of the above two indices. On examining the correlations in-depth, it is noted 
that the strength of correlations is very high for 1MF6 when compared with that of IMF5 
(Supplementary file Figs. S2 and S3). This behavior is in contrary to that of the two low-
frequency modes of indices 2 and 3, where a higher magnitude of correlation was noted for 
IMF5 than that for IMF6. Further, it was noted that the correlation pattern was very stable 
and unchanging with different lags for IMF6. But for IMF5, the strength of correlations 
was found to be diminishing with lag number.

4.5  MJO index‑5

TDIC plot of MJO index-5 also indicted a strong negative association of its modes with 
that of rainfall. The lag-dependent behavior of different IMFs was found to be quite similar 
to that of MJOindex-4.

Fig. 3  (continued)
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4.6  MJO index‑6

Figure  3 depicts that IMF1 and IMF6 bear a strong long-range significant negative 

Fig. 4  TDICC analysis between MJO index-1 and rainfall: a IMF1, b IMF2, c IMF3, d IMF4, e IMF5 and 
f IMF6
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correlation pattern. A dominancy of positive correlation is noticed for IMF5 and a transi-
tion in correlation from negative to positive (and vice versa) over the time domain is noted 
for IMFs 4 and 5. Therefore, TDICC analysis is done on IMFs 1 and 6 of MJO index-6 to 
capture more information on its lag-dependent associations (Fig. 6). Significant correlation 

Fig. 4  (continued)



1810 Natural Hazards (2022) 112:1795–1822

1 3

was noted only at lag1for IMF1, while on the other hand, strong negative correlation was 
noted at all the lags for IMF6.

Fig. 5  TDICC analysis between MJO index-2 and rainfall: a IMF1, b IMF2, c IMF3, d IMF4, e IMF5 and 
f IMF6
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4.7  MJO index‑7

TDIC plot of MJO index-7 (Fig. 3) exposes IMF4, IMF5 and IMF6 as significant compo-
nents with hardly any switchover in the nature of correlations and insignificant correla-
tions. TDICC on significant IMFs of MJO index-7 explains that IMF4 retains a behavioral 

Fig. 5  (continued)
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change in the time spell between 2003 and 2013 for all the lags (Fig. 7). On examining the 
pattern, it is evident that lags 10–12, along with lag 1, are considered to be the potential 
predictors of IMF4. TDICC analysis of IMF5 shows the first seven lags are relevant for the 
rainfall predictions at this process scale. For IMF6, the correlation patterns are found to be 

Fig. 6  TDICC analysis of MJO index-2 and rainfall: a IMF1, b IMF2, cIMF3, d IMF4, e IMF5 and f IMF6
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associated with high percentage of insignificant correlations with all the lags except lag 1, 
i.e., IMF6(t) can be predicted by considering IMF6(t-1) alone.

Fig. 6  (continued)
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4.8  MJO index‑8

MJO index-8 depicts a very strong positive correlation (> 0.75) in all the IMFs as depicted 
in Fig. 3. Henceforth, all IMFs can have an influence on the monthly rainfall over India. 

Fig. 7  TDICC analysis of MJO index-7 and rainfall a IMF1, b IMF2, c IMF3, d IMF4, e IMF5 and f IMF6
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TDICC analysis of IMF1 clearly shows lag 1 is the only input for the prediction of first 
high-frequency mode (Fig. 8). From IMF2, we have observed that there exists a negative 
long-range correlation for lag 2 and 3 which is in contrary to the behavior of IMF2 of MJO 
index-3. Such a reversal in behavior in the pattern of correlations is noted for all the IMFs 

Fig. 7  (continued)
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except the third one. For IMF3, a similar correlation pattern is noticed with that of index-
3. Despite the opposing nature of correlations, the patterns of correlation are strikingly 
similar to that of MJO index-3. Hence, the predictor selection followed for index-3 can be 
followed for index-8.

Fig. 8  TDICC analysis of MJO index-8 and rainfall: a IMF1, b IMF2, c IMF3, d IMF4, e IMF5 and f IMF6
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4.9  MJO index‑9

TDIC analysis discovered the prominence of MJO index-9 as the most positively correlated 
(correlations > 0.9) index among the different indices. TDIC analysis showed that all the 

Fig. 8  (continued)
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seven IMFs are found to be playing a role in the prediction of rainfall over India. The cor-
relation patterns of all the IMFs are similar to that of index-4 with the positive behavior on 
the nature of associations. The TDICC analysis unmasked that the same lags considered 
for index-4can also be used for the prediction of different IMFs of MJO index-9. Unlike 
index-4, one more low-frequency mode (IMF7) is found to be significant for index-9 and 
the TDICC analysis showed that all the lags can be considered as potential inputs for its 
prediction.

4.10  MJO index‑10

TDIC analysis of MJO index-10 showed that all IMFs up to six are relevant except IMF2. 
MJO index-10 behaves similar to index-5 for all relevant lags except for IMF4. The strong 
positive correlation noticed in the first three lags turns to strong negative from lag 9 and 
significant relations are obtained for lags 11 and 12 (Supplementary file Fig. S4).

From the TDIC analysis, it is noticed that the rainfall-MJO correlations are unchanging 
and strongly negative for all the IMFs for indices 2–5, while it is strongly positive for the 
IMFs of indices 8–10. The nature of correlations is unchanging and strongly negative for 
the low-frequency IMFs (5 and 6) of indices 2–5, irrespective of the lags. A similar posi-
tive behavior is noted for the indices of 8–10, irrespective of the lags. Again, it was noted 
that even though the correlation at a particular scale is negative (or positive), the nature of 
lagged correlation need not be the same.

The multiscale decomposition of the rainfall or climatic oscillations will decode the 
physical processes behind the phenomenon. The modes with different periodic scales with 
decipher the physical mechanisms behind the occurrence of the phenomenon. Processing 
such data in a time–frequency space can give a better insight into the processes and wave-
let transform or HHT can help in such tasks. It is worth mentioning that even though all 
such mechanisms have a modulating effect, it needs to be contributing or amplifying the 
magnitudes over a specific period of time. Moreover, the inter-relationships with other cli-
matic drivers and local processes or meteorological drivers may influence the phenomenon 
diversely in different years. This highly dynamic behavior makes the rainfall predictions 
highly complex. Moreover, when we develop a linear or nonlinear regression model for 
prediction of an IMF at generic time t, the coefficients of selected lagged values identified 
by TDICC only need to be considered as predictor variable, as the coefficients (weights) of 
other lagged values may be very small or insignificant which can be excluded in the mod-
eling stage (Adarsh and Janga Reddy 2019). Eliminating the less contributing factors and 
inputs can significantly enhance the accuracy of predictions and reduce the computational 
complexity (Hu and Si 2013; Adarsh and Janga Reddy 2018). Thus, this study proposed 
a novel framework to perform the predictor selection to improve the prediction skills by 
introducing the application of TDICC in the field of hydro-climatology for the first time. 
The proposed approach selected 42 IMFs from the total of 80 IMFs obtained after decom-
position and it identified 251 lags from 588 lagged values as significant, indicating the 
reduction in computational complexity. The method delivers the idea to use the significant 
IMFs and most relevant lags for further predictions of monthly rainfall and emphasis to 
avoid the unnecessary IMFs and lags to save from several avoidable computations involved 
in data-driven models. More experiments need to be solicited to demonstrate the potential 
applicability of the proposed method for the regional rainfall predication over India and a 
couple of such studies are in the pipeline.
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5  Conclusions

This study investigated the multiscale teleconnection between MJO and monthly rainfall at 
All-India spatial scale using a novel EEMD-TDICC-coupled framework. Firstly, the monthly 
rainfall time series and MJO index series are decomposed using EEMD and this study 
explored ten such cases considering different longitudinal MJO indices. In each case, HHT-
based TDIC analysis is employed to identify the most significant IMFs useful for rainfall pre-
diction. Subsequently, TDICC analysis is invoked upon selected IMFs to identify the signifi-
cant lags to be considered for rainfall prediction of a generic time step at a specific timescale. 
Specific conclusions of the study are:

(1) MJO indices 1, 6 and 7 are susceptible to more transitions in correlation from posi-
tive to negative (and vice versa) along the time domain, while the remaining indices 
displayed more stable correlation patterns in different process scales.

(2) MJO index-2 (100° E), MJO index-3(120° E), MJO index-4(140° E) and MJO index-
5(160° E) are strongly negatively associated while MJO index-8(10° W), index-9(20° 
E) and index-10 (70° E) are strongly positively associated with the monthly rainfall. 
This implies that more rainy days can be expected in the longitudes corresponding to 
MJO indices 8, 9 and 10 than that of other MJO indices

(3) For the prediction of IMF3 (annual periodicity) the lags 1–2 and 5–8 are significant 
for all the MJO index type

(4) For the prediction of the low-frequency IMFs (mostly 5th IMF onward) of all the indi-
ces, all the 12 lags are found to be significant, implied by the unchanging and stable 
lagged correlation pattern.

(5) The unchanging nature of correlations at a specific timescale in the MJO-rainfall rela-
tionships doesn’t imply invariant behavior in the link at the lagged timescales.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11069- 022- 05249-3.
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