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Abstract
This article aims to provide a thorough assessment of water quality and quantity incorpo-
rating the estimation of future patterns as a result of climate change from economic, envi-
ronmental and social perspectives. Its scope extends from studying the physical parameters 
and rainfall patterns to maintaining an environmental flow with a better water quality using 
ecohydrological techniques. The village of Nagaa Mobarak in Souhag, Egypt, is taken as 
a case study being in a critical location that is vulnerable to flash floods. This paper man-
aged to quantify change in water quantity and quality due to the impacts of flash floods and 
climate change. Several traditional engineering alternatives are proposed for flood manage-
ment such as constructing a dam, a storage pond and a routing channel to the nearest water 
body; as well as non-traditional ecohydrological alternatives such as constructing a dam 
with vegetated foreshore, natural levees and constructed wetlands. The results of applying 
these methods for our case study showed that a hybrid solution that employs both tradi-
tional and non-traditional solutions for flood management is optimal. A constructed wet-
land along a section of the constructed channel for diverting flow into the Nagaa Hammade 
Canal would decrease the runoff volume and peak time so that the capacity of the Canal is 
not exceeded in a flood event and purifies the incoming stormwater improving its quality 
and the health of the ecosystem within the canal. Moreover, our proposed approach was 
investigated and found to target 10 out of the 17 UN SDGs.
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Abbreviations
AIC  Akaike Information Criterion
CFSR  Climate Forecast System Reanalysis
CN  Curve number
DEM  Digital elevation model
EPA  Environmental Protection Agency
EWE  Extreme weather events
FAO  Food and Agriculture Organization
GG  Generalized gamma
HEC  Hydrologic Engineering Center
HMS  Hydrologic Modeling System
Hyfran-plus  Hydrological Frequency Analysis Plus
NASA  National Aeronautics and Space Administration
NOAA  National Oceanic and Atmospheric Administration
NRCS  Natural Resources Conservation Service
RAS  River Analysis System
SCS  Soil Conservation Service
SRTM  Shuttle Radar Topography Mission
SWMM  Storm Water Management Model
TMPA  TRMM Multi-Satellite Precipitation Analysis
TRMM  Tropical Rainfall Measuring Mission
UN SDG  United Nations Sustainable Development Goals
USDA  United States Department of Agriculture
USGS  United States Geological Survey
UTM  Universal Transverse Mercator
VT Builder  Virtual Tour Builder
WMS  Watershed Modeling System

1 Introduction

Flash floods are dangerous because they strike with no advance warning after rainfall 
events (El-Afandi and Morsy 2020; Fathy et al. 2019; Atwa 2020). They threaten the lives 
and livelihoods of people as well as their assets and properties (Parvin et al. 2016; Abdel-
dayem et al. 2020; Kumar et al. 2018). Flash floods intensities and the risk of their occur-
rence are related to several factors, including rainfall intensity and distribution, soil type 
and water content, and vegetation type in the catchment area (U.S. Department of Com-
merce 2015), so mainly precipitation, geology and topography data.

Climate change plays a significant role in flash floods because the warmer atmosphere 
holds and releases more water, resulting in an increased frequency and intensity of storms 
(Hettiarachchi et al. 2018). Because of climate change, the incidence of flash flood in Egypt 
has become more frequent, causing loss of life, destruction of agricultural lands, and prop-
erty damage (Mashaly and Ghoneim 2018; Youssef and Hegab 2019; Prama et al. 2020). 
Additionally, the country is currently facing water scarcity challenges because of rapid 
population growth and reduced river flow, which will inevitably result from the construc-
tion of the Grand Ethiopian Renaissance Dam (Abdelhafez et al. 2020; Yassen et al. 2020; 
Abdelrady et al. 2020; Morsy et al. 2020a, b; Morsy et al. 2021). To alleviate these effects, 
developing a national plan for sustainable flood management is essential to protecting areas 
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and lives from flood danger, maximizing stormwater benefits, and redirecting runoffs into 
the nearest surface water system for irrigation and groundwater recharge (Mostafa et  al. 
2016; Wakode et al. 2018; Spiliotis and Skoulikaris 2019; Freni and Liuzzo et al. 2019; 
Rajasekhar et al. 2020 ;Golian et al. 2020; Ostad-Ali-Askari et al. 2019).

Traditional engineering approaches are to thank for protecting human life from natural 
threats from wild animals to natural hazards such as floods. Of the traditional approaches 
for flash flood risk reduction, structural measures (e.g., ditches, embankments, diversion 
channels, dikes, dams, culverts, and ponds) are considered the most efficient for control-
ling flash floods (Kumar et al. 2017; Zhu and Chen 2017; Kim et al. 2005; Destro et al. 
2018; Sikorska et al. 2018; Kundzewicz et al. 2019). Selecting the most suitable protec-
tion method depends on site-specific factors, such as catchment size, rainfall intensity, and 
the runoff-generating process (Sikorska et al. 2018). However, structural measures are only 
applicable over the short term because their efficiency decreases over the long term, usu-
ally because of land-use change and unplanned development within the flood-protected 
areas (Shah et al. 2018; Di Baldassarre et al. 2018).

Non-traditional structural flood protection measures have recently gained research 
interest. Those measures rely on natural systems and ecosystem services, as well as eco-
hydrology concepts included within the nature-based solutions (Cohen-Shacham et  al. 
2016; Zalewski et al. 1997; Nafchi et al. 2021). Nature-based solutions (NBS) address a 
variety of environmental, social, and economic challenges in sustainable ways (European 
Commission 2015). The solutions are inspired by, supported by, or copied from nature, 
using and enhancing existing solutions to challenges and exploring novel applications. The 
NBSs are aligned with the United Nations Sustainable Development Goals (SDGs) (United 
Nations 2015) and serve as the three main pillars of sustainability that consider people 
well-being, ecosystem vitality, and economic feasibility (Matute et al. 2016; Scheres and 
Schüttrumpf 2019). Similarly, flood protection measures and especially nature-based flood 
protection measures support the achievement of the SDGs, where they target specific indi-
cators especially in goals six on water management and eleven of resilient cities (United 
Nations 2015).

Numerous researchers have explored strategies for flood management. Regrettably, 
recent studies consistently ignore the effects of climate change on water quality while 
developing flood risk management strategies (Abd-El Monsef 2018; Abdulrazzak et  al. 
2019; Abdeldayem et al. 2020; Fatahi Nafchi et al. 2021; Hafshejani et al. 2019), which 
is particularly common in developing countries because of a lack of financial resources. 
This lack in quality is commonly caused by increased precipitation washing away more 
pollution to water bodies or by extreme droughts increasing the concentration of pollutants 
in water bodies (Abd-El Monsef 2018; Abdulrazzak et al. 2019; Abdeldayem et al. 2020).

The goal of this study is to evaluate a flash flood risk management strategy for arid 
regions that targets the expected water quantity while considering solutions for managing 
water quality. The novelty of this study is based on addressing the dual effect of climate 
change on water quantity and quality. Moreover, it highlights the contribution of nature-
based flood management methods to the SDGs. The dual impacts of climate change on 
water quantity and quality in response to flooding illustrate the importance of considering 
the impacts of climate change on flood scenarios. Data retrieved from the World Mete-
orological Organization were used to predict changes in the rainfall regime due to climate 
change, as well as changes in temperature. Hydrological and hydraulic software models 
were used for flash flood and runoff simulation, flash flood management, and a comparison 
between the efficiency of three traditional methods (artificial pond, artificial flood channel, 
and dam) in flood water conservation and cost-effectiveness. Three non-traditional flood 
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management methods (natural levees, vegetated foreshores, and wetlands) were also com-
pared based on their capability to prevent water quality deterioration and cost-effective-
ness. The selection of these methods was based on their common use in the market as well 
as suitability for the site. By integrating the two management methods as will further be 
explained, a holistic management approach was developed to target both water quantity 
and quality. Therefore, this study can be used as a guideline for flash flood management in 
regions that share similar conditions. Finally, our holistic ecohydrological approach contri-
bution to the achievement of the SDGs is discussed in a separate section on the basis of it 
being both ecohydrological and used for flood management.

2  Materials and methods

2.1  Case study area

Sohag Governorate in Upper Egypt has suffered from the loss of lives and major property 
damage due to severe flooding events in 1994, 2014, and 2016 (El-Magd et al. 2020). The 
1994 flash flood collapsed over 100 homes and destroyed 400 acres of reclaimed lands in 
Sohag (Ali 2014). Sohag Governorate is located in a mountainous region with most vil-
lages directly at the foot of the mountains, which poses a great danger of flash flood to the 
inhabitants (Yasser 2017). To deal with the problem, Sohag authorities decided to create a 
comprehensive plan for flood management aimed at protecting areas affected by frequent 
flash floods (Maqbool 2019; Khalid 2019; Al-Ghwait 2019), including Nagaa Mobarak 
Village.

Nagaa Mobarak Village is located in the eastern region of Sohag Governorate, Egypt 
(latitude 26°45′31" N to 26°44′45" N, longitude 31°37′02" E to 31°35′44" E, Fig. 1). The 
total village area is 4.2  km2 out of which 28% represents inhabited area, 2% is unoccu-
pied desert, and 70% is agricultural area. The soil texture data in the study area obtained 

Fig. 1  Location of Nagaa Mobarak Village (the Study Area)
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from the SoilGrids system (ISRIC 2020) determined the area were comprised of sandy clay 
with gravel classified as group D according to the United States Department of Agricul-
ture (USDA)- Natural Resources Conservation Service (NRCS) (USD 1968). The elevation 
ranges from 34 to 50 m above sea level (MASL), and the area is bounded from the east by 
a limestone plateau with elevations ranging from 59 to 87 MASL. The village is at a high 
risk of flash floods, especially from the eastern part. Based on the Egyptian governmen-
tal data, the village population is 13,000. According to the Köppen climate classification, 
Nagaa Mobarak Village has a hot desert climate and receives between 25 and 200 mm of 
rainfall annually (Laity 2008).

2.2  Methodology

The methodology followed in this paper is summarized in Fig. 2 and elaborated on further 
in the following sections.

2.2.1  Data Collection

The topography of the study area and the historical precipitation data play a role in deter-
mining the catchment characteristics. The current physical and chemical characteristics of 
the water are required to understand the baseline situation on water quality and estimate the 
future situation. Finally, climatic data (including temperature) are required to analyze the 
impact of climate change on water quality and quantity. Precipitation, topography, and cli-
matic data as well as physical and chemical water characteristics were collected as follows:

Fig. 2  Methodological framework
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(a) Climate Data. Three datasets were used to collect climate data from the Climate 
Explorer website of the World Meteorological Organization, namely AR5 CMIP5, 
CMIP5 ensemble, and CMIP5 one member (Climate Explorer 2020). Two different 
datasets were obtained from the latter, one for when the risk ratio (RR) was greater 
than 95% and one for when it was greater than 99%.

(b) Annual Precipitation Data. Rainfall data (Fig. 2) were obtained from the Tropical Rain-
fall Measuring Mission (TRMM) satellite and Global Weather Data for Soil & Water 
Assessment Tool (SWAT) 2019 (Global Weather Data for SWAT 2020; NASA 2020). 
The highest value (83 mm) was considered to be the design basis for water quantity 
analysis as a conservative measure.

(c) Water Quality Data. Very little is known about water quality data for the Nagaa Ham-
madi Canal (NHC, Table 1) with the only available information coming from sampling 
campaigns in 2001 (El-Sheekh 2009) and 2008 (NRI 2008). The time of sample collec-
tion is unclear but by comparing the data with data from other water bodies in Egypt, 
it can be assumed that the measurements were obtained in the winter (Fig. 3).

However, data that are two decades old are unreliable, especially considering the major 
developments in the country. Therefore, recent water quality data from another waterbody 
connected to the NHC were used for water quality analysis. Morsy et al. (2020a, b) exam-
ined water quality in several Egyptian lakes (e.g., Lakes Maryut, Idku, Burullus, and Man-
zala), highlighting variations in parameter values across the year. Lake Manzala, which 
had the lowest dissolved oxygen (DO) and highest biochemical oxygen demand (BOD) and 
chemical oxygen demand (COD) values, was selected as the basis for the water quality 
assessment in this study. To ensure a fair comparison of the water quality data, a water 
quality index (WQI) was determined using the methodology reported by Sanchez et  al. 
(2007). These authors proposed using Eq. (1) as the empirical representation of the WQI:

where k is a subjective constant with a maximum value 1.0 for apparently good quality 
water and 0.25 for apparently highly polluted water, Ci is the normalized value of the 
parameter, and Pi is the relative weight assigned to each parameter.

As suggested by Sanchez et al. (2007), the constant k was not considered to avoid sub-
jective evaluation, and the suggested values for Pi and Ci are summarized in Table 2. The 
WQI values from 0 to 25 were ranked as very bad, values ranging from 26 to 50 were bad, 
values ranging from 51 to 70 were fair, values ranging from 71 to 90 were good, and values 
ranging from 91 to 100 were excellent. Because of the lack of water quality data, the WQI 
was estimated using only OD (Pi=4) and temperature (Pi=1). Table 3 summarizes the cor-
responding water quality parameters at Lake Manzala for different sampling months. 

2.2.2  Data analysis

For water quantity, analytical tools in hydrological software were used to estimate the 
impacts of climate change on flooding in the study area. The selection of these analyti-
cal tools was done to minimize the model inputs as much as possible given the uncer-
tainty associated with obtaining outdated real-life data, which is the main available data 
source. Additionally, this study aims at estimating a one-of the worst-case scenario flash 
flood event analyzing the magnitude of the impact only and proposing conservative 

(1)WQI = k
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alternatives to manage the event. Risk assessment methods commonly used in the lit-
erature (Lyu et al. 2018, 2020; Lyu et al. 2019a, b, c) are not within the scope of this 
research as the probability of occurrence is out of boundaries.

The Watershed Modeling System (WMS 11.0) software developed by Aquaveo 
(Utah, United States) was used for watershed delineation. The Environmental Protec-
tion Agency Storm Water Management Model (EPA-SWMM) was used to design the 
proposed structural element (the routing channel). The Hydrologic Engineering Center-
Hydrologic Modeling System (HEC-HMS) developed by the U.S. Army Corps of Engi-
neers was used to simulate flash floods to obtain useful data such as the peak discharge 
flow, time to peak discharge, and runoff volume.
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Fig. 3  Annual maximum precipitation from 1998 to 2019 based on TRMM satellite data (NASA 2020) 

Table 2  Pi and Ci values for DO and temperature ( modified from Sanchez et al. (2007))

Parameter Pi Ci

100 90 80 70 60 50 40 30 20 10 0

DO 4 7.5 >7.0 >6.5 >6.0 >5.0 >4.0 >3.5 >3.0 >2.0 >1.0 <1.0
Temperature 1 12/16 22/15 24/14 26/12 28/10 30/5 32/0 36/-2 40/-4 45/-6 >45/<-6

Table 3  Water quality for Lake 
Manzala (adopted from Morsy 
et al. (2020a, b))

Parameter January March June September December

Temperature (°C) 15.3 22.1 32.3 33.2 17.2
DO (mg/L) 5.1 5.3 3.0 3.2 5.4
pH (unitless) 8.2 8.1 8 8.5 8.7
Turbidity (NTU) 6.9 13.2 16.3 12.1 2.95
TSS (mg/L) 22 18.6 74.1 71.9 62.85
BOD (mg/L) 15 30 48.6 35 13.5
COD (mg/L) 120 240 388.8 280 106.2
WQI 66 66 32 30 68
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The terrain surface was represented using a 30×30 m digital elevation model (DEM) 
called the Shuttle Radar Topography Mission (SRTM) (Survey 2020). Virtual Terrain 
Builder (VT Builder) was used to interpolate the missing data in the DEM (Project 2018). 
The complete DEM retrieved from VT Builder as well as the watershed characteristics (i.e., 
soil type, curve number (CN), slope) was used by the WMS software for watershed deline-
ation into basins and subbasins, as well as computing accumulated flow and flow direc-
tions. The hypothetical Soil Conservation Service (SCS) type II distribution was found 
to be suitable for deriving the 24-h time distribution during extreme events in the study 
area (Awadallah et al. 2016, 2017; Romero and Emanuel 2017; El-Sayed 2018). The return 
period was estimated to be 100 years (Water Resources Publication 2008; Youssef 2016).

The HEC-HMS was used to simulate flash floods in every basin and subbasin in the 
study area (Hydrologic Engineering Center 2006), which provided details on the peak dis-
charge flow, time to peak discharge, and runoff volume (Dweependra 2008). Finally, EPA 
SWMM was used for simulating a 100-year return period flash flood using 30-min time 
steps (U.S. EPA 2020).

Given the complexity of natural processes and the required amounts of high-quality 
accurate data to be able to model ecohydrological solutions with acceptable results, this 
study analyzes the methods proposed to safeguard water quality during flash floods using 
the scientific logical elimination approach based on data collected from the lecture.

2.3  Contribution to the SDGs

As mentioned, this research also studies the contribution of hybrid ecohydrological solu-
tions to the achievement of the United Nations (UN) Sustainable Development Goals 
(SDGs) (United Nations 2015). Through systematically reviewing the description of the 
UN SDGs, we have identified which standards exactly are supported by our solution. A dis-
cussion of the contribution to the SDGs follows presenting and discussing our results and 
exploring the proposed solution for our case study.

3  Results and discussion

3.1  Study area characterization

Figure 4 shows the results of the full catchment delineation study, which were obtained 
following the same approach reported by Abdeldayem et al. (2020), Ramakrishnan et al. 
(2009), and Durga Rao et al. (2003). During the design of the proposed flood management 
solution, the collection site was assumed to be initially empty. Rainwater infiltration and 
evaporation were also considered during channel design. Based on the weather conditions 
in the study area, the evapotranspiration rate was assumed to be 5 mm/day (Baldi et  al. 
2020). Subsurface storage depends mainly on the soil type, which is classified as cultivated 
sandy clay with an infiltration rate of 6.5 mm/h in the study area (Mangala et al. 2016).

As mentioned, the DO contents of Egyptian water bodies under current weather con-
ditions and water temperatures were obtained from the study by Morsy et al. (2020a, b). 
The DO concentration was used because of its simple relation to water temperature. Water 
quality at Lake Manzala was considered representative of the NHC because it exhibited the 
lowest DO concentration. However, because temperatures at Lake Manzala are for water 
(Morsy et al. 2020a, b) and temperatures predicted by the model are for air, the relationship 
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between water and air temperatures must be determined. Morrill et al. (2005) identified a 
relationship between water and air temperatures for diverse streams. Their results show 
that a 0.6 °C increase in water temperature occurs for each 1 °C increase in air tempera-
ture given the higher water heat capacity. It is estimated that every 1.7 °C increase in air 
temperature corresponds to 1 °C increase in water temperature, which is associated with 
a 0.25  mg/L decrease in DO content. Therefore, a 1.8 °C increase in water temperature 
corresponds to a 3 °C increase in air temperature (Morrill et  al. 2005) and a 0.45 mg/L 
decrease in DO concentration. These estimates were used to predict any decreases in the 
DO concentration that reach critical levels and endanger the stream ecology. By identify-
ing these events, mitigation measures can be implemented to protect water quality from the 
impacts of climate change, which are needed considering the expected decrease in fresh 
water quantities in Egypt associated with climate change (Omar et al. 2021).

3.2  Climate change analysis

Climate change is associated with increased temperatures and changes in precipita-
tion regimes (Orlob et  al. 1996). These two factors lead to variations in water quantity 
and quality from usual conditions (Morsy et al. 2017; Moss et al. 2011). For example, an 
increase in precipitation leads to an increase in water nutrients, which encourages harmful 
algal blooms and depletes DO concentrations in water. Similarly, increased temperatures 
increase sediment and soil mineralization that spike nutrient loads, which increases the risk 
of harmful algal blooms that in turn consume DO (Ostad-Ali-Askari et al. 2020). Quantify-
ing nutrient content in water is complex because it involves considering multiple factors, 
from air quality to land use in the catchment area (Jeppesen et al. 2009). The DO concen-
tration was selected as a proxy for water quality because this parameter is largely directly 
affected by temperature (Mackay and Fleming 1969).

Figures 5, 6, and 7 show the expected precipitation variation using different risk ratios 
(RRs) obtained from Coupled Model Intercomparison Project – Phase 5 (CMIP5) and the 
expected change in air temperature due to climate change from the AR5 CMIP dataset. As 
shown in Fig. 5, an increase in precipitation is expected in the study areas for all scenarios 

Fig. 4  The United Nations Sustainable Development Goals
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ranging from 10 to 100% based on the different datasets. In Fig. 6, the CMIP5 one member 
datasets with different RRs show a precipitation increase of up to 120  mm/year, which 
represents a 50% increase from the 83  mm/year estimated in a 1991 report (the highest 
in 40  years). Finally, according to the National Oceanic and Atmospheric Administra-
tion (NOAA), the world has witnessed a 0.8 °C increase over the past 100 years (Bradford 
2017). Figure 7 shows that temperature in the study area is expected to increase 3 °C.  

3.3  Water quantity analysis

The WMS software generated a delineated watershed with a 6.40  km2 area. Table 4 sum-
marizes the morphological data of the basin. The short lag time is mainly due to the small 
area of the watershed and the high stream slope (0.0576 m/m).

The total runoff volume estimated for Nagaa Mobarak Village is 275,000  m3 for the 
100-year return period considering the increase in precipitation due to climate change. 
Although this is not a significant amount of water, it poses a great risk because the short 
lag time (Abdulkareem et al. 2019) and low elevation of the village, which is located 25 m 
below the watershed at almost 51.5 MASL at the scale locations (Fig. 8). 

A variety of solutions for flood management were identified that are commonly imple-
mented, including storage ponds, routing channels, and dam construction (van Wesenbeeck 
et al. 2014). All these potential solutions are discussed in Sect. 4. It is worth noting that all 
are considered end-of-pipe solutions that focus on handling the generated floodwater and 
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Fig. 5  The watershed and collection point for the study area
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not on decreasing its amount or using it for other purposes, which is considered a major 
drawback (Marijnissen et al. 2020; Stefanakis 2019; van Wesenbeeck et al. 2014).

3.4  Water quality analysis

Table  5 shows water temperature and DO concentration changes due to climate change. 
Figure 9 shows the DO and temperature variation throughout the year considering climate 

Nagaa Mobarak 
Village 

Nagaa Mobarak 
Village 

Nagaa Mobarak 
Village 

Nagaa Mobarak 
Village 

a b

c d

Fig. 6  Expected change in future precipitation due to climate change, mean Representative Concentration 
Pathway (rcp45) relative precipitation 2081 – 2100 minus 1986 – 2005: a AR5 CMIP5, b CMIP5 ensem-
ble, c CMIP5 one member when risk ratio (RR)>95p, and d CMIP5 one member when RR>99p (Climate 
Explorer 2020)

Fig. 7  Expected change in precipitation due to climate change CMIP5 one member when: a RR >95p and b 
RR > 99p (Climate Explorer 2020)
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change impacts. As shown in Table 5, temperature increased 1.8 °C and DO concentration 
decreased 0.45 mg/L from the values shown in Table 2. Considering the DO concentration 
values shown in Table  2, this decrease in DO may not significantly impact water qual-
ity or harm aquatic organisms during winter months. However, DO concentration during 
the summer reaches a minimum of 2.5 mg/L, which is lower than the recommended mini-
mum DO for a level B protection of the health of aquatic organisms in fresh water bod-
ies (4 mg/L) (Davis 1975). Level B protection implies that some organisms may exhibit 
symptoms of oxygen distress if the DO value remains at a set level for more than few hours 
(Davis 1975). Additionally, when the WQI values are used to compare water quality, the 
results are significant. As shown in Table  3, water quality in the NHC was found to be 
fair for the sampling campaigns in January (WQI=66) and March (WQI=66), whereas it 
was found to be bad in June and September (WQI=32 and 30, respectively) followed by a 
recovery in December when the water quality was fair again (WQI=68). The effect of cli-
mate change is significant in results from Table 5 because although water quality remains 

Nagaa Mobarak 
Village 

Fig. 8  Expected change in the future air temperature due to climate change (AR5 CMIP5) (Climate 
Explorer 2020)

Table 5  Expected temperature 
and DO content due to climate 
change

Parameter January March June September December

Temp (°C) 17.13 23.87 34.1 34.97 19.04
DO (mg/L) 4.62 4.81 2.5 2.75 4.96
WQI 58 58 24 24 60
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fair for the January to March period (WQI=58 in both cases), it reaches the very bad cate-
gory during June and September (WQI=2.5 and 2.75 for June and September, respectively) 
and does not recover until later in December (WQI=60). Clearly, the increase in water tem-
perature significantly affects water quality and poses a threat to aquatic organisms, basin 
productivity, and the local economy (Fig. 10).  

A sustainable approach is needed to design flood management alternatives that consid-
ers the three pillars of sustainability: people, profit, and the planet. The first two pillars 
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were achieved by analyzing management alternatives to protect against the increased pre-
cipitation and associated damage to lives and properties. Only the third pillar still needs to 
be addressed. By using water quality to identify and analyze alternatives, the selection is 
bound to be more sustainable and resilient. This shall be further enhanced by integrating 
concepts of ecohydrology that focus on the interactions between biological systems and 
water bodies to ensure the prosperity of both (Fig. 11).

4  Holistic, sustainable ecohydrological solutions

4.1  Traditional management alternatives

The first proposed alternative is an artificial pond to collect the runoff at the collection 
point. The flood water collected in the artificial pond can be used for groundwater recharge 
(Morsy et  al. 2018). However, a geological study found that Nagaa Mobarak Village is 
located on karstified carbon aquifer zone characterized by high salinity (Mosaad 2019). 
Consequently, using harvested rainfall for groundwater recharge is not feasible. Moreover, 
the pond would require a large area of land that might result in physical or economic dis-
placement for local inhabitants in the area. Therefore, this alternative was not considered 
further (Ostad-Ali-Askari and Shayannejad, 2021).

The second proposed alternative was a dam that would act as a water barrier and 
store flood water. However, damming is a high-cost alternative for infrequent flash flood 
events. Damming is also considered a gray infrastructure solution, which is considered to 
be unsustainable and even increase climate change impacts (de Vriend et al. 2015; Peng 
et al. 2017). Therefore, this alternative was rejected based on economic and environmental 
points of view and was not considered further.

The third alternative was to construct a routing channel to transfer flood water directly 
to the NHC, which would protect the village from flash flood risks and conserve water by 
reusing flood water for irrigation (Mostafa and Peters 2015). This alternative was found to 
be cost-effective compared with the relatively high costs of dam and pond construction. 

Fig. 11  The location of the proposed flood channel



1123Natural Hazards (2022) 112:1107–1135 

1 3

Moreover, it introduces the possibility of reusing almost 275,000  m3 of flood water for 
irrigation. The most common crop in this region is sugarcane, which needs almost 18,000 
 m3 of water per hectare (Petheram and McMahon 2019). Conserving 275,000  m3 of flood 
water would help cultivate approximately 15 hectares of sugarcane. Sugar beet is also com-
monly cultivated in this region and requires almost 5950   m3 of water per hectare (Farag 
et al. 2017). In this case, approximately 46 hectares of sugar beets can be cultivated. There-
fore, constructing a routing channel is considered the optimal traditional solution to man-
age the increase in water quantity from flash floods in light of climate change.

Table 6 shows the necessary characteristics of the proposed flood channel for the NHC 
generated using the EPA SWMM software to ensure the extra flow can be accommodated. 
The results show that the existing canal cross section will accommodate the flood water 
and the water depth in the canal will not exceed 2 m, which is less than its design capacity 
(2.5 m).

4.2  Non‑traditional management alternatives

Although traditional engineering solutions (gray infrastructure) have been commonly used 
in flood management, scientific evidence has been found that links increasing urbanization 
to a decrease in the provision and regulation of ecosystem services, including flood man-
agement (Peng et al. 2017). Therefore, the use of traditional solutions is considered unsus-
tainable in light of the role played by ecosystem services in the environment (Bolund and 
Hunhammar 1999). The concept of NBS could be beneficial in planning for flood manage-
ment measures that have the potential to improve water quality and protect lives and assets.

Wetlands, including constructed wetlands, are essential components for climate change 
adaptation and mitigation, as well as core elements for nature-based stormwater flood man-
agement (Erwin 2009; Malaviya and Singh 2012; Scholz and Lee 2005). Their advantages 
include achieving peak flow attenuation and water purification (Heal et  al. 2006; Mala-
viya and Singh 2012; Wheater and Evans 2009) using natural elements with a net positive 
environmental impact. The concept of constructed wetlands has been widely described as 
a nature-based flood defense, and its efficacy has been proved at the landscape scale in 
several countries (de Vriend et  al. 2015; Dou et  al. 2017; McVittie et  al. 2018). Gener-
ally, urban and agricultural stormwater runoff is characterized by a variety of pollutants 
from suspended solids to heavy metals depending on the land use (Kadlec 2009; Stefa-
nakis 2019). Constructed wetlands have shown their potential to remove pollutants with 
varying efficiency (Fraley-McNeal et al. 2007). Therefore, including a constructed wetland 
along a section of the channel built to divert flow into the NHC would decrease runoff 
volume and peak time so that the capacity of the canal is not exceeded during a flood event 

Table 6  Properties of the 
proposed flood channel (FAO 
Training 2016; Abdelhaleem 
et al. 2016)

Parameter Unit Proposed flood 
channel

Existing 
infrastructure 
(NHC)

Depth m 1.0 4.0
Bottom width m 2.0 8.0
Side slope – 1:1 3:2
Longitudinal slope cm/km 1.5 2.03
Flow rate m3/sec 6.0 5.0
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and incoming stormwater is purified, which would improve stormwater quality and ensure 
NHC ecosystem health (Pirnazar et al. 2018). This was considered the optimal alternative 
from an ecohydrological perspective. Harrington (2019) estimated that the typical required 
hydraulic retention time (HRT) in a constructed wetland for stormwater management is five 
days and Blick et al. (2004) suggested an average depth of 3 m is required for treatment. 
For the purposes of this study case, in which the main wetland function is as a storage 
buffer and water purification is an auxiliary benefit, the proposed HRT is one day for half 
runoff flow (137,500  m3) and the required area equals 45,000  m2.

4.3  Economic analysis of the ecohydrological solutions

The main cost components for constructing the channel are the drilling and lining. The cost 
of different construction items was estimated based on quotations received from independ-
ent contractors working near to the study area (Sohag Governorate) in late 2020. The quo-
tations included materials, transportation, and labor costs (Table 7). The operational and 
maintenance cost was assumed to be 5% of the capital costs for the routing channel (Houle 
et al. 2013; Petheram and McMahon 2019).

A cement lining with a thickness of 5 cm was selected based on the channel discharge 
and water depth and because of its long life, high durability, resistance to erosion, structure 
stability, and high permissible velocity. Table 8 illustrates the total cost estimate for chan-
nel construction operations. The total cost was $92,050 including construction and opera-
tions and maintenance (O&M) costs.

As for the constructed wetland, the main cost components are listed in Table 9 along 
with the cost per acre (∼ 4047  m2). It is worth noting that cost estimates were published 
from Texas, the United States of America (Sea Grant Texas 2012). The total construction 
of 11 acres would cost a minimum of $275,000. However, costs could fluctuate from the 

Table 7  Cost estimate per meter 
per process

Item Cost ($)

Drilling 0.45
Pitching 19.23
Cement 58.00
Reinforced concrete 46.50

Table 8  Total construction costs 
of the channel for the 100-year 
return period

Length (m) Area  (m2) Perimeter (m) Lateral Area  (m2)

Construction Cost
313 3 4.83 4.83
Drilling cost $423
Cement lining cost $87,200
Total construction cost $87,650
O&M costs $4400
Total cost $92,050
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stated values and are expected to decrease significantly when relying on local supplies for 
the construction of the wetland.

4.4  Limitations and application range of the proposed solution

Although the proposed solution provides a plethora of benefits compared to traditional 
engineering flood management solutions, it still has its disadvantages. Wetlands, for exam-
ple, require a large land footprint; they require more time for water treatment compared 
to traditional technologies and are associated with more uncertainties and vulnerabilities 
being dependent of natural resources to function (Andrikopoulou et al. 2021; Haddis et al. 
2020; Oral et al. 2020; Rigotti et al. 2020). All of these requirements limit the large-scale 
implementation of nature-based and hybrid solutions despite their proved environmental 
superiority (Haddis et  al. 2020; Oral et  al. 2020). However, Egypt, and especially upper 
Egypt, is not in need of physical space. The area is mostly arid with groundwater only 
found at hundreds of meters below ground level. The wetland can be constructed at a 
vacant area at a distance from the village to be able to retain the water until its quality 
improves and provides enough buffer time to prevent the flooding of the canal. Finally, 
given the innovation of the solution, constant monitoring is imperative, especially in the 
early life of the project, in order to ensure the technology is working probably and further 
learn about the processes.

5  Contribution to the SDGs

According to Vörösmarty et al. (2018), investing in water security and flood management 
directly support to adoption of and public commitment to the SDGs. After assessing the 
impacts of our research using the UN′s sustainable development goals, targets and indica-
tors, our results found that through implementing the holistic sustainable approach to flood 
management, 10 out of the 17 goals will be impacted positively. Out of the 169 SDG tar-
gets and 232 unique indicators, the proposed approach to flood management contributes to 
26 targets and 29 indicators, as presented in Table 10 below. The solution proposed in this 
study contributes, as would be expected, to two goals more than others, namely the sixth 
and eleventh goals. The solution supports to five indicators of the sixth goal on sustainable 
management of water; and six indicators of the eleventh goal on making cities safe, resil-
ient and sustainable. The results of our SDG analysis are similar to what Andrikopoulou 
et  al. (2021) found when applying their framework to identify the SDG contribution of 
fluvial nature-based solutions.

Table 9  Cost estimate per acre 
per component (Sea Grant Texas 
2012)

Item Cost per Acre

Earthworks and grading $5000 to 15,000
Aquatic plants $10,000 to 20,000
Spillway structure $10,000 to 15,000
Total $25,000 to 50,000
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6  Conclusions

This paper offers a sustainable strategy for flash flood risk management in arid regions. 
The novelty of this study is based on addressing the dual effect of climate change on water 
quantity and quality. Moreover, it highlights the contribution of nature-based flood man-
agement methods to the SDGs. The village of Nagaa Mobarak in Souhag, Egypt, was taken 
as a case study given its historical precipitation record and vulnerability to flash floods. 
Due to climate change, the average precipitation in the study area is expected to increase 
by about 50%, while the temperature in the area is expected to increase by 3ºC. Changes 
in these two factors lead to variations in water quantity and quality from regular condi-
tions, and these variations need to be quantified and assessed in order to develop a holistic 
sustainable strategy for flood risk management. The study utilized modeling software to 
estimate the change in water quantity as a result of climate change and an ecohydrologi-
cal approach covering to improve the expected water quality deterioration for watershed 
assessing both traditional and non-traditional management solutions. A comparative analy-
sis was carried out for the proposed management alternatives in terms of efficiency and 
sustainability, followed by a cost estimate for the selected solution. The results of the study 
show that the optimal flood management measure is a hybrid one that employs both tradi-
tional and non-traditional solutions for flood management. A constructed wetland along 
a section of the constructed channel for diverting flow into the Nagaa Hammade Canal 
would serve to decrease the runoff volume and peak time so that the capacity of the Canal 
is not exceeded in a flood event as well as purify the incoming stormwater improving its 
quality and ensuring the health of the ecosystem within the canal. It is considered the most 
optimal of the three alternatives from an ecohydrological perspective. The proposed alter-
native supported the accomplishment of 29 indicators, 26 targets and 10 SDGs. The most 
indicators fell under goals 6 and 11 on sustainable water management and resilient cities, 
respectively.

This study highlights the importance of integrated approaches in managing water 
resources and their potential to supporting the implementation of the SDGs. The main 
problem with most developing countries is that they overlook the effect of climate change 
during flood management planning. It is imperative to understand the relationship between 
the climate change, water quantity and quality to ensure the resilience and sustainability of 
our cities. Therefore, future research is required to further explore the relationship between 
the three especially between climate change and water quality.
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