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Abstract
Droughts are particularly disastrous in South Africa and other arid regions that are water-
scarce by nature due to low rainfall and water sources. According to some studies, droughts 
are not uncommon in Africa’s drylands and have been rising in dry African terrain. Warm 
to hot summers and cool to cold winters describe the climate of the Free State Province, 
South Africa, a province that has been severely affected by drought events in recent times. 
Several studies have been carried out as regards drought prediction and mapping in arid 
and semi-arid areas using various models, tools and techniques. However, the use of 
machine learning algorithms is just emerging, especially in Sub-Saharan Africa. Studies 
have shown that machine learning and artificial intelligence methods have a high potential 
for assessment, prediction and identification of extreme events such as drought. Hence, this 
study aimed to evaluate drought dynamics in the Free State Province and identify drought 
drivers using regression-based algorithms. Results revealed that 2015 was severely affected 
by drought episodes as the study area observed extreme drought. More so, findings from 
this study showed that agricultural lands, cultivated grasslands, and barren surfaces were 
influenced or impacted by the drought disaster, especially in 2015, a drought year in the 
Free State Province. From the feature selection results, the influence of climate proxies 
and anthropogenic factors on VCI shows the ecological situation within the Free State 
Province.

Keywords Drought disaster · Land use dynamics · Drought drivers · Machine learning · 
Regression-based algorithms

1 Introduction

Drought and global warming, and the current phase of climate change, are still points of 
contention. According to a study published in 2013, warmer global temperatures would 
result in more rainfall in some parts of the world and less rainfall in others, leading to 
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greater flooding and droughts around the world (Mahlstein et al. 2013). Other experts disa-
gree with the prediction of more droughts, arguing that global warming will result in a 
wetter world (Krange et al. 2019; Sprain 2017; Osaka et al. 2020). Droughts are classified 
as meteorological when utilising precipitation and potential evapotranspiration, hydrologi-
cal when using streamflow or groundwater recharge, and agricultural when using vegeta-
tion index and moisture content (Yu et al. 2018; Sun et al. 2019). Dry season observing 
was utilised to decide drought conditions, and keep critical misfortunes and serious effects 
from the hazards. Satellite or space-based observations have been utilised to evaluate the 
impacts of drought on the environment and ecosystem, including vegetation growth, land 
cover, soil moisture, and land surface features among others (Brown et al. 2011; Akinyemi 
2021).

Droughts are particularly disastrous in South Africa and other arid regions, which are 
water-scarce by nature due to low rainfall and water sources (van Wilgen et al. 2016; Con-
radie et al. 2019). Droughts are not uncommon in Africa’s drylands and have been rising 
in African dry terrain, according to some studies (Engelbrecht et al. 2015; Conradie et al. 
2019), whereas other studies predict future rises in droughts and other high-temperature 
events (Engelbrecht et  al. 2015; Akinyemi 2017). Extremely high temperatures in parks 
are becoming more common in South Africa’s arid regions (van Wilgen et  al. 2016). 
Drought has raised public awareness in other parts of Southern Africa, including South 
Africa, due to its detrimental effects, particularly on agriculture, which is predominantly 
rainfed (Akinyemi 2021). Over Botswana, studies have discovered visible variations of 
varying magnitudes in rainfall, temperature trends, and drought (Byakatonda et al. 2019; 
Akinyemi 2021). According to regional climate model predictions, droughts are expected 
to become more frequent and severe in this region as a result of future global warming. 
Because of the need to adapt and minimize consequences on social-ecological systems in 
African drylands, it is becoming increasingly vital to analyse and monitor droughts in the 
face of climate unpredictability and anthropogenic induced land-use change (Pande et al. 
2018, 2021).

Few to no study on LULC changes in the study area has been done (Madasa et al. 2021). 
This study reported that there has been a steady rate of conversion from rangelands and 
native woodlands to cultivated arable lands during the last four decades. The study used 
remote sensing information to quantify land-use/cover changes in the Welkom–Virginia 
Goldfields (a small part of the Province), findings revealed different land-use changes with 
fluctuations in values for each index with an overall accuracy of the classified images rang-
ing from 88 to 96%, respectively. Beyond quantifying the LULC changes using GIS/remote 
sensing techniques, a thorough understanding of the interaction of the changes with the 
main environmental drivers such as drought is required for the development of informed 
and appropriate land-use policies in the Free State Province.

Drought has an impact on both the environment and humans as a result of the interac-
tion between natural events and the demand for water. Droughts have three basic impacts: 
economic, social, and environmental. Drought’s economic consequences include food inse-
curity, hunger, rising food prices, and a decrease in household income. During a prolonged 
drought in South Africa, for example, many farming households endured ongoing food 
insecurity, malnutrition, and income reductions. As a result, drought is a significant con-
tributor to the rising food crisis, environmental degradation, and land cover dynamics, as 
well as being closely linked to periods of vulnerability as a result of climate stress (Mera 
2018; Lunyoloet al. 2021). During droughts, food prices, particularly staples, are typically 
high, resulting in hunger and malnutrition since low-income people cannot pay the high 
food prices. Drought’s social impact includes public safety, water-user conflicts, and lower 
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quality of life. Population migration is one of the major societal consequences. Those that 
flee usually go to cities or areas outside of drought-stricken areas. Even when the drought 
is less severe, the migrants rarely return home, resulting in the loss of key human resources 
in rural areas (Sousa et al. 2018; Hermans and McLeman 2021). Drought causes harm to 
natural land, ecosystems, and water quality, as well as plant and animal species, forest, and 
wildlife habitats, as well as degradation of landscape quality and biodiversity loss (Raev 
and Rosnev 2018; Wang et  al. 2018a, b). Some of the consequences are just temporary, 
and things return to normal after the drought is over. Other environmental effects might 
continue for a long time, and in some cases, they can even become permanent. Degradation 
of landscape quality could result in a longer-term loss of biological productivity (Musolino 
et al. 2018; Beg and Al-Sulttani 2020).

While the impacts of droughts are well established, a globally accepted definition 
of drought is difficult to define (Slette et  al. 2019). Agricultural drought has been most 
generally characterised, following the subject of this study, as a period during which the 
moisture supply provided by a region’s environment continually falls below the appropri-
ate level for crop or range production, negatively affecting yield (Feng et  al. 2019; Dai 
et al. 2020). On the other hand, drought vulnerability defines drought risk rather than only 
the frequency and intensity of meteorological anomalies (Downing and Bakker 2000). It 
shows the degree of susceptibility of society to a drought hazard, which could vary either 
as a result of variable exposure to the hazard or because of coping abilities (Boguszewska‐
Mańkowska et al. 2018; Rustad et al. 2020). The more diverse and robust a household’s 
asset base is, the more drought resilient it will be and more alternatives it will have for 
switching between different livelihood strategies in response to drought. According to 
research on the elements determining drought sensitivity in South Africa, non-irrigated 
farmland and rangeland on sandy soils, located in areas with a high chance of seasonal 
moisture deficiency, were the most vulnerable to agricultural drought (Baudoin et  al. 
2017). Less is known about the interplay between drought vulnerability and land-use/land 
cover changes in drought-prone arid land areas such as South Africa. Due to the vulner-
ability of the pastoral people to drought risks (Carter et al. 2006), land-use conversion to 
farmlands as a better coping strategy may have been prompted by the loss of natural land 
cover or a fall in production as a result of drought.

As a result, we hypothesised in this study that drought and other human activities induce 
land-use changes in South Africa’s Free State Province. This study aims to use space-based 
information to assess LULC changes and establish the role of drought vulnerability as a 
driver in the Free State Province of South Africa between 2000 and 2020. Also, in achiev-
ing the aim of this study, we intend to identify the predictors of drought within the study 
area. These predictors will help in future monitoring and assessment of drought events 
through modelling of drought susceptible areas. The findings of this study could be useful 
information for activities aimed at ensuring the long-term sustainability of the Free State 
Province, which is prone to drought.

Several studies have been carried out as regards drought prediction and mapping in 
arid and semi-arid areas using various models, tools and techniques. Some of these stud-
ies have employed the use of in-situ data, non-intrusive methods such as remote sensing 
techniques s (Vincente-Serrano 2007; Abbas et al. 2014; Rhee et al. 2017; Prasetyo et al. 
2019; Adedeji et al. 2020; Liu et al. 2020; Zhu et al. 2021, Orimoloye et al. 2021a, b) and 
in recent times, the use of machine learning algorithms is emerging, especially in Sub-
Saharan Africa (SSA). Despite the fact that the use of machine learning has been applied 
in extreme events especially for classification, the choice of regression-based analysis 
such as but not limited to support vector regression, Gaussian process regression, general 
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regression neural network, has been well documented in drought studies (Panu et al. 2002; 
Shiau et al. 2016; Ghasemi et al. 2021). These studies and some others have shown that 
machine learning and artificial intelligence methods have a high potential for assess-
ment, prediction and identification of extreme events such as drought due to the ability of 
machine learning methods to learn from past data, to handle large numbers of input varia-
bles, to integrate physical understanding into the models and to discover additional knowl-
edge from the available data (McGovern et al. 2017; Felsche and Ludwig 2021; Li et al. 
2021). These machine learning or data-driven models have become increasingly popular 
in climate scenario forecasting because they are effective in dealing with the non-linear 
characteristics of climatic data (Belayneh A and Adamowski 2013). Therefore, this study 
employs the use of machine learning algorithms to identify drought predictors. Further-
more, the study will also highlight the best performing algorithm in drought prediction 
within the study area by comparing regression-based learners such as multiple regression, 
principal component regression, partial least squares regression, random forest regression, 
support vector regression, and multivariate adaptive regression splines.

2  Materials and methods

This study was carried out in the Free State Province, South Africa as shown in Fig. 1. The 
Free State province is one of the nine provinces in the Republic of South Africa. There 
are prominent towns and cities including Bloemfontein, and some of the towns are mostly 
mining and agricultural dominated areas. The Province is situated between latitudes 26.6° 
S and 30.7° S and the Greenwich meridian distances 24.3° E and 29.8° E. According to the 
Köppen climate classification, the province’s climate is mainly semi-arid. The province’s 
topography is complex, with all surfaces above 1000 m culminating to 1800 m in the north-
eastern and eastern Free State. Administratively, the province is divided into five munici-
pal districts (Fezile Dabi, Lejweleputswa, Motheo, Thabo Mofutsanyane, and Xhariep). 
However, the region has monthly mean sunshine hours of approximately 319.5, 296.5 and 
296.3, respectively in November, December and January, with annual sunshine hours and 
total precipitation of approximately 3312.3 and 559 mm, respectively. The region experi-
ences the lowest rainfall (0 mm) in July, and the highest rainfall (70 mm) in December/
January, which corresponds to winter and the summer seasons, respectively. The coldest 
temperature occurs at night during June and July. A better understanding of the spatiotem-
poral evaluation of vegetation-related stress and drought events will help identify drought-
affected areas over Free State Province, South Africa.

3  Methods

3.1  MODIS data

Moderate resolution imaging spectroradiometer (MODIS) Terra product was used to 
assess drought occurrence in the study area. MODIS was downloaded from the Applica-
tion for Extracting and Exploring Analysis Ready Samples (AppEEARS) (AppEEARS 
Team 2020); and it was analysed using R programming. The MODIS instrument oper-
ates on both the Terra and Aqua spacecrafts. It has a viewing swath width of 2330 km 
that views the Earth’s entire surface every one to two days. The VIs were generated at 
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16-day intervals using a MODIS-specific compositing method based on product QA to 
remove low-quality observations. Masking or correcting the pixels affected by atmos-
pheric disturbances such as clouds, the Pixel Reliability Quality Assurance (QA) layer 
of MOD13Q1 was performed. The layer classifies the efficiency of the vegetation index 
from -1 to 5, however, good and poor values are classified within the range of 0 and 1, 
respectively for this analysis. Poor and marginal data are acknowledged as acceptable 
accuracy in the pixel reliability bands and were considered for the study.

In this study, the vegetation condition index (VCI) based on the relative normalized 
vegetation difference Index (NDVI) adjustment with respect to the minimum historical 
NDVI value as suggested by Kogan (1995) was used to determine the drought condi-
tions in the region. Thus, the VCI compares the present vegetation index (VI), such as 
the NDVI or the enhanced vegetation index (EVI), to the values found within a particu-
lar pixel in the same period in previous years. As shown below, the VCI was determined 
using Eq. 1;

where  VCIijk is the VCI value for the pixel i during week/month/ day of the years  (DOYj) 
for year k,  VIijk is the weekly/monthly/DOYs VI value for pixel i in week/month/DOY j for 
year k whereby both the NDVI or EVI can be utilised as VI,  VIi, min and  VIi,max is the mul-
tiyear minimum and maximum VI, respectively, for pixel i.

(1)VCI
IJK

=

VI
IJK

− VI
i,min

VI
i,max − VI

i,min

× 100

Fig. 1  Study area map
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The method used in this analysis, i.e. estimation of drought events with VCI using R 
programming is based on EVI, which has certain crucial values or advantages compared to 
other vegetation indices, including NDVI. First, no distortions of the reflected light caused 
by particles in the air; and second, no distortions of the reflected light caused by ground 
cover vegetation. Figure 2 presents the planning, pre-processing and data processing pro-
cedures adapted from UN-SPIDER recommended practices (http:// www. unspi der. org/ advis 
ory- suppo rt/ recom mended- pract ices/ recom mended- pract ice- droug ht- monit oring).

3.2  Land use classification

The land-use classification was carried out using Google Earth Engine (GEE) for the study 
area (Free State Province) during the year 2001, 2015 and 2020. Landsat 7 Tier 1, Surface 
Reflectance (LANDSAT/LE07/C01/T1_SR) was used for 2001 and 2015, while Landsat 
8 Tier 1, Surface Reflectance (LANDSAT/LC08/C01/T1_SR) was used for the year 2020. 
The choice of Tier 1 is due to the fact that these datasets meet geometric and radiomet-
ric quality requirements, while GEE provides a variety of Landsat-specific processing 
methods, which enables cloud score and cloud-free composites. For each Landsat image 
acquired, the cloud disturbance was reduced to the nearest minimum, while the random 
forest was used as the classifier (ee.Classifier.smileRandomForest). Output accuracy and 
kappa were used as validation indicators together with the confusion matrix. It is worth 
mentioning that noise in the form of clouds exists in some of the classifications. However, 
a large extent does not alter the land use classes. The python script for the GEE code is 
available at https:// code. earth engine. google. com/ d12c4 561d2 36f1a 1d2b5 4b7b1 21139 64.

Fig. 2  Flow chart showing the analysis procedures

http://www.unspider.org/advisory-support/recommended-practices/recommended-practice-drought-monitoring
http://www.unspider.org/advisory-support/recommended-practices/recommended-practice-drought-monitoring
https://code.earthengine.google.com/d12c4561d236f1a1d2b54b7b12113964
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3.3  Regression‑based algorithms

Regression is a basic concept in machine learning. Regression analysis is supervised 
learning that establishes a relationship between variables through the estimation of cause-
effects. In broad terms, the regression model estimates a function ƒβ(.) (parameterized with 
β) given data points  under a loss function ∑i ι (ƒ(x¡),  y¡). In this 
study, drought distribution (VCI) was initiated using MOD13Q1. A total of 15 drought 
factors were identified as drought predictors. These factors are grouped broadly as topo-
graphic, climatic, and anthropogenic proxies (Li et al. 2020; Cartwright et al. 2020). Disag-
gregating these factors, we have Latitude, Longitude, Elevation, Total Precipitable Water, 
Fractional Vegetation Cover, Emissivity, Normalized Difference Vegetation Index, Land 
Surface Temperature, Leaf Area Index, Precipitation, Temperature, Potential Evapotran-
spiration, Solar Radiation, and Soil Moisture at 0–7  cm and 7–14  cm. These 15 factors 
were extracted from 236 drought locations within the study area. To ascertain which of the 
factors out of the 15 factors are important in drought prediction, variable importance was 
performed for each of the regression-based algorithms. These regression-based algorithms 
were built based on partitioned data (training and testing) to evaluate the best-performing 
model selected using the root mean square error (RMSE). The choice of RMSE against 
other metrics such as MAE, MAPE and others is beyond the scope of this study. How-
ever, studies have shown that RMSE is just enough to represent model performance (Chai 
and Draxler 2014; Quan et al. 2020).

Feature selection (variable importance) is an important step in classification and model 
building. Identifying features or factors as presented in this study helps in understanding 
the drought dynamics within the study. The feature selection and model identification were 
performed within the R ecosystem (R Core Team 2019) using caret, earth, vip, and pdp 
(Kuhn 2008; Friedman 1991; Greenwell et  al. 2020; Greenwell 2017), respectively. The 
regression-based algorithms used in this study are:

a. Multiple regression (MR) 
  Multiple regression is a machine-learning algorithm to predict a dependent variable 

with two or more predictors. Multiple regression has numerous real-world applications 
in three problem domains: examining relationships between variables, making numerical 
predictions, and time series forecasting.

b. Principal component regression (PCR)
  Principle component regression (PCR) is an algorithm for reducing the multi-collin-

earity of a dataset (Jolliffe 1982). PCR is basically using principal component analysis 
and then performs linear regression on these new PCs (d) using cross-validation or test 
set error and concludes by performing regression using the first d dimension reduced 
principal components. Here, principal components regression forms the derived input 
columns  Zd =  Xvd and then regresses y on  z1,  z2,  z3, …  zd for d ≤ p. Principal components 
regression discards the smallest eigenvalue components (p–d).

c. Partial least square regression (PLSR)
  Partial least square regression (PLSR) is a technique that reduces the predictors to a 

smaller set of uncorrelated components and performs least squares regression on these 
components, instead of on the original data (Geladi and Kowalski 1986; Tobias 1995). 
Partial Least Squares is a solution for multicollinearity as it allows for the reduction 
of the dimensionality of correlated variables and then models the underlying, shared, 
information of those variables (in both dependent and independent variables) (Geladi 
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and Kowalski 1986; Tobias 1995). Another advantage of Partial Least Squares is that it 
is a method that can model multiple outcome variables against other machine learning 
algorithms.

d. Random forest regression (RFR)
  Random forest regression (RFR) is a supervised learning algorithm that uses the 

ensemble learning method for regression (Breiman 2001; Grömping 2009). A Random 
Forest operates by constructing several decision trees during training time and outputting 
the mean of the classes as the prediction of all the trees (Breiman 2001). A prediction 
from the Random Forest Regressor is an average of the predictions produced by the 
trees in the forest (Breiman 2001; Grömping 2009). The Random Forest Regressor is 
unable to discover trends that would enable it in extrapolating values that fall outside 
the training set. A solution to this is to try the support vector regression.

e. Support vector regression (SVR)
  SVR gives us the flexibility to define how much error is acceptable in our model and 

will find an appropriate line (or hyperplane in higher dimensions) to fit the data (Smola 
et al. 2004; Awad et al. 2015). In contrast to OLS, the objective function of SVR is to 
minimize the coefficients. This method works on the principle of the Support Vector 
Machine. SVR differs from support vector machine (SVM) in the way that SVM is a 
classifier that is used for predicting discrete categorical labels while SVR is a regressor 
that is used for predicting continuous ordered variables (Smola et al. 2004; Awad et al. 
2015). SVR is robust, easy and performs lower computation compared to other regres-
sion techniques among others.

f. Multivariate adaptive regression splines (MARS)
  MARS, a regression analysis model (Friedman 1991) is more or less an extension of 

linear models through a non-parametric regression technique. This model can work on 
forward and backward stepwise procedures (Kisi et al. 2016). MARS is flexible, easy, 
simple, handles both continuous and categorical data, does the automatic variable selec-
tion, has a good bias-variance trade-off and performs predictions quickly compared to 
other classifiers especially SVR (Kisi et al. 2016).

4  Result and discussion

The spatial and temporal variations in vegetation productivity were presented based on 
analyses during the summer seasons between years 2000 and 2020 spanning 20  years. 
Providing insights regarding each year, the VCI drought index (Figs. 3, 4, 5, 6, 7) reveals 
various drought situations from light to extreme drought episodes over the study area. The 
Free State province observed moderate drought conditions in 2001, as presented in Fig. 3. 
From west to eastern parts of the province were moderately affected by drought, which 
connotes that drought was spatially distributed during the same period. Another drought 
scenario was observed in 2005, where most of the study area was affected by drought 
events. The area was severely affected from central to southern parts, with diverse impacts 
on environmental components such as vegetation productivity, living and non-living crea-
tures that depend on natural resources (Swemmer et al. 2018; Riebsame et al. 2019). The 
earth’s natural environment consists of living and non-living creatures that have found 
the current life form by creating a balanced condition and system. Whenever some of the 
factors forming the environment become affected, the system, the balance kind, and the 
environmental condition are certainly involved in some changes because these disorders, 
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Fig. 3  Drought event in year 2001

Fig. 4  Drought event in the year 2005
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Fig. 5  Drought event in year 2001

Fig. 6  Drought event in year 2015
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unbalances. This study area result is considered a severe threat to humans and environ-
mental modifications (Williams and de Vries 2020; Haile et al. 2019). Without knowing 
about the drought and its immediate impacts on the environment, land cover and humans 
would not achieve the desired results (Arastoo 2013). Due to their critical function in eco-
sphere-biosphere–atmosphere interactions, land cover and vegetation are essential criteria 
for human-natural-environment evaluation and drought monitoring and play a vital role in 
global climate change (Arastoo 2013; Jamali 2019).”    

Vegetation productivity, which is the spatial distribution and change of the vegetation 
cover, was low mostly throughout the study area in 2005, as depicted in Fig. 3. However, 
in 2010, vegetation improved over the study area (Fig. 4), where most of the study areas 
were moderately affected by drought events. The result shows that no drought characterises 
2010 to moderate drought over large parts of the study area, which may have lower drought 
impacts on land covers during this period. The temporal evolution of the drought disas-
ter during the year 2010 and the spatial distributions suggested the drought conditions’ 
potential influence on different environmental components with moderate impacts, espe-
cially on natural vegetation, agricultural lands, among others (Albano et al. 2020; Marengo 
et  al. 2020). Since summer is known to be the planting period and the initial stages of 
crop growth, this may affect agricultural sectors moderately in the study area (Ribeiro et al. 
2019; Muthelo et al. 2019).

In 2015, Free State Province was severely affected by drought episodes as the study area 
observed extreme drought. This result corroborates other studies which noted the same 
drought patterns in the study area (Botai et al. 2016; Abubakar et al. 2020). The observed 
trends in drought disaster over the study area demonstrate that the impact of droughts could 
be significantly different across the province and years. In particular, it can be noticed that 

Fig. 7  Drought event in year 2020
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about the whole province was affected in 2015 compared to other years considered in the 
study, which exhibit decreasing trends in drought situations in the Free State Province. This 
suggests that the Free State Province experienced drought fluctuation conditions during the 
analysed period. As a result, key sectors such as agriculture and water resources are likely 
to be affected negatively in 2015 (Moeletsi and Walker 2012; Sweet et  al. 2017). These 
conditions are a threat to food security given that the province is considered the food bas-
ket of South Africa, and fertile lands might have been degraded as a result of the drought 
disasters in the affected years (Mare et al. 2018; He et al. 2019). The increasing droughts 
will decrease the volumes in water reservoirs and streams, which are largely located in (and 
also transect across) the provinces under the present study.

Drought event in the year 2020 is presented in Fig. 7, where only the western part was 
moderately affected by drought during the year. The affected district municipalities are 
Lejweleputswa and Xhariep (northern part) district municipalities, while other municipali-
ties were moderately affected by drought disaster this includes Mangaung Municipality.

4.1  Land use and land cover dynamics

The information on land use/cover for 2001, 2015 and 2020 shown in Figs. 8, 9 and 10 
had an overall map accuracy of about 0.86, 0.95 and 0.93, respectively, for the years under 
investigation using error/confusion matrix. The commonly employed approach for evalu-
ating per-pixel classification is the error matrix (Bechtel et  al. 2020; Nabil et  al. 2020). 
Kappa statistics/index was computed for each classified map to measure the accuracy of 
the results. The resulting classification of land use/cover maps of the years investigated 
had Kappa statistics of about 0.79, 0.95, and 0.90 for 2001, 2015 and 2020, respectively. 
Reasonably good overall accuracy was accepted for the subsequent analysis and change 
detection (Wang et al. 2018a, b). These three years were chosen due to the availability of 
Landsat data. Other years that were supposed to be included were not cloud-free. There-
fore, they are not suitable for this analysis. However, the years selected in this study still 
have some cloud cover that makes the land features to be varied in size from year to year. 
Different land surface features were evaluated to identify the potential impacts of environ-
mental stressors such as drought disasters and other activities. These features are built-up 
areas, water bodies, grassland and barren surfaces and cultivated lands.

Findings from the study reveal that grasslands and barren surfaces had the highest land 
cover with about 114,512.53, 125,151.78 and 101,580.02 sq km for years 2001, 2015 and 
2020, respectively. While built-up covers about 5330, 3,109 and 1,567 for the three years 
in that order. In 2001, 2015 and 2020, the area cover for water bodies was 782.24, 633.37 
and 861.43, respectively (Table 1), and cultivated lands were 9,361, 930, and 25.545 for 
2001, 2015 and 2020, respectively. It was noted that cultivated lands declined drastically as 
a result of drought disasters in the Free State Province. Signified the dramatic land cover 
change on the category of cultivated lands surface, exerting incredible pressure on natu-
ral resources, including vegetation and agricultural lands (Hassan et al. 2016). Conversion 
of natural lands and forested areas to other land features was also significant in the three 
years investigated in this study. From the findings, agricultural lands, cultivated grasslands, 
and barren surfaces were influenced or impacted by drought disaster, especially in 2015, a 
drought year in the Free State Province (Botai et al. 2016). If the environmental degrada-
tion or conversion of natural land cover continues, the area is bound to face the negative 
impact of soil erosion and high surface temperature (Trnka et al. 2016; Azadi et al. 2018). 
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These negative impacts may further lead to food and water insecurity, and the ripple effect 
would help increase global warming in the future (Workman and Ureksoy, 2017; Kogo 
et al., 2021).

4.2  Relationship between drought episodes and environmental covariates 
between 2001 and 2020

Many of the questions relating to the historical challenges that faced South Africa includ-
ing Free State include issues, such as but not limited to poor financial management, lack 
of resources, poor and exclusionary city planning, and unequal infrastructure develop-
ment, have been linked to drought vulnerability in South Africa (Cooperative Governance 

Fig. 8  Land use dynamics for year 2001
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and Traditional Affairs 2016; Orimoloye et  al. 2021c;  Steyn et  al. 2019). It was agreed 
that a more in-depth check at the associated issues, and how they can be combated by the 
regional and national government, is needed (Cooperative Governance and Traditional 
Affairs 2016).

Arid and semi-arid lands are a vital part of the earth system in South Africa. These 
areas provide salient ecosystem services that ensure a sustainable environment and human 
livelihoods. These regions consist of grasslands, cultivated lands, urban areas and water 
bodies (Figs. 7, 8, 9). However, the conversion of these land-use types as a result of vari-
ous anthropogenic activities has been linked to the persisting drought events. Studies have 
shown that drought events are large as a result of climatic oscillations and dynamics, but 
the increasing magnitude and frequency of these events have been linked to unsustainable 

Fig. 9  Land use dynamics for year 2015
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and unchecked anthropogenic activities. The Free State province, a province of farmlands, 
mountains, goldfields, and widely dispersed towns even though the third largest province 
in South Africa has one of the lowest population and population densities in the country 

Fig. 10  Land use dynamics for the year 2020
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(https:// munic ipali ties. co. za/ provi nces/ view/2/ free- state). The economics of the province 
is agriculture, mining and manufacturing. Major crops grown within the province include 
Maize, Wheat, Potatoes, Groundnut, and Wool to mention a few. Therefore, the persis-
tence of drought within the province is expected to affect human livelihoods and disrupt 
the socio-economic balance. The observed persistence in drought, especially since 2015 
(Orimoloye et al. 2019, Orimoloye et al. 2021a) is largely driven as a result of climate and 
anthropogenic factors (Fig. 11). A closer look at the feature selection graph (Fig. 11) shows 
that surface reflectance, land use (water bodies), soil moisture, temperature, precipitation, 
and emissivity are the commonalities across the regression-based learners. Some other 
studies have also shown precipitation, energy availability, elevation (Burke 2011; Otto 
et al. 2018; Cartwright et al. 2020) as drivers of drought across different regions.

As presented in this study, land use (water bodies) and solar radiation are the lead-
ing factors driving drought within the Free State province. These are classified broadly 
as anthropogenic and climatic drivers. Understanding these drivers is essential for pre-
dicting and understanding the trajectory of drought events across the province. With 
increasing climate change and unhealthy anthropogenic activities, drought events are 
expected to persist in intensity and magnitude (Orimoloye et  al. 2021b). Even though 

Table 1  Land use dynamics for 2001, 2015 and 2020

Land use Area(sq.km) 2001 Area (sq.km) 2015 Area (sq.km) 2020

Built-up areas 5330.18 3,109.37 1,567.95
Water bodies 782.24 633.37 861.43
Grasslands and Barren 

surfaces
114,351.53 125,151.78 101,850.02

Cultivated lands 9,361.05 930.48 25,545.60

Fig. 11  Variable importance selection across the regression-based learners

https://municipalities.co.za/provinces/view/2/free-state
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the Free State province is one of the provinces declared drought-prone, these intercon-
nections, as revealed in this study, suggest the need to raise these alert levels across the 
province and provide a monitoring and early warning system due to its position in terms 
of agriculture and economy.

The identification of climatic influence and anthropogenic factors as shown in this 
study has also been observed in other studies (Li et al. 2020; Li et al. 2021). From the 
feature selection results, the influence of climate proxies and anthropogenic factors on 
VCI shows the ecological situation within the Free State province (Jin et al. 2016; Ori-
moloye et al. 2021b). These studies (Orimoloye et al. 2021b; Jin et al. 2016) show the 
varying influence of human activities and climatic variation on vegetation greenness. 
Liu et al. (2020) in their study on the quantitative assessment and driving force analysis 
of vegetation drought risk to climate change in Northeast China posited that radiation 
flux and evapotranspiration process are important to vegetation dynamics and that this 
can be compared with temperature and precipitation. As shown in Fig. 11, some of these 
parameters, especially solar radiation and temperature, are proxies for climate warming. 
Solar radiation is one of the vital components needed for human survival on the sur-
face of the earth. It has been posited in some circles that the amount of solar radiation 
incident at the Earth’s surface is not stable over the years but undergoes significant dec-
adal variations (Orimoloye et al. 2019; Wild 2012). As observed in a study across the 
Congo basin, increasing solar radiation is expected to put more stress on plants (reduc-
ing greenness) through extensive depletion of soil moisture (https:// yali. state. gov/ satel 
lites- show- droug ht- may- put- stress- on- congo- rain- forest/). Solar radiation management 
has been on the rise lately as regards reduction in the amount of energy returned to the 
atmosphere. The idea is to keep global warming at a limited level to help save the ozone 
and the lower atmosphere. The continued increase in solar radiation is expected to 
enhance environmental change which directly or indirectly perpetuates extreme events 
such as droughts.

In terms of prediction and understanding the trajectory of drought events in Free 
State province, the regression-based learners with the lowest RMSE (Table 2) provide 
an opportunity for predicting the vegetation condition index (VCI) across the province. 
The partial least square regression (PLSR) is most likely to be the model for VCI pre-
diction across the province using solar radiation, land use (water bodies), elevation, soil 
moisture, precipitation, temperature, and leaf area index. PLSR is known to combine 
various regression methods in order to maximise independent variables and dependent 
variables that enable the learner (PLSR) to improve its accuracy and exploratory power 
(Li et al. 2020; Luedeling et al. 2013). As presented in the method section, this study 

Table 2  RMSE across the six regression-based learners

Regression-based learners Min 1st Qu Median RMSE 3rd Qu Max

Multiple regression 1.15 1.63 1.98 1.91 2.10 2.79
Principal component regression 1.28 1.46 1.91 1.88 1.10 2.80
Partial least squares regression 1.35 1.59 1.87 1.86 2.07 2.52
Suport vector machines 1.44 1.61 2.07 2.48 2.39 5.21
random forest 1.34 1.74 1.91 2.26 2.54 3.77
Multivariuate adaptive regression splines 1.42 1.69 1.74 1.92 2.13 2.86

https://yali.state.gov/satellites-show-drought-may-put-stress-on-congo-rain-forest/
https://yali.state.gov/satellites-show-drought-may-put-stress-on-congo-rain-forest/
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employed various regression-based learners. The PLSR presents a better accuracy in 
identifying the drivers of drought across the Free State Province (Table 2). 

5  Conclusion

Drought disaster and land-use dynamics over the Free State were assessed in this study 
using space-based information in order to identify drought drivers utilising regression-
based algorithms. Drought has a wide range of impacts that are dependent on the socio-
economic environment of the affected community. Findings from the study revealed that 
cultivated lands declined dramatically during the period of study as a result of drought 
disasters and more evident in the year 2015 in the Free State Province. This signified the 
dramatic land cover change on the category of cultivated lands surface, exerting incredible 
pressure on natural resources including vegetation and, in particular, agricultural lands. 
The partial least square regression (PLSR) has shown better accuracy for identifying the 
drivers of drought across the Free State Province.

The selected features include solar radiation, land use (water bodies), elevation, soil 
moisture, precipitation, temperature and leaf area index. These features are paramount 
in drought prediction within the province and could be essential in drought early design 
across arid and semi-arid regions. PLSR is known to combine various regression meth-
ods in order to maximise independent variables and dependent variables that enable the 
learner (PLSR) to improve its accuracy and exploratory power. Hence, its choice as the 
best learner in this study presents a better accuracy in identifying the drivers of drought 
across the Free State Province. It is important to develop an innovative drought monitoring 
system for regular collection and timely dissemination of relevant data in a usable manner, 
this should be considered in future research. Area-specific planning of mitigation measures 
in the region is also necessary for effective drought risk reduction and management. In 
essence, stakeholders should come together in designing drought early warning systems 
using identified features.
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