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Abstract
Natural hazards, which have the potential to cause catastrophic damage and loss to infra-
structure, have increased significantly in recent decades. Thus, the construction demand for 
disaster prevention and mitigation for infrastructure (DPMI) systems is increasing. Many 
studies have applied intelligence technologies to solve key aspects of infrastructure, such as 
design, construction, disaster prevention and mitigation, and rescue and recovery; however, 
systematic construction is still lacking. Digital twin (DT) is one of the most promising 
technologies for multi-stage management which has great potential to solve the above chal-
lenges. This paper initially puts forward a scientific concept, in which DT drives the con-
struction of intelligent disaster prevention and mitigation for infrastructure (IDPMI) sys-
tematically. To begin with, a scientific review of DT and IDPMI is performed, where the 
development of DT is summarized and a DT-based life cycle of infrastructures is defined. 
In addition, the intelligence technologies used in disaster management are key reviewed 
and their relative merits are illustrated. Furthermore, the development and technical fea-
sibility of DT-driven IDPMI are illustrated by reviewing the relevant practice of DT in 
infrastructure. In conclusion, a scientific framework of DT-IDPMI is programmed, which 
not only provides some guidance for the deep integration between DT and IDPMI but also 
identifies the challenges that inspire the professional community to advance these tech-
niques to address them in future research.
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1  Introduction

The frequency and scale of natural hazards have been increasing since the 2000s and bring-
ing huge losses and casualties to the world (UNDRR 2020; Goff 2021). Various natural 
hazards not only pose great challenges to the disaster prevention and mitigation capacity 
of infrastructure but also present major demands for the response of rescue and recovery 
(Novelo-Casanova et al. 2021). Many countries have set up emergency management agen-
cies to cope with the impact of natural hazards, such as the Federal Emergency Manage-
ment Agency (FEMA) of the United States, the Ministry of Emergency Management of 
China and United Nations Office for Disaster Risk Reduction (UNDRR). China’s 14th 
Five-Year Plan (General Office of the State Council 2021), Japan’s Climate Change and 
Disaster Prevention Strategy in the Era of Climate Crisis (Cabinet Office, Government of 
Japan 2020) and the United States National Disaster Preparedness Goals (FAMA 2015) 
all propose new requirements for promoting a systematic and intelligent system of disaster 
prevention, mitigation, relief, post-disaster recovery and risk awareness training (Lu and Li 
2020). However, there are still plenty of obstacles for disaster management, such as techni-
cal cross, resource sharing and functional integration (Taubenböck et al. 2013). Thus, the 
construction of comprehensive platform has become a key problem in the field of disaster 
prevention and mitigation (Cheng et al. 2017; Abdel-Basset et al. 2020). Digital twin (DT) 
is one of the most promising technologies for better management of complex environment 
and facilitates the connectivity required through many self-operative functionalities (Fuller 
et al. 2020). Based on the above, this paper aims to discuss DT-driven intelligence disaster 
prevention and mitigation for infrastructure (IDPMI), reviews the states, respectively, and 
discusses future directions.

Infrastructure, including buildings, bridges, roads, railways and ancillary pipe network 
facilities, is an essential element for ensuring human daily production and life. It is dif-
ficult to make effective improvement after the construction of infrastructure because of the 
high cost, large reserves, long cycle, and individuation. Therefore, multi-stage factors, such 
as design, disaster prevention, disaster mitigation, disaster relief and post-disaster recov-
ery, need to be considered comprehensively to effectively reduce the damage and loss of 
infrastructure caused by natural hazards. The DT is defined extensively but is described as 
the effortless integration of data between a physical and a virtual object in either direction 
(Grieves 2014). DT comes from simulation technology; the interoperability, timeliness, 
and predictability between the physical and virtual objects have been deepened in recently 
years (Ladj et al. 2021), and simulation models, digital shadows, and DT have also been 
gradually distinguished (Sepasgozar 2021). DT has excellent management ability and has 
the obvious advantages of function systematization, data integration and process automa-
tion (Zhang et al. 2019).

With the development of theoretical models (Park and Ang 1985; Richard 2007; Lai 
et al. 2020), simulation technology (Lu et al. 2020b), remote sensing technology (Eguchi 
et  al. 2008), and sensor network (Cayirci and Coplu 2007), infrastructure-related fields 
have been producing a large amount of daily data, which can be roughly divided into real 
data and calculated data, and these data can be used to support infrastructure disaster man-
agement (Sun et al. 2020). Currently, the common approaches for data analysis are gradu-
ally transformed into intelligent technologies (Yang et al. 2002; Jiang 2009), and there are 
many related applications in infrastructure design, disaster prevention, disaster reduction, 
and recovery (Yang et al. 2017; Bao and Li 2019; Mariappan et al. 2015). Learning system 
extended Reality (ER) Internet of Thing (IoT) and other technologies or software have also 
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been introduced to support catastrophe virtual recurrence, which can achieve multidimen-
sional visualization of performance and behavior using the reverse modeling method (Ma 
et al. 2015; Lin et al. 2020; Kawai et al. 2016). These applications provide a novel perspec-
tive for the development of disaster prevention and mitigation for infrastructure (DPMI). 
However, infrastructure-related industries have been some of the industries that are slow to 
adopt new technologies (Manyika et al. 2017).

Natural hazards are a series of dynamic and complex events that threaten the economy, 
environment, and human life (Wettenhall 2009). Owing to the complex interdependent of 
society, infrastructure, and natural environment, disaster processes and outcomes are thus 
extremely difficult to predict (sun et al. 2020). In the meantime, disaster management not 
only involves the prediction of disaster processes and outcomes but also involves avoiding 
adverse processes and mitigating these consequences, which is undoubtedly a very chal-
lenging task, especially during urgency events (Ostadtaghizadeh et al. 2015). After many 
years of development, digital twin (DT) has been proved to successfully support the man-
agement and decision-making processes in many complex fields, such as aerospace (Ye 
et al. 2020), manufacturing (Lu et al. 2020c), industry (Tao et al. 2019c), and military (Li 
et al. 2020) In this sense, DT would also be feasible for the management of IDPMI based 
on the above practices.

This paper proposes a scientific concept of DT-driven systematic construction of 
IDPMI, which intends to clarify the potential of DT in disaster management. Moreover, 
the challenges that may hinder the full utilization of DT technology are emphasized and 
some possible ideas for the future are also given. The rest of the paper is organized as fol-
lows. Section 2 provides the review methodology. Section 3 reviews the history of DT and 
discusses the scientific scope for the life cycle of infrastructure. Section 4 key reviews the 
development level and demand of correlation technologies that are applied in the IDPMI 
process based on DT requirements. Section  5 summarizes the application of DT in the 
related stages of infrastructure. Section  6 combines the development needs of DT and 
IDPMI and formulates a development agenda for the future, and Sect. 7 gives the conclu-
sions and outlook.

2 � Review methodology

To present the status of academic publications about DT and IDPMI, this paper provides 
the following review methodology, which mainly consists of three parts. Figure 1 summa-
rizes the review methodology in terms of the search strings, criteria, and paper selection 
procedure.

The first step was the selection of databases and search strings. This study selected a 
host of mainstream databases, including Web of Science, Scopus, Science Direct, Pro-
Quest, IEEE Xplore, Google Scholar and CNKI. To ensure the integrity of the retrieved 
data, one should select of search strings that fully cover their own development and com-
bination points. Another core factor is the time frame. Although intelligent technology has 
developed for many years, its vigorous development mainly comes from the deep learn-
ing model proposed by Hoitton and Salakhutdinov (2006). The infrastructure industry has 
always been one of industries that are slow to adopt new technologies. Moreover, the initial 
paper on DT was published in 2011. Therefore, the time frame is set as 2010–2021 in this 
study.
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The advanced search function of each website (the module name of different websites is 
different) was adopted in this study, the topic strings and the refined strings were set up, and 
the main search scope included the title and abstract. The topic string for DT was set as digital 
twin. To fit the complex process of IDPMI and reflect the management ability of DT during 
an emergency, the refined strings were set as design, disaster management, construction, and 
maintenance. The topic strings for IDPMI were set as intelligence technology and disaster. 
The refined strings are set as disaster management, prevention, mitigation, and design. As a 
result, more than 6000 papers were initially found by the topic retrieval, and more than 500 
papers were selected through refined retrieval.

Subsequently, all selection papers were filtered manually. The main filtering scope and 
order included the abstract, conclusion, and introduction, to ensure that the main content did 
not involve the title and abstract, but in other parts. The filtering process also involved remov-
ing some irrelevant articles with fragmented search strings, such as digital, twin and intel-
ligence. DT is mainly good at complex event management, therefore, the articles related only 
to disaster report and mechanism analysis under the separate topical string “disaster” were 
also excluded. To identify the repeated search contents from different databases, the filter-
ing process also involved sorting and deduplication of the search results. Because there are 
many repeated results in the topic retrieval and refined retrieval, these steps do not provide the 
number of specific papers. After the filtering, a total of 234 key articles were retrieved. The 
authors read through these papers and summarized their common grounds and unique propo-
sitions. To provide an integrated introduction to intelligent technology, conventional design 
approaches, and other related contents, some related papers are also included.

Fig. 1   Methodology on screening papers
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3 � Development of DT

3.1 � History of DT

The initial concept of DT can be dated back to the Apollo project carried out by NASA. 
In this project, NASA made two identical spacecraft, one spacecraft left on the earth was 
called the twin, which was used to map the status of other spacecraft performing lunar mis-
sions (Rosen et al. 2015). The modern concept of DT was first proposed by Grieves in 2003 
and is called the mirrored spaces model. Although the concept was not clearly defined at 
that time, necessary factors such as physical objects, virtual objects, and their connections 
were illustrated (Grieves 2005). With the development of data transmission approaches and 
computer modeling technologies, NASA introduced the concept of DT to diagnose and 
predict the function of aircraft systems (Piascik et  al. 2010). In 2011, the US Air Force 
Research Laboratory applied DT to life cycle management for aircraft and proposed a con-
ceptual model to predict its structural life (Tuegel et al. 2011). In 2012, the concept of DT 
was redefined by NASA. DT is an integrated multi-physics, multi-scale, probabilistic simu-
lation of an as-built vehicle or system that uses the best available physical models, sensor 
updates, fleet history, etc., to mirror the life of its corresponding entity equipment twin 
(Glaessgen and Stargel 2012). According to the level of data integration between the physi-
cal and digital counterparts in DT applications, three subcategories are considered: digital 
model, digital shadow, and digital twin (Dahmen and Rossmann 2018). In addition, char-
acteristics such as bidirectional data exchange and real-time self-management distinguish a 
DT from other digital systems (Ladj et al. 2021; Sepasgozar 2021), which makes the con-
cept of DT more concrete. Gartner, one of the leading consultancy firms in the world, listed 
DT as one of the top 10 strategic technological trends for 3 years (2017, 2018, and 2019) 
(Panetta 2016, 2017, 2018). This paper summarizes Google Trends’ search heat of DT over 
the past decade, as shown in Fig. 2. The development of DT can be roughly divided into 
two phases: the incubation stage (2011–2017) and the growth stage (2017–present), and 
the representative event nodes are also marked in Fig. 2. In view of the current develop-
ment momentum, the authors believe that the attention and application of DT will continue 
to grow in the next 3–5 years.

Recently, DT has been gradually applied in many fields. Siemens has built a generation 
system to integrate the manufacturing process based on DT and established a virtual enter-
prise that can effectively promote the process of digital transformation (Siemens 2015). 
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Fig. 2   The search trend of DT
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Tao et al. (2017b; 2019a) proposed the concept of DT workshop and expounded its system 
composition from operation mechanisms, characteristics, and key technologies. Tao and 
Zhang (2017a) initially listed service dimension as the key component in DT frame and 
proposed the concept of the 5D model, which consists of data, physical entities, virtual 
models, services, and connections. The history of the DT methodology, the transformation 
from 3 to 5D, is shown in Fig. 3.

According to the literature search on DT, the number of articles about DT has reached 
more than 2000, and, therefore, it is impractical to completely introduce these articles. 
Therefore, this paper lists some review papers on DT, as shown in Table 1.

DT, a digital and intelligent application framework, has shown its application prospects 
in many industries. To standardize the construction process of DT, the first thing is the 
theoretical explanation for DT, which includes the selection and integration of the data, the 
accuracy of the virtual model, and the service/control/generation algorithms. There is also 
a lack of the relative paradigm planning to satisfy the life cycle of industry and product 
requirements. Personalized promotion is also a problem that must be considered.

3.2 � Possible scope of DT for infrastructure

According to the origin and development process of DT, its application scope mainly 
focuses on the monitoring of the target object. The rapid development and popularization 
of big data, Internet of Things (IoT), 5G, cloud computing, intelligence algorithms, etc., 
provide a strong impetus for the architecture and timeliness of DT. With the proposal of 
advanced manufacturing strategies such as Made in China 2025, U. S. Industrial Internet 
Strategy, and German Industry 4.0, the application scope of DT is gradually expanding. On 
the basis of the current application of DT in various fields, the authors redefine the possible 
scope for infrastructure into five stages: design and optimization (D and O), manufactur-
ing and installation (M and I), usage and maintenance (U and M), emergency management 
(EM), recycling and dismantling (R and D), as shown in Fig. 4.

The D and O stage is mainly an object-oriented process from scratch. Each indus-
try has integrity design codes and processes. In the related fields of infrastructure, they 
often use theoretical codes, simulations or a small number of tests to complete this 
work. The design of the DT framework regards the theoretical specification as the initial 
basis, takes the simulation analysis and test as the data source, and relies on the virtual 
model to realize the 3D generation, optimization, and evaluation off the function and 
process level of the infrastructure. Compared with the normal design process, DT can 
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Fig. 3   Transformation from 3D (Grieves 2014) to 5D (Tao et al. 2018c) for DT
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help designers to obtain more accurate feedback to achieve virtual testing of cycle inter-
active optimization, operations, and functions (Wang et al. 2020).

The M and I stage is the construction and installation process of the components and 
accessories of an infrastructure. Based on the virtual model, this process can be realized 
for scientific management, diagnosis, and correction. The virtual reality installation pro-
cess is connected seamlessly, which not only realizes the systematic storage of data but 
also ensures the position code and scientific measurement of components. This proce-
dure also facilitates the subsequent tracking and diagnostic process (Zhou 2019).

The U and M stage is mainly the operation process, which can dynamically track the 
use state of the infrastructure. Real-time data collection can be realized by a sensor or 
an IoT network. Multi-source data are gathered in the scientific process under the DT 
framework, and virtual monitoring of the physical part can be realized. Based on the 
anomaly recognition algorithm and the preset threshold, the operation instructions are 
issued for the infrastructure. If data-driven DT models are combined with intelligent 
systems, they can even achieve timely predictive maintenance, diagnosis and decision-
making (Luo et al. 2020).

The EM stage is mainly aimed at the emergency caused by natural hazards, which 
is quite different from the U and M stage in terms of causality. The DT framework not 
only can realize dynamic monitoring and pre-rehearsal for infrastructure objects in haz-
ards environments but also can evaluate damage, loss, and casualties in a timely manner 
(Doğan et al., 2021). The combination of statistical algorithms or intelligent technolo-
gies can even realize the estimation of residual functions for infrastructure objects. DT 
can also guide immediate establishment of emergency strategies and avoidance routes.

The R and D stage is the final stage of the infrastructure object. Retirement charac-
teristics can be accurately acquired according to the U and M stage. The R and D stage 
driven by DT can realize reasonable waste recovery, establish an efficient planning for 
the demolition process, and a priori predict the waste quantity and danger.

As shown above, this paper reassigns the possible scope of DT in the life cycle man-
agement of the infrastructure. It also illustrates that DT has great application potential 
in related fields. At present, research on DT is still in the growth stage. Although there 
are some application cases in fine production, problems such as narrow application 
range and internal development limitations still hamper its deep application.

Fig. 4   The possible scope of DT 
for infrastructure

DT

D & O

Function
Process

Structure
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4 � New technologies applied in IDPMI

Compared with other industries, infrastructure also can see as the product of industrializa-
tion, but its mechanization, automation, intelligence and informatization levels are lower 
than other industries. Drawing on the development experience of history and other indus-
tries, the development of new technologies will permeate all aspects of human social and 
productive activities, thereby improving the working conditions of large-scale labor and 
harsh environments (Bao and Li 2019). In DPMI, the integrated application of new tech-
nologies will also cause profoundly development.

4.1 � Acquisition and fusion of multi‑source data

Infrastructure is one of the necessary resources for maintaining human survival and devel-
opment. The multi-source data in the whole life cycle provide unique evidence to evaluate 
its disaster prevention and mitigation capabilities (Sun et al. 2020). In the life cycle of an 
infrastructure, there exist a host of design data, normal monitoring data and disaster data. 
The acquisition of disaster data is the most challenging among the above three categories, 
and the acquisition and fusion methods of disaster data mostly cover the other two, there-
fore, the following content mainly focuses on this challenging one.

The acquisition of disaster data to be the primary task that can reasonably evaluate the 
catastrophe situation and residual functions of an infrastructure (Ahammed et  al. 2014). 
Different types of infrastructure have slightly different requirements for disaster data; they 
mainly focus on displacement, deformation, modal characteristics, point clouds, images, 
videos, and catastrophe data. The previously acquired method of disaster data usually 
depends manual collection by professionals, which has disadvantages such as long acquisi-
tion cycles, large human factors, and high risk. With the development of theory and tech-
nology, structural simulation, sensors, 3D laser scanning, satellite, and unmanned aerial 
vehicle (UAV) are widely used in infrastructure disaster data acquisition (Liu et al. 2016; 
Akyildiz et  al. 2002; Peter et  al. 2019; Rotta et  al. 2020; Erdelj et  al. 2017). The above 
technology greatly simplifies the process of disaster data acquisition, especially to prevent 
people from entering complex hazardous environments. However, these technologies have 
their own advantages and limitations.

Simulation technology can establish a model of an infrastructure in a virtual environ-
ment and realize the reproduction or prediction of complex deformation, which can guide 
infrastructure design, disaster prevention, disaster mitigation, and normal monitoring. 
However, the current simulation technology still cannot capture the complex material and 
multi-dimensional details of an infrastructure nor can it describe the complex external 
environmental factors.

The sensors are widely used in infrastructure (Hodge et al. 2015). Sensors can help pro-
fessionals effectively avoid stepping into a hazard area when collecting monitoring data, 
and the real data also cover the invisible interior part. However, sensor data often have a 
low signal-to-noise ratio and their installation can cause initial defects for the target mem-
ber. In hazardous situations, sensors may contain error data or failures. Sensor networks are 
usually installed in hazardous location to monitor structures and infrastructure.

Three-dimensional laser scanner directly carries out sampling from catastrophic infra-
structure, which can quickly obtain massive and irregular 3D point clouds reflected as 
3D coordinates (X, Y, Z) and certain attributes (reflection intensity, rendering, etc.). It 
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has become an important approach to characterize the 3D space of complex real-world 
object in the digital era. Furthermore, 3D laser scanners come in various types, such as 
onsite installation, handheld, vehicle mounted, airborne, and satellite carried, which can 
meet the requirements of data acquisition in various complex environments (Yang et  al. 
2017). Although the technology has obvious advantages in catastrophic data acquisition, 
it still faces great challenges in splicing, classification, recognition, and accurate reproduc-
tion of complex scenes. A 3D laser scanner is high-precision equipment that is difficult to 
maintain.

Satellite remote sensing, including visible light, infrared, and synthetic aperture radar, 
has developed rapidly. Satellite image data play an important role in many fields, such as 
geographical mapping, disaster monitoring, and urban planning (Cao et  al. 2018). How-
ever, this collection method has many disadvantages, such as single angle, long time dif-
ference, and low signal-to-noise ratio. Moreover, the data are difficult to share owing to the 
privacy characteristics of satellite systems.

UAV remote sensing is a new technology that integrates UAVs, remote sensing sensors, 
differential positioning, communication, and other technologies to realize fast acquisition 
of target information. It has unparalleled advantages such as low cost, strong mobility, flex-
ible data acquisition, timeliness, repeatability, and high resolution (Yao et al. 2019). The 
suggestions of UAV remote sensing mainly focus on acquisition and accuracy.

When one is dealing with massive information data with different sources and formats, 
how to quickly and efficiently extract valuable knowledge from such data has become a 
key factor in the decision-making process. Many types of data have the characteristics of 
heterogeneous sources, heterogeneous formats, fuzzy, and random, and the time dimension 
must be considered (Yang et al. 2020). The general steps to realize information utilization 
can be divided into two aspects: multi-source data fusion and decision.

Common statistical decision-making methods mainly include probability and statistics 
theory (Vapnik 1995) and fuzzy mathematics theory (Zimmermann 1983). These meth-
ods require prior knowledge or additional information, such as the distribution function 
and the membership function; such information is usually not easy to obtain, which limits 
the accuracy and efficiency of data fusion. In 1982, Pawlak (1982) proposed a rough set 
theory, which is an effective method for solving incomplete and uncertain data informa-
tion. At present, it has been widely used in multiple attribute decision analysis (Kadziński 
et al. 2016), data mining (Wei et al., 2012), artificial intelligence (AI) (Hassan et al. 2017), 
etc. The most significant feature in data analysis is to directly “let the data speak.” There-
fore, the description of uncertainty is relatively objective, but that of randomness is not 
satisfactory. With the development of AI in natural language processing, Li et al. (2009) 
proposed a method for the qualitative and quantitative expression of a transformation cloud 
model, which has the joint characteristics of randomness and fuzziness, and is more effec-
tive and comprehensive than a single random or fuzzy model in decision-making (Wang 
et al. 2017). The above theories have laid the foundation for wide developing and applica-
tion of intelligence methods, such as machine learning and deep learning. Subsequently, 
many decision-making cases based on multi-source data have emerged. Using the rough set 
theory and integral operator information model, Xie et al. (2012) accurately estimated the 
probability of a flood risk by analyzing the characteristics of multi-source information. Liu 
et al. (2021a) proposed a deep multilayer fusion network that can fuse high-resolution RGB 
images, hyperspectral images, point cloud data, etc.

Many methods aim at the information fusion of multisource heterogeneous, such as 
weighted fusion, Bayesian method (Cooper and Herskovits 1992), Kalman filtering (Welch 
2001), neural network (Marshall 1995), and Dempster Shafer theory (Sentz and Ferson 
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2002). Weighted fusion is a simple method for processing data directly; however, it will 
lose a large amount of original information and is inapplicable to uncertain information. 
The Bayesian method is relatively commonly used; however, this process is limited to 
the demand of prior probability. Kalman filtering is mainly based on the system dynam-
ics method; however, its application range is mostly limited to linear problems. A neu-
ral network relies on a complex connection to fuse information by adjusting the weight 
among the internal nodes, and the training of a neural network requires a large number of 
samples; however, there are not enough samples for disaster data. Subsequently, various 
algorithms have been developed. The Dempster-Shafer theory was proposed by Dempster 
and improved by Shafer (1992); it can effectively handle conflict information without prior 
probability or training samples. Similarly, many research cases have emerged for multi-
source data fusion. Wu et al. (2003) proposed an improved Iterative Closed Point algorithm 
to achieve accurate image registration and fusion. Wu et al. (2019) proposed a road pothole 
detection method based on a deep learning algorithm that has high prediction accuracy for 
satellite images, simulation data, and mobile acquisition images. Nawari (2019) developed 
a theoretical background to support a neutral data standard by integrating and transforming 
semantic rules into a computable model.

Certainly, there are a number of cases for multisource information fusion and decision-
making in various industries, and most of these cases are derived from similar theories and 
methods. This section briefly presents some representative results. Figure 5 illustrates the 
evolution of multisource data fusion, which can be divided into three stages: result fusion, 
feature fusion, and semantic fusion.

4.2 � Computer vision and learning system

With the improvement of various databases and computing power, computer vision and 
AI have been more widely used in high-speed data interpretation (Dwivedi et  al. 2021). 
Computer vision is mainly oriented toward the analysis of images and videos. According to 
Sect. 4.1, the disaster data of an infrastructure contain a large amount of high-dimensional 
data, such as images, videos, sensor data, and point cloud, which can be used to reveal 
the essence accurately (Ko and Kwak 2012). The origin of computer vision can be traced 
back to 1959, when Hubel and Wiesel (1959) carried out experiments on cats to study 
the working mode of vision. In 1966, with the launch of the Summer Vision project, peo-
ple were introduced to computer vision technology; the main goal of this project was to 
build a program system that divides images by possible objects, background, and chaotic 
regions (Papert 1966). Subsequently, it experienced the first application of neural network 
technology in computer vision (LeCun et al. 1990), the first proposed application for face 
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recognition (Viola and Jones 2001), the proposal of ImageNet and AlexNet (Deng et  al. 
2009; Krizhevsky et al. 2012), and animation generation combined with convolutional neu-
ral networks (Tesfaldet et al. 2018), etc. Computer vision technology has since been widely 
used in optics, medicine, computer science, etc.

Machine learning and deep learning are collectively referred to as learning systems in 
this paper, both of which belong to the category of AI. The concepts of AI and machine 
learning were proposed at the Dartmouth Conference in 1956, aim at enabling machines to 
learn rules from historical data and then apply them in the future (Simon 1983). After years 
of development and improvement, many machine learning algorithms have been devel-
oped, including linear regression, nearest neighbor (Hart 1968), logical regression (Menard 
2004), decision tree (Franco-Árcega et al. 2012), random forest (Cutler et al. 2012), Bayes-
ian (Feng 2010), clustering algorithms (Havens et al. 2012), and support vector machines 
(Saunders et al. 2002). Deep learning is a branch of machine learning and incorporates the 
idea of artificial neural networks (McCulloch and Pitts 1943), which aims to reduce human 
factors and stimulate the intellectual ability of the system. This paper mainly focuses on the 
related practices of computer vision and learning systems in IDPMI and provides only a 
brief introduction to the algorithms.

The computer vision and learning system is an organic whole, with its own purpose and 
method. Currently, it is widely used in many fields. Similarly, there is a host of research 
practices based on computer vision and learning systems in the field of DPMI. To fun-
damentally reduce the impact of hazards, researches have conducted different studies on 
structural components (Feng et al. 2020), structural systems (Wang et al. 2009), optimized 
designs (Tu et al. 2020; Yang et al. 2019), etc. Especially, not only the health monitoring 
and damage assessment of infrastructure objects at the global level (Gong et al. 2012; Ram 
et al. 2017; Chen et al. 2017 Gao et al. 2018) but also the identification and quantification 
of surface cracks at the component level (Yang et al. 2018b; Dorafshan et al. 2018) can be 
realized through this idea. With the increase in depth, the number of identifiable catastro-
phe objects is increasing and gradually covers many catastrophe types such as steel corro-
sion, bolt loosening, concrete cavities, and steel peeling. (Cha et al. 2018). Regardless of 
the type of intelligent technology adopted, sufficient datasets are a prerequisite to ensure 
their generalization ability, although disaster data acquisition is relatively difficult. To pro-
mote the development of IDPMI, Maxar (2021) collected over 850,000 high-definition sat-
ellite images of buildings classified into six different types under natural disasters, PEER 
created an open-source dataset Φ-NET that covers eight types of catastrophe infrastructure 
objects (Gao and Mosalam 2019), and Kaggle (2010) also provided an open-source dataset 
covering multiple disciplines. The above datasets provide strong support for the develop-
ment of computer vision in IDPMI.

In terms of infrastructure damage assessment, the identification and quantification of 
the surface of catastrophe features are far from an accurate assessment of global damage 
(Khan et al. 2019). The analysis of the catastrophe process and even of the scenario repro-
duction will be very helpful in accurately evaluating the damage state and mechanism of 
an infrastructure (Shafieezadeh and Burden 2014). With the development of computer 
vision technology, Sun et al. (2018) were able to reproduce the 3D geometry and structure 
of objects from images without a complex calibration process. Although these methods 
have just recently emerged, they have shown satisfactory results on various tasks related to 
computer vision and graphics (Yang et al. 2018a). Ma et al. (2015) and Zeibakshini et al. 
(2015) used as-built BIM and 3D point clouds, to create the time reproduction procedure of 
damaged components and structures, these works can only reproduce the surface of catas-
trophe features with the data acquisition time and are not good at including component 
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overlap, out-of-plane deformation, cracks, and catastrophic process. 3D Reconstruction 
plays an important role in many fields, such as digital entertainment, social media, emo-
tional analysis, and personal identification (Zhang et al. 2021). Texler et al. (2020) built a 
Unet-based framework to realize human body and facial action scene visualization, which 
only requires a small number of training samples and supporting tags and frame-by-frame 
extraction. Research on 3D reconstruction technology is still in its infancy, and there is no 
such study on IDPMI, which is still an urgent problem to be solved. Therefore, the intro-
duction of 3D time reproduction and even scenario reproduction technology may play a 
significant role in the development of this field.

4.3 � Sensors and IoT

Sensor networks and IoT are emerging monitoring and control methods in the twenty-first 
century. It is generally recognized that the concept of IoT was proposed by Ashton in 1990 
(Kopetz 2011). In 2005, the International Telecommunication Union issued a report with 
the same name, and the scope and content of the IoT were redefined (ITU 2005). The cur-
rently widely adopted definition is that the IoT is a system that includes sensors, drives, or 
both and is directly or indirectly connected to the Internet (Mostefa and Abdelkader 2017). 
The sensor, which is the basic component of the IoT, is widely used in various fields, such 
as environment monitoring, climate control, military surveillance, structural health moni-
toring, medical diagnostic monitoring, and air pollution monitoring (Dawood and Athisha 
2013). In recent years, sensor networks have become a basic monitoring tool, especially 
in infrastructure disaster management systems. Common sensors include motion detec-
tion sensors, cameras, inclinometers, temperature sensors, and ultrasonic sensors (Aziz 
and Aziz 2011). A sensor network plays the following two roles in disaster management 
for infrastructure. First, it provides a more efficient disaster warning system. Second, it is 
a system that can monitor multiple parameters, thereby helping infrastructure to perceive 
different hazards (Priyadarshinee et al. 2015), such as earthquakes (Zou et al. 2019), land-
slides (Qiao et  al. 2013), floods (Du et  al. 2019), and volcanic eruptions (Werner-Allen 
et al. 2005). Moreover, it provides data support for the search and rescue process (Wang 
et al. 2010).

The IoT sublimates the advantages of sensor networks, enhances their perception and 
transmission capabilities, and enables them to have a higher application value in the field 
of disaster management. The number of devices connected via the Internet has been signif-
icantly increased in the past few years, and the IoT has inspired new ways to connect asso-
ciate with various devices. To date, about 30 billion users connect to each other through the 
Internet and about 5 billion IoT devices have been deployed or connected (Sharma et al. 
2021). A complete IoT system may also include a controller, data transceiver, protocol 
stack, and data analysis system. The main goal of the IoT is to maximize profit and improve 
production efficiency through the intelligent interconnection of objects or machines under 
Industry 4.0. The simplest data stream can consider transmitting data from terminal sen-
sors to predefined cloud servers, and new computing methods such as cloud computing and 
edge computing can effectively improve the efficiency of data analysis (Taleb et al. 2017). 
Ali et al. (2016) divided the IoT into four layers, perception layer, network layer, support 
layer, and application layer, and discussed the network security problem layer by layer. 
Using the multi-layer IoT architecture, many researches have conducted a large number of 
studies on disaster monitoring with an IoT system. Choi et al. (2016) developed the IoT sys-
tem and an intelligent image and communication system for infrastructure fire monitoring. 
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Sharma (2020) proposed a highly integrated seismic management system based on the IoT 
and a deep learning model, which is helpful for linking of disaster response, emergency 
management, and disaster relief. The IoT depends on the high-speed shared transmission 
mechanism of the Internet to realize the interconnection of objects. Therefore, the secu-
rity of the Internet is also a factor that must be considered in the IoT system. The ability 
of an IoT system to control an actual object can become a security vulnerability when the 
network is attacked. Especially in disaster management, because of the involvement of con-
fidential and private data, the security challenges are more arduous (Allouch et al. 2019). 
The primary reason is that the security protection of physical objects is weak. Furthermore, 
the IoT is large in scale and its paradigm is scattered, and, therefore, it is difficult to pro-
pose targeted security countermeasures. In conclusion, most IoT components have limited 
memory and do not support complex security schemes. IoT security issues drive the design 
and development of the VIRTUS middleware. Conzon et al. (2012) used VIRTUS under 
the XMPP protocol, which can provide secure communication in the IoT and ensure the 
exchange of data in a dedicated network. Ferrag et al. (2021) attempted the application of 
the IoT in an epidemic situation to fight COVID-19 and divided its security problems into 
five categories: authentication and access control solutions, key management, and encryp-
tion solutions, blockchain-based solutions, intrusion detection systems and privacy protec-
tion solutions. At the same time, they provided suggestions for future development.

The wide application of sensor networks and IoT technology has greatly improved the 
efficiency in IDPMI and has considerable economic benefits and application value. How-
ever, it is difficult to accurately characterize the overall state using the local state owing to 
their sparse measurements. Future research should pay more attention to high-speed data 
transmission, intelligent data mining and decision-making, which can push the deep appli-
cation of sensor networks and IoT technology.

4.4 � Extended reality

Extended reality (XR) is the general term for immersive interactive technology, including 
virtual reality (VR), augmented reality (AR), and mixed reality (MR). These technologies 
refer to various experiences that blur the boundaries between the real world and the vir-
tual environment. VR uses equipment to simulate a virtual world, providing an immersive 
simulation of vision and hearing for users. AR focuses on the seamless integration of real-
world and virtual world information. MR focuses on mixing the real world and the virtual 
world to generate a new visual environment (Milgram and Kishino 1994; Vukelic et  al. 
2021). Although the biggest demand for these immersive technologies is creative industries 
(such as video entertainment and games), XR technology has great application potential 
in improving infrastructure emergency management. Current research on disaster manage-
ment has shown a tendency to focus on enhancing the capacity of the infrastructure, with a 
relative lack of research on human behaviors and emergency responses. Most people lack 
experience in disaster response, which may cause them to adopt unjustified disaster avoid-
ance actions (Bernardini et al. 2016).

Researchers have tried to apply XR to infrastructure disaster management and strived 
to develop it into a training platform for scenario emergencies and assessment tools for 
disaster capability (Ronchi et al. 2015). The core of XR implementation is its detailed 3D 
model, which also requires information on the surrounding environment (Sampaio and 
Martins 2014). BIM is a multi-dimensional (3D space, 4D time, 5D cost, and ND applica-
tions) model information integration technology; therefore, the combination of BIM and 
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XR will be more helpful in promoting the application of XR technology in infrastructure-
relative fields (Wang et al. 2015). Because of the high-fidelity and implantable characteris-
tics of XR, it is likely to be applied to the planning of infrastructure disaster avoidance sys-
tems. Nagao et al. (2019) generated an internal model of a building based on point cloud 
data and deep learning, combined with VR components, to realize the immersive experi-
ence of the personnel inside the building and emphasized the advantages of this technology 
in disaster simulation. Jing et al. (2021) used an underground mine as a background, using 
3ds Max to a build the overall mine roadway model in proportion, and used the Floyd algo-
rithm to realize the optimal planning for the disaster avoidance path.

However, with the increasing complexity of design schemes and catastrophe processes, 
the requirements for fine models are impractical. Behzadan et  al. (2015) introduced the 
application of AR in the infrastructure system, which offset the huge cost of 3D model 
engineering by using a real-world background.

5 � Development of DT‑related technology in the infrastructure field

According to the results of the literature review and the word frequency maps, DT and 
IDPMI related search keywords are drawn as shown in Fig. 6. There is a large coincidence 
in high-frequency words by comparing of between DT and IDPMI. Therefore, it is proved 
that DT-driven IDPMI is feasible from the perspective of technology and development.

5.1 � Intelligent design

At the beginning of the product design, it is necessary to consider the design processes 
and methods. For infrastructure, there are many codes and databases, including ISO, 
CEN, FAMA, and GB, dedicated to standardizing the design process, which lays the 
foundation for supporting its safe use throughout its life cycle. In most cases, these 
codes are only basic guidelines and rarely pay attention to the benchmarks, performance 

Fig. 6   Word frequency maps of DT and IDPMI
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levels, and detailed information. In addition, this process needs to be used in conjunc-
tion with specific databases or evaluation systems (Coldstream Consulting 2013). More-
over, many codes are established on the basis of small batch data, such as experiments 
or practices combined with mathematical models, and their significant application value 
has been verified by construction practice in many years. However, with the increase in 
complexity of the design scheme and the various requirements of an infrastructure, the 
limitations of conventional design specifications have become increasingly emerge in 
data utilization, designer level, and application scope. (Chakrabarti et al. 2011). When 
an intelligent system is applied to various industries, its advantages of high efficiency, 
stability, simplicity, and small human factors will bring a profound change to these 
industries, and the infrastructure design field will certainly be no exception.

The purpose of design is to develop a scheme that satisfies the intent. The process 
consists of three main tasks: generation, optimization, and evaluation. The generation 
process introduces the expected solutions, whereas the optimization and evaluation 
processes maximize the trade-off between solution benefits and performance (Chan-
drasekaran and Josephson 2000). In infrastructure, intelligent design methods can be 
roughly divided into three categories: function-based design methods (Pahl et al. 1996), 
semantic/parameter-based design methods (Krishnamurti and Stouffs 1993) and anal-
ogy-based design methods (Falkenhainer et al. 1989). The function-based design method 
focuses on making design objects on the basis of functions, generating design schemes 
from function models, and weighing design decisions among optional components with 
the same function (Pahl et al. 1996). However, a function model can be developed from 
single-function requirements during the early stage of research. With the increase in 
function requirements, the complexity of the function model and the computational bur-
den have become obstacles to such methods. Functions have multiple definitions and 
fusion methods; for example, Chandrasekaran and Josephson (2000) used causality to 
establish the definition of functional integration, and Chakrabarti (1998) established the 
relationship between potential solutions and expected behaviors, which can achieve the 
integration of similar functions. The above methods provide certain theoretical support 
for the function integration, but only for the function requirements with high correla-
tion. With the deepening of relative research, a host of function fusion models has been 
established, including the structure-behavior-function model (Chen et  al. 2013), func-
tion-behavior-structure model (Al-Fedaghi 2016), and conditional autoregressive model 
(Zhang et al. 2016), and has provided specific design cases to prove the wide applicabil-
ity of each model. To improve the convenience of product function design, many institu-
tions have developed retrieval knowledge bases in different classes (Bryant et al. 2005; 
Christensen and Schunn 2007; Regli et  al. 2009), and the classification of knowledge 
bases is increasing. Bohm et al. (2008), and Zhao and Enrico (2019) classified the pre-
cise knowledge base of design information, which includes artifacts, functions, faults, 
physics, performance, perception, and media. However, owing to the limitations of the 
information storage format, the accessibility and availability of multiple design environ-
ments need further consideration. Computer generation technology not only can fully 
use the rich design knowledge base but also can cover the topics of knowledge represen-
tation and reasoning. It can generate potential design schemes on the basis of existing 
products, prior knowledge, and functional requirements (Chakrabarti et al. 2011). This 
type of design process is similar to the working principle of an expert system; therefore, 
intelligent technology can also be applied in the function-based design process. Huang 
and Zheng (2018), and Chaillou (2019) realized the recognition and generation of archi-
tectural drawings by utilizing a generative adversarial network. Based on the functional 
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requirements of the DPMI, some intelligent design practices have also emerged in this 
field, including fire prevention (Naser 2019) and earthquake resistance (Mirrashid and 
Naderpour 2021).

The parametric/semantic-based design method focuses on developing the computer 
interactive or automatic application design libraries and parametric/semantic rules, which 
are used to generate various types of new designs (Jabi 2013). Each parameter controls or 
indicates an important property of the design result. Moreover, changing the value of the 
parameter will also change the design result (Xu 2012). The rise of parametric design can 
provide technical support for flexible and changeable design methods with deep profes-
sional rationality (He and Lai 2019). In the parametric design process, the design require-
ments are regarded as parameters, and then, the specific rules are used as instructions. A 
computer programming language can be used to design parameter model that can describe 
the relationship between the parameters and generates of the design. Moreover, this design 
can be regenerated by changing the parameters. The distribution and relative proportion of 
the force are directly determined by the shape of the infrastructure structure (Larsen and 
Tyas 2003). Thus, the rational design of the structural shape is the first step in improving 
its disaster prevention and mitigation capabilities. BIM is an integrated software for the life 
cycle of buildings and structures, which can improve the functional design of structures 
and buildings. BIM has an obvious trend in parametric/semantic development. Semantic 
refers to the automatic or semi-automatic design of a parameter model through semantic 
rules using docking software with a computer programming language (Belsky et al. 2016). 
Industrial Foundation Classification (IFC) is a modeling language for enhancing the inter-
operability of BIM systems (Building Smart 2013), after years of rich development, not 
only it has been applied to the development of parametric/semantic models (Zhao 2017), 
but also has made great progress in compiling existing BIM models through 3D point 
clouds (Brilakis et al. 2010; Zeibak-Shini et al. 2016), and this process coincides with the 
data-driven model update process in DT. Many similar studies have been published on this 
topic. Zhao et al. (2017) and Xu et al. (2016) proposed a method that combines the IFC and 
WebGL technology to create a 3D visualization in a web environment. Lu et al. (2020a) 
extracted building data from computer-aided design (CAD) drawings using optical recog-
nition technology, extended and complemented building information using neural fuzzy 
system and an image processing program, and developed semantic /parametric model 
based on IFC that can be applied to the creation of a DT virtual model. Under the prem-
ise of ensuring modeling accuracy, semantic/parametric models can achieve high-precision 
dynamic updates and visualization; therefore, they can meet the modeling requirements for 
DT (Boje et al. 2020). Throughout the development of a BIM-based parametric/semantic 
model, although it is similar to the prototype of a DT system, there are still large gaps in 
data transmission, physical objects and services.

The analogy-based design method focuses on solving design problems that rely on 
analogy knowledge, which puts special emphasis on case-based design and biologically 
inspired design. Whether through formal or informal design, designers often draw inspira-
tion from previous design knowledge (Christensen and Schunn 2007). A case-based design 
method can be developed from a knowledge system. Its goal is to solve similar design prob-
lems through knowledge acquisition, storage, and maintenance. (Paek et al. 1996), and the 
common method is to extract and index design elements through a searchable case library 
(Goel et al. 2015). The current commonly used retrieval algorithms include analogy (Liu 
et  al. 2019a), serial/parallel search (Huan et  al 2008) and hierarchical search (Lim et al. 
2012). The adaptive design can also adopt a case-based design method. The general pro-
cess is based on the currently determined case that needs to be modified, and the solution 
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is retrieved from the stored cases. Avramenko and Kraslawski (2008) summarized various 
adaptation techniques such as structural adaptive design and derived adaptive design and 
clarified the conversion from the perspective of inadaptability to case design. However, it is 
still difficult automatically to realize case design.

Biosystems effectively complete various tasks under various environments and con-
straints, many of which are similar to engineering design; thus, biological systems provide 
a rich source of inspiration for design (Romero et  al. 2014). Bio-inspired design studies 
include the development of bionic processes, databases, and tools (Hill et  al. 2005; Hu 
et al. 2017), the main steps can be summed up as similar biological inspirations, problem 
analysis and transfer, and design proposals. In the field of building design, biologically 
inspired design is mostly used in structural optimization. Common algorithms include the 
genetic algorithm (Wan 1993), harmony search algorithm (Mahdavi et al. 2007), simulated 
annealing algorithm (Hearn 1986), ant colony algorithm (Blum 2005), and artificial neu-
ral network (Judith and Deleo 2001). Compared with the traditional mathematical solu-
tion algorithm, biological heuristic algorithms have obvious advantages in solving complex 
irregular spaces and discrete variable optimization problems. These biological heuristic 
algorithms have wider applicability, and not only does not it depend on the selection of 
initial points but also it has a higher probability of converging to the global optimal solu-
tion in complex structural optimization problems. With the help of the biological heuristic 
algorithms, a series of rapid progress has been made recently in engineering optimization 
problems. Moreover, these algorithms show good stability in design process. Paya et  al. 
(2010) used a multi-objective simulated annealing algorithm to optimize the design of rein-
forced concrete frame structures. Based on 77 optimization objectives, such as economic 
cost, constructability, environmental impact, and overall safety, the structural optimization 
design can be completed. Esfandiari et al (2018) proposed a multi-criteria decision-making 
particle swarm optimization algorithm for the optimization problem of a 3D-reinforced 
concrete frame. Most of the biological heuristic optimization design algorithms have been 
developed in the past few decades, mostly the second or later generations of the algorithms, 
and have good applicability in nonlinear and non-directed optimization problems (Zavala 
et al. 2014). After a large amount of research and testing, these algorithms have been found 
to have satisfactory computational stability (Babaei and Mollayi 2016). For the DT system, 
to improve the design of a product, the authors find these types of optimization algorithms 
to be more suitable for integrated; however, there is currently no clear research case.

The progress of design methods has always been accompanied by the development of 
technology. Before the advent of computer-aided technology, designers could only express 
the design intent and specific details of the design plan through hand-drawn drawings, 
which prolonged the design cycle of the project, and it is always difficult to modify and 
reuse drawings. With the emergence of computer-aided technology and BIM technology, 
a large number of basic elements and related information can be efficiently organized to 
check the contradictions and errors in the design process, which improves the efficiency 
to a certain extent (Soust-Verdaguer et al. 2017). Early computer-aided design systems are 
driven by computers rather than by design, thus forcing designers to systematically learn 
programing skills to use various computing tools, which can usually hinder their concep-
tual process and creativity. Future computer-aided design tools need to be driven more by 
design, rather than by computer. With the increase in the complexity of engineering and 
design requirements, it has become increasingly difficult to solve problems such as the 
prediction, visualization, and design optimization of various complex scenarios in the life 
cycle of an infrastructure. Most of the technologies and stages (design, construction, opera-
tion, disaster management, and dismantling and recycling) present the characteristics of 
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decentralized development and compatibility difficulties. Thus, the efficient and intelligent 
design process of an infrastructure not only requires much deeper integration of multiple 
technologies but also considers multi-stage integration as an indispensable part.

DT has great potential in the life cycle management of physical objects and in the inte-
gration of multiple technologies. In the design stage of an infrastructure, there are little 
data and real-time information that will inevitably lead to a difference between the vir-
tual model and the physical situation. Thus, to meet the requirements of hyper-realistic 
visualization and experience of the proposed objects from the design, construction, and 
customers, the designers must make the accuracy and fidelity of the virtual model as the 
core elements of DT in the design stage (Schluse and Rossmann 2016). To build a virtual 
model of infrastructure objects, we first need a natural, accurate, and efficient mathemati-
cal expression that supports data definition and transmission at all stages of the life cycle 
of infrastructure objects (Zhuang et al. 2017). Common virtual modeling methods in DT 
practice mainly include the following. The first method utilizes 3D modeling software, 
including BIM, 3ds Max and simulation software (Boje et al. 2020; Lin et al. 2021), and 
many researchers have independently developed modeling programs (Lai et al. 2021). The 
second method performs modeling using measuring instruments and equipment, such as 
laser scanners and infrared imaging systems (Dollner 2020). The third method performs 
modeling through multi-depth image fusion (Zheng et al. 2020). There are very few papers 
on DT-related technology supporting product design, and the complete DT design frame-
work is not been mentioned in these papers. The authors found a total of seven related 
papers in the literature summary. Piascik et al. (2010) applied the DT concept to the life 
cycle management of aircraft, which also involves the early design stage, but does not pro-
vide a definite framework and ideas. Canedo (2016) believed that DT is a new way to man-
age the industrial IoT, which can significantly coordinate design and production processes. 
Zhuang et al. (2017) explored the application of DT in product design and proposed a sim-
ple design-oriented DT framework. Yu et al. (2017) believed that the application of DT can 
strengthen the collaboration between design and manufacturing. Zhang et al. (2017) used 
the glass production line as an example to verify the effectiveness of product design sup-
ported by DT. Tao et al. (2018a; 2018b) expanded the application of DT in product design, 
including product planning and conceptual and detailed design, and carried out a design 
case study on bicycles. It can be seen that DT is still at an early stage in product design and 
lacks practical support for complex products.

5.2 � Intelligent construction and maintenance

The transformation from traditional construction to intelligence, digitization, and infor-
matization to be an inevitable trend in the new era (Liu et  al. 2019d). With the integra-
tion of emerging information technologies such as cyber physical system, BIM, IoT, cloud 
computing, and AI, intelligent construction can provide new construction approaches for 
infrastructure to achieve information integration and comprehensive IoT in the construc-
tion process (Lu 2019; Yu and Hao 2020; Liu et al. 2020a, b). A high-fidelity virtual model 
can simulate and portray the state and behavior of physical entities under DT. It can pre-
view or simulate all activities of the physical entities in a virtual space in advance. It is 
also an important bridge between a physical space and a virtual space, as well as various 
other technologies (Negri et al. 2017). The introduction of DT can effectively improve con-
struction quality, reduce the incidence of errors, and effectively improve the intelligence 
and informatization of the infrastructure construction process (Sepasgozar et al. 2020). It 
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also promotes the transformation and upgrading of intelligent construction and helps in the 
healthy operation and maintenance of construction systems.

Traditionally, the inspection of infrastructure construction status mainly relies on con-
tact measuring equipment, such as tape measures and calipers. Several simple non-contact 
solutions are also widely used, such as level, theodolite, total station, and GPS, and can 
generate higher precision data (Fathi and Brilakis 2013). However, these methods usually 
require manual single-point measurements, which are very time consuming. Combined 
with the development of data acquisition technology introduced in Sect.  3.1, including 
remote sensing and 3D laser scanning, more efficient non-contact construction inspections 
can be promoted (Arashpour et al. 2021). These technologies can quickly capture the target 
data and possibly transform them into a 3D point cloud with an accuracy of a few mil-
limeters to several centimeters (Khoshelham 2018). The normal use of 3D point clouds 
usually requires a reverse reconstruction process to convert measurement data into corre-
sponding 3D semantic digital counterparts. This is also a prerequisite for the application of 
3D point clouds for automated quality assessment and detection in many actual construc-
tion processes. As a key bridge for digital and intelligent development, DT can realize the 
integration of data-reverse modeling and realize the interaction between a virtual space and 
a physical space (Liu et al. 2021b, c). Based on the DT 5D model for industry (Tao et al. 
2018c), a 5D was redefined in this study for intelligent construction and maintenance under 
DT. The model is shown in Eq. 1.

where BPE represents the physical entity, BVE is the virtual model, BSS is the intelligent 
construction service for the whole life cycle of the building, BDD is the whole life cycle 
data of the building object, and BCN is the connection between the modules.

BPE can be roughly divided into two parts, the first part is the infrastructure and struc-
tural components, and the other part is the key elements of construction and maintenance, 
including personnel, machinery, materials, environment, service and control center.

BVE is conventionally established using reverse modeling process. In the design stage, 
based on the high-fidelity BVE, the construction simulation and maintenance can be carried 
out in the virtual space, and even the catastrophe prediction under various disaster condi-
tions is realized. In the construction stage, BVE provides real-time feedback and regulation 
to the entire construction process through continuous updating using real-time construction 
data and accumulated historical data. In the maintenance stage, BVE can predict conflicts or 
faults in real time and also can predict feedback on the decision command to the physical 
space.

BSS refers to the actual needs of a physical space. It relies on the support of the vir-
tual space algorithm base, model base, and knowledge base (including expert knowledge, 
industry standards, rule constraints, inference and other data processing methods) to make 
decisions on the problems encountered in the cycle life of the infrastructure, as well as of 
the equipment and components, to meet different requirements of different participants.

BDD represents the multidimensional data of the entire life cycle of the infrastructure. 
It can be roughly divided into two parts: real data and virtual data. Real data, including 
measurement data, sensor data, remote sensing data, and point cloud data, represent the 
real state of the infrastructure. Virtual data, including architectural and structural drawings, 
models, simulation data and generated data, represent the predicted state in a specific stage 
of the infrastructure life. Multi-source data fusion is a challenge that must be faced to real-
ize the life cycle management of an infrastructure.

(1)MBDT = (BPE,BVE,BSS,BDD,BCN)
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BCN is used to realize data sharing and decision transmission among BPE, BVE, BSS, 
BDD, and BCN, and its content includes the data transmission technology and the building 
approach of the network.

Currently, the development of DT-related technologies is in a growth period, and the 
overall level of technology application is insufficient. The purpose of DT is to ensure that 
the construction is precise during the construction stage (Maalek et  al. 2019). Tan et  al. 
(2020) used BIM and remote sensing data to develop a virtual model of precast building 
units. However, the recognition accuracy for the curved line and surface is low. Bosché 
et al. (2015) constructed a DT of cylindrical components using the Hough transform and 
a scanning-BIM reconstruction method. Unlike in the designed BIM model, the deviation, 
correctness, and completeness of the actual object can be automatically screened. However, 
this method requires a preset direction and limited to simple components. On the level of 
structure, Liu et  al. (2021b, c) elaborated the DT framework in the construction process 
from a 5D model and found that DT can be applied to the construction of precast infra-
structure. However, this study only provided the rough construction concept of DT and did 
not mention the key data processing algorithm, construction quality diagnosis, and control 
process. Tran et al. (2021) proposed an evaluation framework for the geometric quality of 
precast infrastructure based on the DT concept and proposed a control method for the accu-
racy, completeness, and correctness of the components under the semantic rule. However, 
this complete DT framework has not yet been developed.

Maintenance represents the longest stage in the entire life cycle of an infrastructure and 
is one of the most expensive industrial processes. The maintenance of an infrastructure 
using a DT is concerned not only with the infrastructure itself but also with the related 
equipment. Peng et al. (2020) developed a DT frame for a hospital system, that can visual-
ize the medical infrastructure itself, equipment, and room occupancy. DT system can also 
centralize all maintenance data and select meaningful data according to different needs 
(Varé and Morilhat 2020). During the entire life cycle, different participants can adopt 
the same DT system to realize various needs, allowing all participants to provide data 
and professional knowledge and make effective use of they care about, respectively (Auti-
osalo et al. 2021). Thus, one of the key factors in DT development is the establishment of 
paradigm standards. Varé and Morilhat (2020) developed a DT model for nuclear reac-
tors that can support data exchange and use among different participants. This approach 
can help optimize energy consumption, rationally plan maintenance strategies, and reduce 
energy costs for the target infrastructure (Antonino et al. 2019). A DT system can evaluate 
the performance of infrastructure maintenance using rich data analysis algorithms (Shim 
et  al. 2019a, b; Tahmasebinia et  al. 2019). According to the results of the evaluation of 
the existing state, Shim et  al. (2019a, b) visually assessed the degradation of identified 
bridges using coding systems. A DT system can also support residual life prediction (Yu 
et al. 2020). Tahmasebinia et al. (2019) estimated the effect of long-term load and shrink-
age creep on the Sydney Opera House using DT technology. Of course, there are also some 
ideas and practices of urban development and maintenance supported by DT (Tao and 
Qi 2019). Obviously, DT technology can be used to provide more valuable operation and 
maintenance.

In summary, there have been some research attempts to use DT-related technologies 
to promote the construction, operation, and maintenance of an infrastructure. However, 
some of the current attempts are mainly focused on BVE, whereas the development of other 
dimensions of DT is slightly unbalanced. Thus, to effectively realize intelligent construc-
tion and maintenance, we still need to invest significant research energy in the integration 
of intelligent technology. BIM and IFC have a huge potential for the development of BVE, 
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BSS, and BDD. Therefore, the combination of DT and BIM is expected to be a hot topic in 
this field.

5.3 � Disaster management

There are a total of six DT-related papers about disaster management, which mainly focus 
on urban disaster management. Park et  al. (2018) proposed an AR-based smart building 
and town disaster management system, to acquire the visualization and grasp of occu-
pants during fire disasters in buildings. However, this study did not provide a model update 
mechanism. Ham and Kim (2020) proposed a DT framework that can be used for urban 
management under extreme weather conditions and conducted a case study in Houston. 
Ford and Charles (2020) proposed a DT framework for community disaster management 
and analyzed the key role of multisource data. Zhu et  al. (2020) used the Sichuan-Tibet 
Railway as an example, using the idea of multi-element classification and coding to clas-
sify the environment, facilities, and disasters, and discussed the construction method of its 
corresponding DT. Fan et al. (2021) realized that most of the existing studies on disaster 
management are fragmented without a common paradigm and proposed a DT paradigm 
that includes multi-data sensing for data collection, data integration and analytics, multi-
actor game-theoretic decision-making, and dynamic network analysis. Multiple studies 
have shown that a DT framework not only can support disaster management for infrastruc-
ture and urban areas, but also has guiding significance for the scientific management of 
large-scale epidemics (Ivanov and Das 2020).

The infrastructure object is one of the basic elements of a city. Only the accurate grasp 
of the disaster mechanism of an infrastructure can effectively promote the development 
of the disaster management of a city. However, current research on disaster management 
of DT-driven infrastructure objects is still in a blank state. Thus, it is recommended that 
future research efforts be directed toward this aspect.

6 � Opportunities of DT‑driven intelligence disaster prevention 
and mitigation for infrastructure

There are already some practical applications of intelligent technologies to solve the prob-
lems of DPMI according to a literature review. Although reasonable results have been 
achieved for specific disasters, objects, and scenarios, the overall trend of fragmentation 
development is shown. The low level of information utilization and technology integra-
tion provides little guidance for DPMI and post-disaster recovery. To overcome the above 
obstacles, the authors find the DT system to be a feasible route from a technical and practi-
cal perspective. The following section briefly describes the future development framework 
of DT-IDPMI from five aspects: data, object, technology, connection, and service layers, as 
illustrated in Fig. 7.

6.1 � Data layer

The disaster data of an infrastructure can be divided into two categories: design and con-
struction data, and maintenance and catastrophe data. The design and construction data 
mainly include CAD drawings, BIM models, and preliminary simulation models. These 
types of data have comprehensive characteristics and are an indispensable source of 
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information for evaluating DPMI capabilities and formulating disaster strategies. However, 
with the extension of the employment time, some differences will emerge with the real 
state of the infrastructure object. Thus, maintenance and disaster data are also an important 
part, which mainly include data collected by personnel; data collected by sensors, UAVs, 
laser scanners, satellites, and robots; catastrophe data; and data collected by some corre-
sponding simulation models, which have strong timeliness.

6.2 � Object layer

The object layer is mainly divided into physical and virtual objects. Physical objects include 
the corresponding infrastructure building itself, equipment content, and surrounding envi-
ronment information, whereas virtual objects are virtual representations that correspond 
to each part one to one. The difference between virtual objects and conventional modeling 
methods lies in the use of data reverse modeling technology, which can effectively avoid 
the simulation results as the unique evidence to realize catastrophe reproduction.

6.3 � Technology layer

Information fusion technology is essential for decision-making with multisource data. The 
available methods can be roughly divided into two types: methods based on feature rec-
ognition algorithms for feature fusion, which are the more commonly used methods, and 
those based on format conversion to achieve semantic integration, which are not only less 
practical but also applicable only to a small number of issues.

A DT system has strict requirements for data analysis and decision-making; thus, the 
algorithms for data analysis and generation are very important. After years of devel-
opment, many algorithms have emerged with strong analysis and generalization ability 
and high precision. There are also many algorithms that can be used to build intelligent 
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disaster prevention and mitigation systems. Furthermore, the applicability, accuracy, 
and efficiency of these algorithms should be analyzed in the selection process.

Reverse modeling technology is a modeling approach that utilizes deformation data 
for virtual modeling. Common reverse modeling technologies include the BIM-based 
modeling method, physical path method, and Agisoft Metashape. Intelligent technolo-
gies have also made important progress in human behavior fitting, which can realize the 
reverse modeling of complex face or limb behaviors, and they can provide a new idea 
for reverse modeling.

It is difficult to consider interactive optimizations in conventional design processes 
under various defects, such as degradation and catastrophe conditions, owing to model 
and technology constraints. The five-layer system provided by DT can only compensate 
for these defects. DT can perform interactive optimizations in design processes under 
various disaster conditions, and the maximum optimization design for performance, 
function, and value can be obtained under the cycle optimizations. Interactive design 
process can realize the most satisfactory scheme.

ER can provide a more realistic understanding for participants throughout the life 
cycle of an infrastructure, which also includes the disaster period. It can enhance the 
customers’ pre-purchase experience of the target object, assist designers in identifying 
design defects, help constructors in planning the construction process, and facilitate the 
development of strategies for disaster management and recovery.

6.4 � Connection layer

The connection layer is the medium for sharing information between each layer of the 
DT. Common connection technologies include Zig-Bee, Bluetooth, WiFi, UWB, NFC, 
satellite, and shortwave communication. A DT system requires a connection layer with 
the characteristics of fast transmission speed, strong compatibility, stable transmission, 
and low cost. DT also puts forward the requirements for environmental adaptability 
based on the special hazard environment of the DPMI. Currently, 5G is one of the most 
advanced communication technologies worldwide. It not only meets the above require-
ments but also has the characteristics of low latency and power consumption. Currently, 
it is one of the best choices for building the connection layer of a DT system.

6.5 � Service layer

The main purpose of the service layer is to transform the DT analysis results into ser-
vices that meet specific needs. Different stages face different target participants, and, 
therefore, the service requirements are different. The design stage mainly caters to all 
participants of the construction and customers, and the requirements for DT include 
optimization design, visualization, disaster preview, and ER. The main requirements in 
the maintenance stage include visualization, monitoring, diagnosis, possible faults, and 
life prediction. The main requirements of the disaster management stage include visuali-
zation, risk prediction, damage assessment, casualties’ location and prediction, escape 
route planning, disaster relief policy, recovery plan formulation, and ER.
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7 � Concluding remarks

The current DT and IDPMI literature works are reviewed and discussed in this paper. DT 
has shown its application prospect in many industries and has the obvious advantages of 
function systematization, data integration, and process automation. IDPMI also shows 
higher efficiency and timeliness than those of traditional methods, but only covers a uni-
lateral factor. To boost an IDPMI frame systematically, this paper systematically expounds 
the feasibility of DT from the perspective of IDPMI. Based on the literature review, the key 
findings of this study are as follows:

The history of DT is retrospectively based on scientific literature retrieval. DT has expe-
rienced the incubation stage and is now in the growth stage. Thus, it can be used for appli-
cation development. Based on the experience in relative industries, the scope of DT for 
the life cycle of an infrastructure can be divided into five parts: design and optimization, 
manufacturing and installation, usage and maintenance, emergency management, recy-
cling, and dismantling.

This paper basically reviews the application of IDPMI based on DT requirements, and 
the developments and challenges of each technology are analyzed. UAV and laser scan-
ning are efficient methods for acquiring catastrophe data. Feature fusion has achieved good 
results in data fusion, which can be utilized currently; however, semantic fusion will inevi-
tably be in demand in the future. The learning system has the advantage of high speed for 
data analysis, which can satisfy the real-time requirements of DT. ER embodies efficient 
interaction based on the virtual or actual environment, which can be applied to the visuali-
zation and service function of DT. The technical feasibility of combining DT and IDPMI is 
roughly proven.

The literature on DT in the stages of design, construction, maintenance, and disaster 
management for infrastructure is also reviewed in this paper. This part of the research is rel-
atively thin and unbalanced, and many cases are concentrated in construction and mainte-
nance. Overall, the gap is also widely compared with other industries, especially in disaster 
management. The technological feasibility of combining DT and IDPMI is demonstrated.

Based on the literature review and the features of DT and IDPMI, this paper proposes 
a conceptual framework called DT-IDPMI. The entire system is innovatively divided into 
five parts: data, object, connection, technology, and service layers. In addition, the nov-
elty establishes the data connection between disaster management and the design process, 
which can support interactive optimization design.

There are also many challenges associated with DT and IDPMI. The current theoreti-
cal explanation for DT is oversimplified, which cannot afford relative paradigm planning 
to satisfy the life cycle management. Data are the determining resource for DT; seman-
tic fusion of multi-source data can ensure better use under the premise of the integrality 
of information characteristics; however, the current development level is low. Although 
DT as a systematic concept is widely used in the manufacturing industry, its introduction 
into IDPMI-related fields may cause issues owing to the lack of real-time data and the low 
degree of technology application. IDPMI has been a research subject for several decades, 
and the level of collaboration between systems and stages is still relatively weak. To intro-
duce more advanced intelligent technologies, the users need to consider the acquisition and 
volume of real-time data. To further enhance the ability of an infrastructure to resist haz-
ards, the authors call on colleagues to contribute to open-source disaster data.
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