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Abstract
Climate change increases both the risks and effects of flooding in urban areas, which, with-
out mitigation, may lead to social catastrophes. In Korea, devastating typhoons and over-
flows account for approximately 90% of the country’s natural disasters, and the many man-
made features of urban environments exacerbate the detrimental effects whenever flooding 
occurs. Many regression analysis methods exist for assessing geographical flood risk; fur-
thermore, a handful of machine learning methods have been created for mitigation and esti-
mation purposes—there are none for prevention. Therefore, in this study, we developed a 
machine learning flood assessment model that leverages several machine learning models 
for the Busan Metropolitan City. Each was applied to a test dataset, and their performances 
were evaluated based on accuracy, sensitivity, specificity, and area under the curve; there-
after, the model determined to be the most reliable was used to create a flood risk assess-
ment map. The model was then used to assess the areas of highest probability of flooding. 
Upon its completion, we discovered that flooding may now occur with less rainfall than 
that of the 10-year return period. The derived map is expected to be used as a basic source 
for the development of preventive countermeasures against urban flooding, thus contribut-
ing to the enhancement of flood control and response capacities in applicable regions.
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1  Introduction

With the increasing severity of climate change worldwide, our planet suffers from frequent 
and intense natural disasters. In Korea, devastating typhoons and flooding events account 
for approximately 90% of the country’s natural disasters (Han and Park 2014). In urban 
areas with concentrated populations and advanced residential and industrial facilities, such 
disasters are exacerbated by many man-made factors, leading to chaos and great distress 
in and around urban infrastructures and facilities (Sim2008; Song 2012). Urban flooding 
damages human life, human health, and property from river inundation or inland flooding 
caused by the inadequacy or failure of sewer pipes and other drainage systems (Sim 2008).
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Recent cases of damage caused by urban flooding have been compounded due to the 
combined effects of the increase in extreme rainfall events from climate change, local 
heavy rainfall events with increased intensity in spatial and temporal terms, and urbaniza-
tion (Park et al. 2007; Son et al. 2010). High-density development of urban built-up areas, 
increases in the area of impermeable layers caused by urban development, and vulnerable 
man-made spaces (e.g., subways and underground facilities) aggravate flood damage; this 
is further worsened by climate change. However, the damage can be mitigated or prevented 
through effective and comprehensive urban planning and disaster prevention strategies 
(Alexander 1993; Birkmann 2006).

Measures for preventing urban flooding can be classified as structural and nonstruc-
tural. In Korea, a country with a heavily concentrated population in relatively small areas, 
structural solutions mainly based on disaster prevention have been applied. However, with 
approaches centered on facilities, there is a limitation in the capacity for disaster prevention 
caused by heavy rainfall that exceeds design criteria. To overcome such limitations, there is 
now an increasing emphasis on integrative approaches that incorporate non-structural solu-
tions. Although preventive strategies have been recommended and applied (e.g., restricted 
development in flood-risk areas) (Shim 2011; Lee and Kim 2015; Lee and Kang 2018), 
their actual application has been difficult in urban areas where high-density development 
has already taken place, especially when facing concerns over property rights. In extant 
flood-risk areas, structural solutions (e.g., disaster prevention facilities and infrastructure 
reinforcements) and non-structural solutions (e.g., disaster prevention districts and disaster 
insurance) have been emphasized; however, these measures are still insufficient. To mini-
mize the casualties and property damage from recurring flood events, preemptive meas-
ures, risk identification, and areal management are required. Furthermore, public aware-
ness must be increased to influence policy. In this regard, more reliable and detailed flood 
risk information is needed, and the development of a flood risk map that facilitates intuitive 
flood risk assessment is required.

Various studies have evaluated flood risks. However, owing to the nature of flood dam-
age in which multiple factors have complex effects, the development of reliable predic-
tive modeling has been difficult. In Korea, the number of days with more than 50 mm of 
precipitation per hour increased from an average of 5.1 in the 1970s to 12.3 in the 2000s. 
In the 2000s, the risk of urban flooding increased because of increasing numbers of guer-
rilla torrential rains, i.e., a significant amount of rain in a specific area in a short period of 
time. Additionally, interest in urban flooding has increased, leading to its emergence as a 
key issue since the 2000s and resulting in several studies on the development of elaborate 
flood analysis technologies utilizing meteorological, spatial information, and hydrologi-
cal techniques. Although a considerable amount of data has been accumulated, and nec-
essary technologies have been further developed, they have limitations in that they focus 
on topographical analysis of floods in lowlands, difficulties in data collection, and han-
dling excessive number of parameters (Lee SE et al., 2016). Previous domestic and inter-
national studies on the evaluation of the vulnerability and risk of urban flooding mainly 
employed hydrological approaches, stochastic methods, and geospatial information service 
(GIS) techniques (Cançado et al. 2008; Ahmad et al. 2013; Son et al. 2013; Ouma et al. 
2014; Lee et al. 2016; Lee and Kang 2018). Dutta and Herath (2001) developed and pro-
posed a GIS-based flood loss estimation method and applied it to the Ichinomiya River 
basin located in Japan. This method is composed of a physically based flood inundation 
model and loss estimation model as an integrated model that can estimate real-time losses 
and losses due to floods for the past and future. Herath et al. (2003) developed a method 
for estimating flood damage in urban watersheds using RS (remote sensing) and GIS and 
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applied it to the Chiba Prefecture, Japan. In their study, an intensive statistical method was 
applied according to the administrative unit area and land cover data obtained from satel-
lite images using the water level–damage function estimated from the GIS, disaster flood 
area, inundation depth, and past flood data. Buchele et al. (2006) presented a multipronged 
approach that can improve the risk assessment method for the existing extreme events in 
Germany using the water level–damage curve method and GIS. Carlos and Tucci (2007) 
analyzed the impact of flooding on urban development to conduct a study on urban flood 
management in Brazil. Tsakiris (2014) applied the concept of expected annual damage, 
with the view that vulnerability changes according to the size of the risk, to evaluate the 
risk of flooding in Rapentoza, Greece.

However, recent overseas research trends have shown the application of machine learn-
ing techniques, which have been reported to have superior predictive performance com-
pared to those of linear regression (Choi et al. 2018). For identification and evaluation of 
flood- and inundation-risk areas, multiple criteria decision-making techniques, including 
analytical hierarchy processes and expert evaluations, have been applied (Chen et al. 2011; 
Tang et al. 2018; Vojtek et al. 2019). Recent studies have reported the application of vari-
ous machine learning models, such as artificial neural networks (Kia et al. 2012; Zhao et al. 
2018), support vector machines (SVMs) (Tehrany et al. 2014, 2015), decision trees (DTs) 
(Tehrany et al. 2013), naïve Bayes (NB) (Khosravi et al. 2019; Liu et al. 2016; Chen et al. 
2020), and random forests (RFs) (Chapi et al. 2017; Rahmati et al. 2017; Hong et al. 2018; 
Chen et al. 2020) to the identification of flood-risk area identification and assessment using 
large amount of data.

There have been few machine learning studies on urban flooding in Korea. Jang et al. 
(2009) employed DT modeling and performed vulnerability analyses per watershed for 
South Korea using GIS data. As a result, they established and evaluated preventive meas-
ures against extreme rainfall events. Lee (2017) applied RF and boosted tree models to 
analyze flood and landslide vulnerabilities in Seoul Metropolitan City. Choi et al. (2018) 
developed a heavy rainfall damage assessment function for the Seoul metropolitan area 
using an RF model with an SVM.

This study aims to develop a highly reliable flood assessment model using machine 
learning techniques and big data for urban flood assessment and to construct a flood risk 
assessment map using the developed model. The research procedure is outlined as follows. 
First, the extant research is reviewed, and variables used in this study are derived. Next, 
data on variables are collected for application to the study area (i.e., Busan Metropolitan 
City), and a spatial information system is developed via GIS analysis. DT, RF, SVM, and 
NB techniques are applied to develop a machine-learning-based flood assessment function 
based on data over 3 years (i.e., 2014, 2015, and 2016) for the derived variables. For each 
model, accuracy, receiver operating characteristic (ROC) curve creation, and area-under-
the-curve (AUC) calculation are performed to determine the reliability of the results, and 
the model determined to be the most reliable is used to create a flood risk assessment map. 
The map thus derived is expected to be used as a basic source for the development of coun-
termeasures against urban flooding, thus contributing to the enhancement of flood control 
and response capacities in applicable regions.

However, in Korea, most of the existing research is being conducted in the metropoli-
tan area (Seoul Metropolitan City). In fact, there are few studies on Busan, where casual-
ties and property damage due to flooding occur periodically. Therefore, it is differentiated 
from existing studies in terms of the construction of a flood risk assessment map of Busan, 
which exhibits a characteristic topographical vulnerability to natural disasters. In addition, 
in constructing the flood assessment model, by selecting the final model after comparative 
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analysis using four machine learning techniques, the rationality and objectivity of the anal-
ysis method were secured, and the reliability of the analysis results was secured by verify-
ing various results. Furthermore, the precision in the analysis was increased by using grid-
type data of 30 × 30 m2, which is smaller than the administrative district.

2 � Methods

2.1 � Study area

The study area, Busan Metropolitan City, has topographical characteristics vulnerable to 
natural disasters, including many hilly mountains and lowlands around rivers and seas. 
According to the analysis of Lee et al. (2018), Busan Metropolitan City not only has a rela-
tively high intensity of heavy rainfall compared with other regions, but it also has a signifi-
cant proportion of developed land. Thus, when flooding occurs, the damage may quickly 
spread over extensive areas. Furthermore, the city has been classified as an area having a 
high risk of devastating flood damage owing to its large number of facilities inside flood 
plains, its high proportion of lowlands and old buildings, and the concentrated distribution 
of population. According to the inundation trace information data provided by the Land 
and Geospatial Informatix Corporation, a total of 145 areas have had flooding incidents 
of depths 0.3 m or during the past 11 years (2009–2019), most of which were subject to 
recurrent damage for every heavy rainfall or typhoon. Because the flood damage tends to 
recur yearly, Busan Metropolitan City has designated flooding-risk districts (i.e., one in 
Yeongdo-gu, three in Buk-gu, and two in Gangseo-gu), resulting in a total of six areas as 
of 2020. They are constantly monitored. Nevertheless, in July 2020, intensive heavy rain-
fall of up to 87 mm/h persisted, resulting in 313 damage cases, comprising 182 cases of 
building flooding and fracture, six cases of sewer pipe failure and sewer backflow, 61 cases 
of inundation of roads and bridges, and 64 cases of damage to other facilities, as well as 
human life casualties.

In addition, according to the Representative Concentration Pathway (RCP) 6.0 scenario, 
in which the greenhouse gas policy is to some extent realized in the Busan Metropolitan 
City, the average annual precipitation for the past 10  years (2001–2010) is projected to 
increase by 1.8% to 1560.5 mm from 1,532 mm by 2050. It is predicted to be 1522.7 mm 
based on the RCP 2.6 scenario that the Earth itself can recover the effects of human activi-
ties (Korea Meteorological Administration 2017). Precipitation is expected to increase 
in all areas of Busan Metropolitan City; hence, preemptive measures are necessary. The 
examination of flood damage in Busan Metropolitan City from past to present shows that 
damage is caused by the combined effects of changes in rainfall characteristics related to 
climate change, the increase in impermeable areas caused by urban development, aging of 
flood protection facilities, and insufficient water movement capacity, indicating that there is 
a pressing need for measures customized for the urban characteristics of Busan Metropoli-
tan City.

2.2 � Selection of variables and data collection for development of flood assessment 
model

Prior to developing a flood assessment model in this study, variables affecting flooding 
were selected by reviewing existing research in Korea and overseas. Factors affecting the 
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occurrence of urban flooding were categorized into hydrologic, socioeconomic, facility, 
geographical, meteorological, and response measure factors (Smith 1994; Penning-Rowsell 
et al. 1999; USACE 1996; Nicholas et al. 2001; Kelman and Spence 2004). Based on the 
factors shown in Table 1, the dependent variable of the analysis model (i.e., flooded area), 
which directly shows the flood damage caused by flooding, was selected. The independent 
variables were classified into climate exposure, geographical, development, facility, and 
urban flooding risk factors, as derived.

Urban flooding shows highly complex patterns in contrast to those in non-urban areas. 
During a rainfall event, rainwater infiltration does not occur in the impermeable layers of 
most urban ground surfaces; hence, immediate surface runoff is generated. This runoff 
flows from higher to lower altitudes, and some of the runoff water is discharged through 
the sewer pipe network. Finally, the runoff flows to the outlet points of drainage pipes, and 
if the outlet point is lower than the water level of the river, it is drained through the pump 
of a drainage pumping station (Lee et al. 2019). During this process, in the case of heavy 
rainfall in which the precipitation temporarily exceeds the peak capacity of the drainage 
pipe, sewer backflow occurs in the connected pipes in the downstream region, leading to 
area flooding (Falconer et al. 2009; Golding 2009). The following variables were selected 
in consideration of the pattern of inundation in urban areas and in reference to previous 
studies.

Climate exposure factors are those reflecting weather conditions, which include the 
maximum hourly precipitation (Seo et al. 2016; Kim and Kim 2018), maximum daily pre-
cipitation (Son et al. 2011; Kang and Lee 2012; Lee et al. 2016; Kim and Kim 2018; Lee 
and Kang 2018), and days over 80 mm precipitation (Kang and Lee 2012). Geographical 
factors including altitude (Tehrany et al. 2014; Sowmya et al. 2015; Bui et al. 2016; Mar-
coni et al. 2016; Rahmati et al. 2017; Youssef et al. 2016), slope (Pradhan 2010; Tehrany 
et al. 2014; Bui et al. 2016; Khosravi et al. 2016; Marconi et al. 2016; Seekao and Pharino 
2016; Youssef et  al. 2016), and distance from the river (Bui et  al. 2016; Khosravi et  al. 
2016; Marconi et  al. 2016; Youssef et  al. 2016) were considered. For development fac-
tors, in consideration of indiscriminate urban development and concentration, soil drainage 
(Tehrany et al. 2014; Seekao and Pharino 2016; Youssef et al. 2016) and impermeable area 
(Lee and Kang 2018) were selected. For facility factors, considering the process of urban 
flooding occurrence, length of sewer pipe (Lim et al. 2010), distance from detention reser-
voir, and number of drainage systems were selected.

For data collection, flood damage data in the smallest possible spatial unit within the 
spatiotemporal range were collected. Inundation trace data of the Busan area have been 
collected since 2009, and according to the database constructed thus far, the flooded areas 
included 42 regions of 1.385 km2 in 2009, 18 regions of 0.811 km2 in 2011, 11 regions of 
0.247 km2 in 2012, 201 regions of 8.89 km2 in 2014, 6 regions of 0.322 km2 in 2015, 32 
regions of 0.642 km2 in 2016, 12 regions of 0.156 km2 in 2017, and 9 regions of 0.653 
km2 in 2019. Considering these flooded areas and the size of the areas with reference to 
2014 (i.e., the year having the most significant damage), data for years 2014, 2015, and 
2016 corresponding to three consecutive time series were constructed as the datasets in this 
study. For the analysis unit, considering the spatial analysis and mapping, 30 × 30 m grid 
cells were used. The study area was resampled with approximately 900,000 grid cells, and 
the average values were used for the raster data included in the grid cells. The 30 × 30 m 
dimension is most frequently used in GIS grid systems; hence, they can be utilized in the 
establishment of various geographic information-based disaster prevention measures (Kang 
and Lee 2015; Kim et al. 2015).
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For data of days having more than 80 mm precipitation, maximum hourly precipitation, 
and maximum daily precipitation, automatic weather station (AWS) data provided by the 
Korea Meteorological Administration were used. For the 13 measurement points in Busan 
Metropolitan City (i.e., Busan (Re), Yeongdo, Gadeokdo, Gijang, Haeundae, Busanjin, 
Geumjeong-gu, Dongrae, Buk-gu, Busan Nam-gu, Saha, Namhang, and Bukhang) and six 
measurement points in the Gyeongnam area adjacent to Busan (i.e., Ungsang, Jinyeong, 
Ganjeolgot, Yangsan Sangbuk, Jinhae, and Saengnim), daily precipitation and hourly pre-
cipitation for the years 2014, 2015, and 2016 were used (Fig.  1). The inverse-distance-
weighted method was used among ArcGIS geostatistical spatial interpolation methods to 
calculate the weights of adjacent values according to distance, and the values for points of 
estimation were interpolated using the weighted average.

For altitude and slope data, a digital elevation model (DEM) was used. The DEM data-
set is a numerical elevation model made by measuring the height of the topographical sur-
face at regular intervals. In this study, data with a resolution of 90 m were used. Because 
the current law on national security restricts the public disclosure of precise 3D topography 
with a grid spacing of 90 m or more, the public data distribution was used. For the data 
on the distance from the river, data from national rivers, class 1 local rivers, class 2 local 
rivers, and small rivers were integrated for use in this study using the Near tool, which 
inputs the distance to the nearest point to the input feature class, the shortest distance from 
the river from the center of each grid cell was extracted. For data on the distances from 

Fig. 1   Automatic weather station measurement points
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the detention reservoir, the nearest distance from the detention reservoir was extracted the 
same way as above. Soil drainage data were classified into seven classes using a detailed 
soil map: extremely well-drained (EW), well-drained (W), moderately well-drained (MW), 
somewhat poorly drained (WP), poorly drained (P), very poorly drained (VP), and others 
(etc.). For impermeable data, we used the land cover map, the sum of the area for residen-
tial, industrial, commercial, and transportation areas corresponding to urban built-up areas 
in the major category. The data for the length of the sewer pipe and the number of drainage 
systems were provided by Busan Metropolitan City, and the sum of the length of the sewer 
pipe and the number of drainage systems included in each grid cell was calculated (Fig. 2).

2.3 � Flood assessment model using machine learning methods

As shown in Fig. 3, the variables used for flood risk assessment were constructed using 
GIS data composed of spatial information and attribute data; data preprocessing was per-
formed for the application of machine learning techniques. Here, data preprocessing refers 
to the process of replacing existing data with data suitable for machine learning algorithms 
and removing missing values and noise data.

In machine learning, the datasets must be divided for model training and validation; the 
training dataset included 617,122 regions and the test dataset included 264,482 regions, 
representing a ratio of 7:3 Furthermore, the data were randomly extracted, and it was 
ensured that the same region would not be duplicated during extraction. In this study, a 
flood assessment function was developed using the training datasets (70% of the total data), 
and the assessment power was evaluated by comparing the assessed value calculated by 
applying the developed function to the test dataset and the actual value of the measured 
data.

In this study, a flood assessment model was developed using DT, RF, NB, and SVM 
models.

In the DT, the decision-making rules were expressed in tree types for specific items, and 
based on the rules, data were classified into groups of similar data, and the classification 
continued until the final classification criteria were satisfied. This method has advantages 
in terms of objectivity and ease of interpretation compared with other machine learning 
methods (Breiman and Ihaka 1984). With DT, the space of each independent variable is 
repeatedly split to find the rule that best explains the dependent variable; therefore, it is 
possible to present the classification criteria of each impact variable used as an independent 
variable to assess the occurrence of floods. In this study, the ctree() function of the party 
package of R programming was used. The ctree() function uses the unbiased recursive par-
titioning based on the permutation test method, and because it determines the variables to 
be pruned based on significance determined by the p test, there is no risk of overfitting or 
bias, and no additional separate pruning is required. Additionally, by applying a procedure 
that considers multiple testing, the problem of repeated splitting of nodes in DT is reduced 
because the node splitting stops at an appropriate time.

An RF model generates multiple training data from one dataset and generates multiple 
DTs via multiple training, and the assessment performance is improved by aggregating the 
decisions of these trees. Hence, the model resolves the over-fitting problem, ordinarily a 
weakness of the DT model, by introducing maximum randomness. It also has high pre-
dictive power and strength of an ensemble model. In this study, a model was built using 
the randomforest() function of R programming, and the importance of each variable was 
derived using the importance() function, which was applied as a weight. Because RF uses 
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bootstrap via random sampling, the value is not constant during repeated extractions. Thus, 
the seed value is set for extraction using the same value as the one used for extraction using 
the set.seed() function. Another point unlike the DT model is that the RF model does not 

Fig. 2   Spatial visualization of analysis variables for assessment of flood-risk areas
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need to divide the data into training and testing datasets for analysis. For a more accurate 
comparison with other models, the training and testing datasets are divided at a ratio of 
7:3. Additionally, to select the optimal model, the performance between the RF models was 
comparatively evaluated using the out-of-bag (OOB) error rate. The OOB error rate is as 
accurate as using the same number of test datasets as the training datasets in the study of 
error measurement of bagged classifiers (Breiman 1996).

In the NB model, which is based on Bayes’ theorem, the probability of each classifica-
tion of the target for classification is measured, and the target is classified into a group 
having a larger value of calculated probability. In this method, the calculation is simplified 
by assuming conditional independence when calculating the posterior probability. The NB 
model is mainly suitable for problems requiring consideration of multiple attribute infor-
mation to estimate the overall probability of a result. In this case, if all events are inde-
pendent, it is impossible to assess one event by observing another. In this study, the naive-
Bayes() function of the e1071 package of R programming was used for analysis.

The SVM model is a non-probabilistic binary classification method that performs classi-
fication by minimizing the error for training data through support vectors. It finds a line (or 
a plane) that maximizes the distance between data belonging to a different class, and data 
are classified based on the line (plane) (Lee HH et al., 2016). SVM is widely considered 
the best method among classification methods and shows good performance in various data 
distributions because it has superior accuracy and a smaller probability of overfitting com-
pared with other classification methods (Choi et al. 2013). When making assessments on 

Fig. 3   Methodological flowchart of the research process
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new data, SVM measures the distance between the data and each support vector, the clas-
sification decision is based on the distance to the support vector, and the importance of the 
support vector is learned during training. In this study, analysis was performed using the 
ksvm() function of the kernlab package in R. With kernlab, a kernel-based machine learn-
ing algorithm is implemented in R, and the function has the advantage that users can easily 
extend functions without modifying the C+ + code.

2.4 � Methods of assessment performance evaluation

There are several machine learning models; thus, the optimal model for flood assessment 
was selected by comparing different ones. Because the flood assessment model in this 
study is a classification model that assesses whether an area is flooded, to evaluate the 
assessment performance of the model, accuracy, kappa, sensitivity, specificity, and AUC 
were used. Accuracy is the ratio of correctly classified data among total data, indicating 
how accurately the model performs classification. It adjusts the accuracy by explaining the 
probability of making an accurate assessment of classification by chance. Kappa is par-
ticularly important because when there is a highly imbalanced dataset, high accuracy can 
be easily achieved by predicting only the most frequent values. Sensitivity and specificity 
can capture the trade-offs between the two. Sensitivity measures the percentage of true 
positives showing accurate classification, and specificity measures the percentage of true 
negatives showing accurate classification. In this study, sensitivity means the probability 
that an actual non-flooded area is assessed not to be flooded, and specificity means the 
probability that an actual flooded area is assessed to be flooded. Finally, AUC indicates the 
area under the ROC curve, and because the classification threshold does not change, AUC 
can evaluate the assessment quality of the model regardless of the selection of the classifi-
cation threshold value. Therefore, a machine learning model should not be evaluated with 
only one of the above values; it is important to find an appropriate balance between them.

2.5 � Partial dependence by variable

Even when a machine learning model with high assessment performance is derived, it is 
difficult to determine whether an independent variable has a positive ( +) or negative (-) 
effect on the dependent variable using the model alone. Calculating the partial dependence 
for the independent variables addresses this problem, and the partial dependence represents 
the average marginal effect of an independent variable on the dependent variable (Liaw and 
Wiener 2002). Generally, a partial dependence plot is used for visualization, and it derives 
the functional relationship between a specific independent variable and the assessment of 
the model, showing how the assessment of the dependent variable is partially affected by 
the value of the independent variable of interest. The partial dependence for each variable 
is calculated as shown in Eq. 1:

(1)f (x) =
1

n

n
∑

i=1

log

(

p1
(

x, xic
)

p0
(

x, xic
)

)

.
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A large partial dependence value indicates that when the values of the other independ-
ent variables, xc , are constant, the probability of classification of the dependent variable in 
a specific value of the independent variable of interest, x, is relatively high.

3 � Results

3.1 � Prediction results of machine learning models

3.1.1 � Prediction by DT

The results of evaluating the relationship between the flooded area in 2014 and the 11 influ-
encing factors used with the DT model are presented in Fig. 4; the accuracy of the model 
was 98.64%. The root node located at the top of Fig. 4 is the maximum hourly precipitation 
(maxT_14), and the results show that the maximum hourly precipitation had the greatest 
effect on flood occurrence. Nodes were split based on a maximum hourly precipitation of 
71 mm, which indicates that the flood occurrence was affected depending on whether the 
maximum hourly precipitation was more or less than 71 mm. For the distance from the 
river (river_dis), 1,323 m was the threshold value for classification, and when examining 
the area assessed for flood occurrence, the result was reclassified with 82  mm of maxi-
mum hourly precipitation as the threshold. When the maximum hourly precipitation was 
between 71 mm and ~ 82 mm, the impermeable area (impermeable_area) was analyzed as a 
factor having a large impact, followed by slope and altitude variables. When the maximum 
hourly precipitation was 82 mm or more, the maximum daily precipitation (maxT_14) had 
a large impact on flood occurrence, followed by the impermeable area and the distance 
from the detention reservoir.

Fig. 4   2014 decision tree
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The accuracy of the DT model for the 2015 data was 99.96%, and the model is illus-
trated in Fig. 5. Soil drainage (soil_drain) had the greatest impact on flood occurrence, and 
the nodes were split with reference to the soil drainage class of moderately well-drained 
(MW). This indicates that when the soil drainage class is MW, W, or EW, there is no 
occurrence of flood, and when the soil drainage class is WP, P, or VP, the flood occurrence 
probability is high. Then, the flood occurrence was classified with reference to the distance 
from the river at 1,468 m, and when examining the area assessed for flood occurrence, the 
result was reclassified with 89 mm maximum daily precipitation as the threshold. When 
the maximum daily precipitation was between 83 mm and ~ 89 mm, the influencing fac-
tors were in the order of maximum hourly precipitation, slope, and days over 80 mm pre-
cipitation, and when the maximum daily precipitation was 89 mm or greater, the slope was 
included as the influencing factor.

The results of the DT model with 2016 data are shown in Fig. 6, and the accuracy of 
the model was 99.92%. The length of the sewer pipe (sewer_pipe) had the greatest impact 
on flood occurrence, and the nodes were split based on the length at 0.21 m. When the 
length of the sewer pipe in the area (900 m2) was less than 0.21 m, no occurrence of flood 
was assessed, and this is thought to be because in areas without human population such as 
mountains or rivers, there are no sewer pipes. Hence, flooding will not occur for sewer pipe 
reasons. Next, classification was made based on the distance from the river at 5191 m for 
both cases of a distance less than or greater than 5191 m; the distance from the detention 
reservoir was identified as an important influencing factor.

3.1.2 � Prediction by RF model

In this study, to evaluate the factors affecting flood occurrence, the importance of 11 
variables was evaluated using the RF method. When the RF model was implemented 
without parameter tuning, the number of trees to grow (ntree) was set to 500, and the 
number of variables randomly sampled as candidates at each split (mtry) was set to 2. 

Fig. 5   2015 decision tree
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However, to improve model performance and increase accuracy, the values of these 
parameters must be tuned. Therefore, cross-validation was performed to determine 
appropriate parameter values. By varying the values of ntree to 400, 500, and 600 and 
mtry to 2, 3, and 4, a total of nine combinations were comparatively analyzed. As a 
result, as shown in Table 2, the combination showing the lowest OOB error rate for each 
year was (4, 600) with OOB error rates of 0.36, 0.01 in 2015 and 0.07 in 2016. Hence, 
the value of mtry was tuned to 4 and that of ntree was tuned to 600 for analysis.

In the RF model, explanatory power is the determination of the relative importance 
of explanatory variables affecting the target variable, which can be examined using two 
types of indicators. First, the mean decrease accuracy (MDA) determines the importance 

Fig. 6   2016 decision tree

Table 2   Optimal parameters for 
random forest model

Note: “OOB” = “out-of-box”

(mtry, ntree) 2014 2015 2016
OOB OOB OOB

(2, 400) 0.4 0.02 0.08
(3, 400) 0.37 0.01 0.08
(4, 400) 0.36 0.01 0.07
(2, 500) 0.4 0.02 0.08
(3, 500) 0.37 0.01 0.08
(4, 500) 0.36 0.01 0.08
(2, 600) 0.4 0.02 0.08
(3, 600) 0.37 0.01 0.08
(4, 600) 0.36 0.01 0.07



2421Natural Hazards (2022) 111:2407–2429	

1 3

of variables using the concept of accuracy, and the difference in the reduced accuracy 
when the accuracy of the developed tree is reconstructed after removing a specific vari-
able represented in terms of the average value for each variable. That is, the greater the 
variable having had a significant impact on increasing the classification accuracy, the 
greater the decrease in accuracy when the variable is removed. Using another method, 
when the RF model is constructed, the importance of a variable can also be judged by 
measuring the amount of impurity reduction in the selected variable whenever each tree 
branches out. This method is called “mean decrease Gini” (MDG). A high MDG value 
indicates that when classification is performed with the corresponding variable, and the 
impurity is reduced, which affects the grouping into the same categories. Therefore, the 
greater the values of both MDA and MDG, the higher is the importance of the variable.

A graph evaluating the variables of the model using the two indicators described above 
is presented in Fig. 7. By combining the two indicators, the results show that the variables 
of high importance in 2014 were days over 80 mm precipitation, maximum hourly precipi-
tation, maximum daily precipitation, slope, and distance from the detention reservoir. For 

Fig. 7   Importance of variables for random forest model

Table 3   Performance comparison between models (second decimal place)

“DT” = “decision tree”; “RF” = “random forest”; “NB” = “Naïve Bayes”; “SVM” = “support vector 
machine”; and “AUC” = “area under the curve.”

2014 year 2015 year 2016 year

DT RF NB SVM DT RF NB SVM DT RF NB SVM

Accuracy 0.99 1.00 0.94 0.99 1.00 1.00 0.96 1.00 1.00 1.00 0.97 1.00
Kappa 0.17 0.86 0.15 0.03 0.43 0.95 0.02 0.20 0.16 0.36 0.01 0.00
Sensitivity 1.00 1.00 0.95 1.00 1.00 1.00 0.96 1.00 1.00 1.00 0.97 1.00
Specificity 0.10 0.83 0.42 0.02 0.29 0.90 0.99 0.11 0.09 0.22 0.19 0.00
AUC​ 0.84 1.00 0.90 0.96 0.99 1.00 0.99 1.00 0.30 1.00 0.83 0.93
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2015, the important variables were maximum hourly precipitation, maximum daily precipi-
tation, soil drainage, days over 80 mm precipitation, and slope. For 2016, slope, days over 
80 mm precipitation, maximum hourly precipitation, maximum daily precipitation, and dis-
tance from the detention reservoir were identified as important.

3.1.3 � Prediction by NB model

As a result of implementing the NB model for flood assessment, the accuracy was 93.87% 
in 2014, 95.7% in 2015, and 96.5% in 2016. As a result of comparing the assessed results 
of flood occurrence using the NB model with the test dataset, out of 264,482 total test 
datasets, flood occurrence in 1,615 areas was assessed using 3,819 areas with actual flood 
occurrence in 2015 data, flood occurrence in 147 out of 149 areas was assessed using 2015 
data, and flood occurrence in 45 out of 235 areas was assessed using 2016 data. Although 
the overall accuracy was relatively high for the NB model, Kappa was 0.1463 in 2014, 
0.0241 in 2015, and 0.0079 in 2016. Generally, if the kappa value was zero, the assess-
ment was not in agreement with the actual measurements, and when 0 ≤ kappa ≤ 0.2, it 
was analyzed to show slight agreement. That is, the model was considered unsuitable for 
flood occurrence assessment because the assessment result was at the level of agreement 
by chance.

3.1.4 � Prediction by SVM model

The parameters of the SVM model include gamma and cost. Gamma is a parameter 
required for all kernels except for the linear one, and cost indicates the cost of violation of 
the margin. In this study, gamma was one/(data dimension), the value of 0.1 was used, and 
10 was used as the cost parameter. As a result of implementing the SVM model for flood 
assessment, the accuracy was 98.57% for 2014 data, 99.95% for 2015 data, and 99.91% for 
2016 data showed relatively high accuracy. However, as a result of examining the assessed 
data, it was found that in 2016, assessment was only possible when there was no flood-
ing. Therefore, the SVM model was judged to be unsuitable for assessing and evaluating 
flood occurrences. Additionally, as a result of comparison with the test dataset, out of 
264,482 total test datasets from the 3,819 areas with actual flood occurrence in 2014, 66 
areas showed agreement with the assessment. For 2015 data, 17 out of 149 areas showed 
agreement, and for 2016 data, zero out of 235 areas showed agreement. The model was 
determined to be an extreme type with sensitivity in the range of 99.98–100% and a speci-
ficity of 0–11.41%, which shows that the model assessed most data as the areas of no flood 
occurrence, indicating the problem in the classification performance of the model.

3.2 � Selection of optimum model through performance comparison

A confusion matrix is normally used to evaluate the performance of the classification 
model, the practical significance of the classification result of the model, and the precision 
and accuracy in the classification of the model. Among the indicators used in the confu-
sion matrix, accuracy is the most representative, and it shows the accuracy of the model 
classification in terms of the percentage of correctly classified data out of the total data. A 
comparison of the average accuracy of the four models analyzed in this study is made (i.e., 
DT, RF, NB, and SVM), the accuracy of the DT model was 99.85%, the RF model was 
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99.51%, the NB model was 95.36%, and the SVM model was 99.48%; thus, the RF model 
was judged to be the optimal model for assessing flood occurrences (Table 3).

In addition to accuracy, the RF model showed the highest values of kappa, sensitivity, 
and specificity. In the case of kappa used as a measure of agreement in categorical data, 
the values were DT 0.25, RF 0.72, NB 0.06, and SVM 0.08, respectively, and the values 
of sensitivity representing the rate of true positives (i.e., the area without flood occurrence 
was correctly classified as the area without flood occurrence) were DT = 0.99, RF = 0.99, 
NB = 0.96, and SVM = 0.99. The values of specificity representing the rate of true nega-
tives were DT = 0.16, RF = 0.65, NB = 0.53, and SVM = 0.04. In terms of AUC, the value 
of RF was the highest at 0.99, whereas for the other models, the values were DT at 0.71, 
NB at 0.91, and SVM at 0.96.

The values of the four indicators of kappa, sensitivity, specificity, and AUC ranged from 
zero to one, with one indicating that the model’s assessed value and actual value were in 
perfect agreement. The closer the value is to one, the better the model performance. Cat-
egorical classification is subjective in terms of interpretation, but generally when the value 
is less than 0.2, it indicates almost no agreement. When the value is between 0.2 and 0.4, it 
indicates slight agreement, and when the value is between 0.4 and 0.6, it indicates moder-
ate agreement. When the value is between 0.6 and 0.8, it indicates good agreement, and 
when the value is between 0.8 and 1.0, it indicates very good agreement. Therefore, the 
RF model can be interpreted as having more than good agreement, and it was judged to be 
suitable as a flood assessment model.

As a result of calculating the average importance of the variables for each year for the 
RF model selected as the optimal model for flood occurrence assessment in this study, the 
order of the importance of the variables was as follows: maximum hourly precipitation, 
days over 80 mm precipitation, maximum daily precipitation, slope, soil drainage, distance 
from the detention reservoir, distance from the river, altitude, impermeable area, length of 
sewer pipe, and number of drainage systems.

3.3 � Partial dependence by independent variables in the random forest assessment 
model

In the analysis results of the RF model selected as the optimal model for flood assess-
ment, the importance of independent variables for flood assessment was presented, but the 
method of the respective independent variables specifically impacting flood occurrence 
was not represented. In this regard, the final assessment model was constructed by synthe-
sizing flood data from 2014, 2015, and 2016, and based on the model, detailed relation-
ships between independent variables were examined using partial dependence.

In the analysis of the importance of variables, partial dependence was calculated accord-
ing to changes in four variables: maximum daily precipitation, maximum hourly precipita-
tion, days over 80 mm precipitation, and distance from the detention reservoir. The results 
are shown in Fig. 8. The values of the range for each variable showing the highest probabil-
ity of flood occurrence are presented in Table 4.

For maximum daily precipitation, the precipitation range of 135–165 mm had the high-
est probability of flood occurrence, and for maximum hourly precipitation, the precipita-
tion range of 42–65 mm showed the highest flood occurrence probability. The days over 
80 mm precipitation was 3.4–3.8  days for the highest flood occurrence probability, and 
for the distance from the detention reservoir, the distance range of 2,200–3,000 m had the 
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highest probability of flooding. Because the value range with the highest probability of 
flood occurrence can be interpreted as the point where the flood occurs (i.e., the starting 
point), information on the value range of each variable having the highest probability of 
flood occurrence can be used as reference data for the establishment of a disaster preven-
tion policy or response strategy.

3.4 � Flood risk assessment map using RF model

The RF model was selected as the optimal model for flood occurrence assessment, and the 
flood risk level was calculated by applying the average importance of each variable as a 

Fig. 8   Partial dependence by independent variables

Table 4   Partial dependence 
result (section having the highest 
risk of flood occurrence)

Highest range

Maximum daily precipitation (mm) 135–165
Maximum time precipitation (mm) 42–65
Days over 80 mm precipitation (days) 3.4–3.8
Distance from the detention reservoir (m) 2200–3000
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weight. When applying this weight, to find out whether the variable had a positive or nega-
tive (+ , -) impact, the results of previous studies and those of the DT model were used as 
references. The derived flood risk levels are illustrated as a map of approximately 900,000 
grid cells with dimension of 30 × 30 m for the area of Busan Metropolitan City  (Fig. 9). 
Using the Jenks natural breaks classification (a classification technique of ArcMap), the 
flood risk level was classified into five classes for visualization. The Jenks natural breaks 
classification optimizes the order of data values into natural classes. Based on the average 
of all values within the same class, the average deviation was minimized, and the variance 
between each class was maximized. Thus, the method reduces variance within a class and 
maximizes the variance between classes, and it is mainly used when there is a considerable 
difference in data values, as in the case of the developed model (Jenks 1967).

In the flood risk assessment map of Busan Metropolitan City, the area with the flood 
risk class 1 level accounted for 122,580 grid cells representing an area of approximately 
113; the area with the flood risk class 2 level accounted for 116,216 grid cells representing 
an area of approximately 105 km2, the area with the flood risk class 3 level accounted for 

Fig. 9   Flood risk assessment map of Busan Metropolitan City
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177,970 grid cells representing an area of 160 km2, the area with the flood risk class 4 level 
accounted for 229,487 grid cells representing an area of 207 km2, and the area with the 
flood risk class 5 level accounted for 232,351 grid cells representing an area of 209 km2. 
The class 1 and 2 areas with relatively high flood risk accounted for approximately 27.4% 
of the total area, and it can be seen that the distribution of risk areas was concentrated 
around the rivers.

By comparing the derived results with the actual areas of flood damage, it was con-
firmed that the actual flooded areas from 2009 to 2016 were distributed in the designated 
flood-risk areas. As can be seen from the comparison, because the analysis results of this 
study showed an overall similar pattern to the actual flood damage cases, it is considered 
that the developed flood risk assessment map has high applicability.

4 � Conclusions and implications

The amount and scale of flood damage from urban floods have escalated, owing to the 
frequent occurrence of urban floods following extreme climate events caused by climate 
change in Korea. Hence, there is an urgent need for efficient flood risk maps that can be 
used to establish urban flood prevention measures. However, there are insufficient basic 
reference data available to assess areas subject to routine flooding in Korea. Japan and 
Europe have already mandated the creation of disaster maps.

Therefore, this study developed a machine learning flood assessment model that lev-
erages DT, RF, NB, and SVM models for Busan Metropolitan City. Each model was 
applied to a test dataset, and their performances were evaluated based on accuracy, sen-
sitivity, specificity, and AUC. The evaluation results showed that the RF model was opti-
mal, reflecting the importance of influencing factors based on the number of days having 
greater than 80 mm precipitation, maximum hourly precipitation, maximum daily precipi-
tation, ground slope, distance from detention reservoirs, soil drainage, distance from riv-
ers, altitude, impermeable areas, length of sewer pipes, and number of drainage systems. 
According to the results of partial dependence analysis, maximum daily precipitation in the 
range of 135–165 mm was used to assess the highest probability of flood occurrence, and 
these values were 7.04–37.04 mm higher than the 127.96 mm average value (1995–2014) 
of maximum daily precipitation in the Korean Peninsula. 80 mm precipitation in the range 
of 3.4–3.8 days was used to assess the highest probability of flood occurrence, which is 
0.5–0.8 days longer than the 2.9 average days over 80 mm precipitation in the last 10 years 
(2001–2010) in Busan. For maximum hourly precipitation, the highest probability of flood 
occurrence was assessed in the range of 42–65 mm. Considering that the 1-h design rain-
fall with 10-, 20-, and 30-year return periods in Busan City is 77.4, 89.4, and 96.5 mm, 
respectively, the results indicate that flooding may now occur with less rainfall than that of 
the 10-year return period.

The flood risk level was calculated using the RF model, and it resulted in a grid map 
of Busan Metropolitan City with approximately 900,000 grid cells at a scale of 30 × 30 m. 
The Jenks natural breaks classification technique of ArcMap was used, and the flood risk 
level was classified into five grades and visualized in the map. As a result of comparing 
areas having flood risk level classes of 1 and 2 (i.e., high flood risk), the actual flooded 
areas were correlated.
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The proposed flood assessment model and risk levels are expected to be utilized as an 
authoritative data source for establishing disaster prevention measures, including determin-
ing priority areas and remedial actions to prevent flooding damage, which is expected to 
increase with climate change. It is also expected that the findings of this study can be used 
in the development of design standards for flood prevention facilities with comprehensive 
consideration of the size and importance of the facilities, their climate exposure, and the 
topography of the area.

This study is significant in that machine learning techniques employed in various other 
fields were adopted for flood assessment in Korea, and the superior performance of the 
RF model was confirmed through comparative analysis with the results of other models. 
However, because this study was localized to the region of the Busan Metropolitan City, 
different results may be derived according to different regional characteristics. Thus, these 
findings may not be globally generalizable. Additionally, in some areas, damage informa-
tion was excluded because of the objection of residents. Nevertheless, this is one of the 
few studies both in Korea and in abroad that investigated the assessment of flood occur-
rence and estimation of flood-risk areas using machine learning methods. As a result, it is 
considered that further machine learning approaches will be usefully applied to this field. 
Therefore, we recommend that these techniques be applied to various other areas of disas-
ter prevention in future studies.
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