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Abstract
This paper presents a case study of investigating the cause of ground sliding during tun-
neling in the mountain with sloping and stratified stratum, which is implemented by field 
investigation and numerical analysis. Especially, the strength reduction finite element 
method is adopted to numerically investigate the influence of surrounding rocks stability 
from heavy rainfall permeating into ground. Both the field and numerical investigations 
demonstrate that the ground sliding during tunneling in the sloping and stratified stratum 
is induced by heavy rainfall permeating into the mountain ground with sloping and strati-
fied stratum, in which heavy rainfall is observed before ground sliding and the instability of 
mountain slope is reduced with the gradually decreased rainfall. Moreover, the numerical 
analysis demonstrates that the plastic zones of surrounding rocks in the case of tunneling 
work implemented later than heavy rainfall are less developed than those in the case of tun-
neling work implemented earlier than heavy rainfall, which also implies the heavy rainfall 
permeating into the mountain ground has significant influence on the ground sliding during 
tunneling in the sloping and stratified stratum.
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1  Introduction

With the great increase in constructing infrastructure, tunnel has been extensively used in 
transportation engineering, since it has attractive advantages of saving precious ground as 
well as traversing obstacle of mountains and rivers, whereas landslides are easily appeared 
around the tunnel site (Wang et al. 2020a, b). In view of previous investigations, tunnels 
are often suffered from harsh geological condition of landslides areas (Minardo et  al. 
2018; Gattinoni et al. 2019; Chen et al. 2020a, b; Wang et al. 2020a, b) and seismic zones 
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(Vanuvamalai et al. 2018; Okazaki et al. 2003), and topographical conditions of shallow 
depth and asymmetry pressure (Fu et al. 2014; Zhang et al. 2017a; Sun et al. 2018) as well 
as rainfall (Wei et  al. 2019; Fan et  al. 2020) and untreated cavities around surrounding 
rocks resulted from over excavation in tunneling (Zhang et  al. 2015, 2017b; Zhao et  al. 
2019), which can easily induce landslides during tunneling (Chatziangelou and Christaras 
2010; Zhou et al. 2020; Chen et al. 2020a, b). However, the cause of landslide during tun-
neling in field is not easy to be identified although various approaches are developed for 
investigation (Minardo et al. 2018; Chen et al. 2020a, b; Zhang et al. 2015), since it may 
be affected by not only single factor but also the coupled action of the aforementioned 
influencing factors. Therefore, further study related to landslide during tunneling in field 
is thus urgently required, which can provide the reference for determining the reasonable 
treatment with landslides occurred in tunnel site.

In this paper, a case study of investigating the cause of ground sliding during tunneling 
in the mountain with sloping and stratified stratum is presented by field investigation and 
numerical analysis, in which severe damages are observed in both ground surface and 
tunnel lining, and the strength reduction finite element method (SRFEM) is adopted to 
numerically simulate the instability of surrounding rocks influenced by heavy rainfall per-
meating into ground. Moreover, the simulation of two cases is conducted for clarifying the 
combined influence of tunneling and ground sliding from heavy rainfall permeating into 
ground, in which the tunneling work in case a is implemented earlier than heavy rainfall 
and similar with that in field construction, whereas that in case b is carried out after heavy 
rainfall.

2 � Profile of the tunnel

2.1 � Landform and geological condition around tunnel site

The tunnel is located in the landform of denuded middle and low mountain area built 
on the rock-soil boundary layer of the mountain, which has 10,743 m length and 515 m 
maximum buried depth. Figure  1 demonstrates the geological constitution around 
the tunnel with 9 geological drilling holes implemented for supplementary survey, 
which is situated in the steep terrain of hard-soft heterogeneous ground with sloping 
and stratified stratum, including fully-weathered and strongly-weathered as well as 

Fig. 1   Schematic geological condition around the tunnel
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weakly-weathered mica-quartzose schist, respectively. Moreover, the tunnel is buried in 
a V-shape valley with shallow depth, and there is no visible water in the fissures of the 
rock strata. The tunnel entrance is along the mountain foot at the edge of the narrow and 
long valley, which is distributed in strips and seriously affected by atmospheric rainfall 
with severe rain erosion.

3 � Field investigation of ground sliding during tunneling

3.1 � Field observed ground sliding behavior

The field investigation is implemented to obtain the ground sliding during tunneling. 
Figure 2 demonstrates the field observed ground sliding with typical transfixion cracks 
in both ground surface and concrete lining of tunnel entrance, in which the transfixion 
cracks in ground surface are labeled as 1#, 2#, 3# and 4#, and those in concrete lining 
are labeled as A and B. As illustrated in Fig. 2b, several continuous cracks with 6 maxi-
mum width in concrete lining are linearly spread in longitudinal direction and distrib-
uted around the areas within the hance and sidewall, typical transfixion cracks are found 
in ground surface with the longitudinal lengths greater than 200 m as well as 0.25 m 
maximum crack width, and severe cracks are observed in the front and side slopes of the 
tunnel entrance. Especially, heavy rainfall is observed before ground sliding.

(a) Schematic drawing of field observed transfixion cracks

(b) Crack patternand sliding in ground surface

Fig. 2   Field observed ground sliding with typical transfixion cracks in tunnel entrance
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3.2 � Field monitoring ground sliding

The sliding behavior of ground surface are monitored in field, in which 4 inclinometer 
pipes are adopted for measuring the horizontal displacement of ground, installed in the 
aforementioned geological drilling holes. Moreover, the positions of inclinometer pipes are 
labeled as 1#, 4#, 5# and 9# as marked in Fig. 1, in which 1# position is located in the tun-
nel’s left sides within low-altitude area, 4#, 5# and 9# positions are respectively located in 
the tunnel’s right sides within high-altitude area.

Figure  3 demonstrates the field measured relationship curves of horizontal displace-
ment and depth at 1# and 4# drilling holes, in which the horizontal displacement of 4# 
drilling hole illustrates that the instability of mountain slope is reduced with the gradually 
decreased rainfall with 20-days measuring time. Moreover, the field measured average slid-
ing rates of 1#, 4#, 5# and 9# drilling holes are 0.52 mm/day, 0.91 mm/day, 1.7 mm/day 
and 3.49 mm/day, respectively.

4 � Numerical investigation of ground sliding during tunneling

4.1 � Numerical model and material properties

Figure  4 demonstrates the numerical model as well as boundary condition, which is 
adopted for numerically investigating the cause of ground sliding during tunneling. In 
the numerical model, the longitudinal calculation range is 229.4 m, that of lateral side to 
the tunnel is 30.4 m, and the vertical calculation ranges of both lateral sides are 111.6 m 
and 20  m from top surface to lower boundary, respectively. Moreover, the assumptions 
in boundary conditions are marked in the model, in which the bottom boundary is fixed 
in both longitudinal and vertical directions, and both lateral boundaries are restricted in 
longitudinal direction, whereas upper boundary is free in both longitudinal and vertical 
directions.

(a) 1# inclinometer pipe (b) 4# inclinometer pipe

Fig. 3   Horizontal displacement versus depth of ground using inclinometer pipes
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The physical and mechanical properties of surrounding rocks and lining concrete are listed 
in Table 1, obtained from the aforementioned in situ supplementary survey with 9 geologi-
cal drilling holes as well as laboratory test with 25 specimens, in which E and γ are elastic 
modulus and bulk density respectively, fc′ is concrete’s compressive strength, μ is Poisson’s 
ratio, c and φ are cohesive force and friction angle, respectively. Moreover, the surrounding 
rocks are considered as ideal elastic–plastic material met with Mohr–Coulomb yield criterion, 
which has been successfully adopted for reflecting the behavior of surrounding rocks during 
tunneling (Zhang et al. 2015).

4.2 � Implementing numerical simulation using strength reduction finite element 
method

The ground sliding of the mountain during tunneling is numerically simulated using the 
strength reduction finite element method (SRFEM), in which the reduced strength of sur-
rounding rocks are continuously adjusted by the following equations until the numerical slid-
ing surface is similar with that in practice. Therefore, SRFEM can be adopted to reflect the 
influence of surrounding rocks stability from heavy rainfall permeating into ground, in which 
cm and φm are the reduced cohesive force and friction angle, respectively; Fr is strength reduc-
tion coefficient.

(1)�
m
= arctan

(

tan �

F
r

)

(2)c
m
=

c

F
r

Fig. 4   Numerical model and 
boundary condition

Table 1   Physical and mechanical properties of the materials

Material Property parameters

Fully-weathered mica-quartzose schist E = 0.1 GPa, γ = 22 kN/m3, μ = 0.4, c = 0.05 MPa, φ = 28.6°
Strongly-weathered mica-quartzose schist E = 3 GPa, γ = 23 kN/m3, μ = 0.3, c = 0.4 MPa, φ = 30°
Weakly-weathered mica-quartzose schist E = 20 GPa, γ = 25 kN/m3, μ = 0.25, c = 1.0 MPa, φ = 45°
Lining concrete E = 31.5 GPa, μ = 0.2
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In the numerical analysis, two cases are simulated for clarifying the combined influence of 
tunneling and ground sliding from heavy rainfall permeating into ground. Table 2 shows the 
conducted three steps in the simulated cases a and b, in which both cases have the same first 
step of balancing the ground stress with applying gravity and the calculated displacement is 
returned to zero for removing the adverse influence on sliding surface, and the tunneling work 
in case a is implemented earlier than heavy rainfall and similar with that in field construction, 
whereas that in case b is carried out after heavy rainfall.

4.3 � Numerical result

4.3.1 � Displacement and plastic zones of the mountain slope in case a

Figure 5 demonstrates the calculated relationship of the maximum displacement and strength 
reduction coefficient of the mountain slope. It can be clearly seen that the maximum displace-
ments of the slope are varied little with the strength reduction coefficient smaller than 1.25, 
whereas it is rapidly increased with the increasing strength reduction coefficient thereafter, 
which means severe ground sliding occurs in the slope with the strength reduction coefficient 
larger than 1.25. This implies that the ground sliding during tunneling is probably influenced 
by heavy rainfall permeating into the ground of the mountain with sloping and stratified 
stratum.

Figure 6 shows the numerically obtained plastic zone distributions of surrounding rocks in 
case a, in which the cohesive force and friction angle are reduced from the original ones using 
the aforementioned strength reduction equations. It can be clearly seen that the numerically 
obtained main continuous sliding surface is similar with the ground sliding observed from 
field investigation, and the numerical calculated strength of the main continuous sliding sur-
face has 0.02 MPa cohesive force and 34.9° friction angle, which confirms the effectiveness 
of the conducted numerical investigation. Moreover, the plastic zones of surrounding rocks 
are connected and developed along the main continuous sliding surface, which can form land-
slide in the mountain. This means that the field observed ground sliding during tunneling is 
induced by heavy rainfall permeating into the ground of the mountain with sloping and strati-
fied stratum.

4.3.2 � Plastic zones of the mountain slope in case b

Figure 7 demonstrates the numerically obtained plastic zone distributions of surrounding rocks 
in case b, in which the reduced strength of the main sliding surface in case a with 0.02 MPa 
cohesive force and 34.9° friction angle is adopted for implementing the numerical simula-
tion. It is obvious that the plastic zones of surrounding rocks in this case still tend to be con-
nected with a risk of forming landslide, whereas they are less developed than those in case a 
with tunneling work implemented earlier than heavy rainfall, even though the same strength of 
the main continuous sliding surface is adopted in numerical simulation. This also implies the 
heavy rainfall permeating into the mountain ground has significant influence on the ground 
sliding during tunneling in the sloping and stratified stratum.
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5 � Conclusions

In this paper, a case study of investigating the cause of ground sliding during tunneling in 
the sloping and stratified stratum is implemented, and the following conclusions can be 
drawn:

Fig. 5   Maximum displacement 
of slope with strength reduction

Fig. 6   Plastic zone distribution of surrounding rocks in case a 

Fig. 7   Plastic zone distribution of surrounding rocks in case b 
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(1)	 Both the field and numerical investigations confirm that the ground sliding during 
tunneling in the sloping and stratified stratum is induced by heavy rainfall permeating 
into the mountain ground with sloping and stratified stratum, in which heavy rainfall 
is observed before ground sliding and the instability of mountain slope is reduced with 
the gradually decreased rainfall.

(2)	 The numerical analysis demonstrates that the plastic zones of surrounding rocks in 
the case of tunneling work implemented later than heavy rainfall are less developed 
than those in the case of tunneling work implemented earlier than heavy rainfall, even 
though the same strength of the main continuous sliding surface is adopted in numer-
ical simulation. This also implies the heavy rainfall permeating into the mountain 
ground has significant influence on the ground sliding during tunneling in the sloping 
and stratified stratum.

(3)	 The strength reduction finite element method (SRFEM) can adopt to numerically simu-
late the instability of surrounding rocks influenced by heavy rainfall permeating into 
ground, the effectiveness of which is confirmed by field investigation and numerical 
analysis.
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