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Abstract
Landslide hazards have attracted increasing public attention over the past decades due to 
a series of catastrophic consequences of landslide occurrence. Thus, the mitigation and 
prevention of landslide hazards have been the topical issues. Thereinto, numerous research 
achievements on landslide susceptibility assessment have been springing up in recent 
years. In this paper, four benchmark models including best-first decision tree (BFTree), 
functional tree, support vector machine and classification regression tree (CART) and were 
integrated with bagging strategy. Then, these bagging-based models were applied to map 
regional landslide susceptibility in Jiange County, Sichuan Province, China. Fifteen condi-
tioning factors were employed in establishing landslide susceptibility models, respectively, 
slope aspect, slope angle, elevation, plan curvature, profile curvature, TWI, SPI, STI, 
lithology, soil, land use, NDVI, distance to rivers, distance to roads and distance to line-
aments. Then utilize correlation attribute evaluation method to weigh the contribution of 
each factor. Finally, the comprehensive performance of various bagging-based models and 
corresponding benchmark models was evaluated and systematically compared applying 
receiver operating characteristic curve and area under curve (AUC) values. Results demon-
strated that bagging-based ensemble models significantly outperformed their correspond-
ing benchmark models with validation dataset. Among them the Bag-CART model has the 
highest AUC value of 0.874; however, the AUC value of CART model is only 0.766, which 
reflected satisfying predictive capacity of integrated models in some degree. The achieve-
ments obtained in this study have some reference values for landslides prevention and land 
resource planning in Jiange County.
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1  Introduction

As the process of urbanization has been boosted in the past decades around mountainous 
areas, the negative effects of human activities on geological environment have become 
more significant as well. Thereinto, landslide hazards are generally considered as the most 
representative disasters which could induce enormous losses on residents’ lives and prop-
erty (Palmisano et al. 2016; Huang et al. 2019; Chen and Chen 2021). To some degree, 
landslide occurrence hampers the efficient utilization of land resources and economic 
development in mountainous regions. To prevent landslide hazards, a group of scholars and 
experts have spared no efforts to reveal landslide mechanism and invent a series of mitiga-
tion measures (Mohammadi and Taiebat2016; Peng et al. 2018; Huang et al. 2019; Ma et al. 
2019; Wang et al. 2019a; Yang et al. 2019). Meanwhile, neoteric techniques about land-
slide susceptibility assessment have also attracted more extensive attention in the past years 
(Lee et al. 2018a; Lei et al. 2020b; Shou and Lin 2020; Li et al. 2021). Traditionally, the 
qualitative and semi-quantitative approaches are commonly applied in landslide suscepti-
bility mapping (Bourenane et al. 2015; Pourghasemi and Rossi 2017; Pradhan et al. 2017). 
However, it should be noted that the prediction accuracy mainly depends upon subjective 
acknowledgment and expertise, which usually vary with each individual. To overcome the 
defects mentioned above, various statistical approaches, for instance frequency ratio (FR) 
(Aditian et al. 2018), weight of evidence (WoE) (Armaş 2012; Ding et al. 2017), index of 
entropy (IoE) (Jaafari et al. 2014) and certainty factor (CF) (Binaghi et al. 1998; Wu et al. 
2016) have been introduced into landslide susceptibility evaluation. In thus, regional land-
slide susceptibility can be identified by judging the weight of conditioning factors in the 
landslide’s occurrence. Nevertheless, there is no denying that some pre-assumptions of sta-
tistical approaches restrict their submission (Reichenbach et al. 2018). Additionally, deter-
ministic models are also often seen in tasks of landslide susceptibility assessment (Akgun 
and Erkan 2016). Generally, deterministic models are more suitable to evaluate stability of 
single slope as a result of relatively complex modeling process and higher computational 
cost (Park et al. 2019). In recent years, under the development of data mining techniques 
and machine learning, large quantity of novel models have been employed to classify land-
slide susceptibility zones. According to literature, the most prevailing machine learning 
models include support vector machine (SVM) (Chang et al. 2019; Nguyen et al. 2019a), 
artificial neural network (ANN) (Dou et al. 2019b), multi-layer perceptron (MLP) (Hong 
et al. 2019; Pham et al. 2019), decision tree (DT) (Kutlug Sahin and Colkesen 2019), etc. 
These machine learning models can efficiently reveal the intricate regulations which are 
hidden in huge amounts of data, which has benefits to produce more reliable results. Cur-
rently, these machine learning models have been accepted by many scholars in different 
domains due to their prominent predictive performance (Amiri et al. 2019; Choubin et al. 
2019; Hosseinalizadeh et  al. 2019; Mohammady et  al. 2019). In some cases, the perfor-
mance of machine learning models dramatically varies with databases, indicating that 
there still exists latent capacity to promote in generalization performance (Pourghasemi 
and Rahmati 2018). Hence, a lot of optimization algorithms and ensemble strategies were 
integrated with conventional machine learning models to improve their comprehensive per-
formance (Hong et  al. 2018; Lee et  al. 2018b; Dou et  al. 2019a; Moayedi et  al. 2019). 
Especially for ensemble learning models, they can always generate more satisfying results 
with lower variance and bias values. Compared to other ensemble techniques, the bagging 
ensemble exhibits superiority in well-understood theory, brief framework and promising 
results (Pham et al. 2017c; Pham and Prakash 2019). Although numerous bagging-based 
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hybrid models such as J48-bagging (Hong et  al. 2019), BKLR (Chen et  al. 2018a) and 
bagging-FT models (Tien Bui et al. 2016) have been proposed, the researches on system-
atic comparison among different bagging-based machine learning algorithms are still rare 
now. Therefore, in this paper, four popular base classifiers, including best-first decision tree 
(BFTree), functional tree (FT), classification and regression tree (CART), support vector 
machine (SVM), were combined with bagging. Thereafter, the performance of bagging-
based classifiers was evaluated and compared to that of corresponding base classifiers 
applying receiver operating characteristic curve (ROC) and area under curve (AUC) val-
ues. Finally, landslide susceptibility maps based on four hybrid classifiers were generated 
by ArcGIS tools.

2 � Study area and data used

In this present case, Jiange County, covering the whole area of 3204 km2, was selected as 
study area. It is located at longitude of 105°10′E-105°49′E and latitude of 31°21′N-31°31′N 
(Fig. 1). This subtropical humid monsoon climate dominates in the study area, which con-
tributes to abundant rainfall and distinct seasons. It should be emphasized that local cli-
mate generally changes with elevation due to fluctuating mountainous landform within 
study area.

Topographically, through interpreting the 20 m regular raster digital elevation model, 
the altitude of the study area is between 358 and 1284 m. As a whole, altitude value shows 
an upward trend from southeast to northwest, which demonstrates typical characteristics of 
low mountainous and hilly regions. In the case of slope angle, the minimum and maximum 
values are 0° and 78.59° separately, and the average slope angle is 15.59° with the stand-
ard deviation (SD) of 0.03°. Concretely, areas with slope angle < 30° account for 91.41%, 
whereas areas with slopes between 30° and 60° cover approximately 8.55%. Correspond-
ingly, the other areas with slope angle > 60° account for 0.04% about of the total area.

In the research, the database was prepared through historical data collection, satel-
lite images interpretation and field survey. Ultimately, a landslide inventory map with 262 

Fig.1   Study area
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landslides, which can directly show space characteristic information of landslides in this study 
area, was plotted. Subsequently, the present study generalized each actual landslide as a single 
point. Besides, equivalent non-landslide points were randomly selected in study area. After-
ward, the total landslide samples were divided into training data set (70%) and validation data 
set (30%) (Arabameri et al. 2019b; Lei et al. 2020b).

Currently, there is no recognized scheme about selection of landslide conditioning factors, 
besides the employed factors are always distinct in existing research achievements. In this 
study, fifteen landslide conditioning factors (for instance: slope aspect, elevation, slope angle, 
profile curvature, plan curvature, TWI, SPI, STI, lithology, soil, land use, NDVI, distance to 
rivers, distance to lineaments and distance to roads) were determined based on availability of 
data sources and relevant literature (Mandal and Mandal 2018b; Lombardo and Mai 2018; 
Kadavi et al. 2019). Here, NDVI in study area was derived from LANDSAT-8 satellite images 
(http://​www.​gsclo​ud.​cn/). Lithology and distance to lineaments were extracted from the geo-
logical map. Soil can be extracted from the soil maps at 1:1,000,000 scale (http://​www.​issas.​
ac.​cn/). Land use map was extracted from regional land use maps with a 1:100,000 scale. The 
other conditioning factors can be acquired using ArcGIS tools, satellite images and DEM.

Slope aspect factor is especially common in landslide sensitivity mapping (Singh and 
Kumar 2017). In this study district, slope aspect has firm connections with solar radiation, 
vegetation coverage, rainfall and so on, which could affect slope stability to some extent (Kose 
and Turk 2019). In the present study, slope aspects within Jiange County were reclassified as: 
flat, east, north, northeast, south, southeast, southwest, northwest, west.

The law is clear that stress distribution in slope varies with slope angle, and slope angle 
is closely connected to slope failure pattern (Wang et al. 2019b). In this essay, eight catego-
ries were rearranged with an interval of 10°, correspondingly, 0–10°, 10–20°, 20–30°, 30–40°, 
40–50°, 50–60°, 60–70° and 70–78.59°.

In some cases, landslide is prone to occur in areas with a certain elevation range (Li and 
Wang, 2019). In addition, it has been proved that environmental conditions around slopes 
could be determined by elevation values (Paranunzio et  al. 2019; Regmi et  al. 2019). The 
elevation values of this study region were separated by 100 m, and arranged into nine lev-
els, including 358–500 m, 500–600 m, 600–700 m, 700–800 m, 800–900 m, 900–1000 m, 
1000–1100 m, 1100–1200 m and 1200–1284 m.

Profile curvature and plan curvature are two critical indexes to reflect slope shape from 
different perspectives (He et al. 2019). On the one hand, slope shape affects stress distribution 
around slope surface, which is correlated with slope stability. On the other hand, surface run-
off characteristics mainly depend on slope shape, and surface runoff characteristics have great 
impacts on erosion and infiltration around slopes (Mandal and Mandal, 2018a). In this case, 
plan curvature and profile curvature were also taken into account when mapping landslide 
susceptibility. Then re-divide plan curvature value into five groups such as (− 36.05)-(− 2.40), 
(− 2.40)-(− 0.94), (− 0.94)-0.23, 0.23–1.69 and 1.69–38.55. Similarly, for profile curvature, 
five groups were also obtained by reclassification, namely, (−  2.11)-(−  3.38), (−  3.38)-( 
− 1.20), (− 1.20)-0.68, 0.68–2.86 and 2.86–37.53.

Topographic wetness index (TWI) was impressed on measuring local groundwater poten-
tial initially (Moore et al. 1991). The TWI value can be figured out by the following equation 
(Chen et al. 2021a):

(1)TWI = ln

(
�

tan �

)

http://www.gscloud.cn/
http://www.issas.ac.cn/
http://www.issas.ac.cn/
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where α indicates the flow accumulation via a point, and β is the corresponding tilt angle. 
Finally, TWI values with research area were identified as < 1, 1–2, 2–3, 3–4 and > 4.

As a quantitative indicator of erosion capacity of surface runoff, stream power index 
(SPI) was also included in consideration. The calculation formula of SPI can be expressed 
as follows (Lei et al. 2021):

In this formula, α and β are catchment proportion and tilt angle, respectively (Wu et al. 
2017; Chen et  al. 2021b). Here, all the SPI values were grouped as five classes: 0–10, 
10–20, 20–30, 30–40 and > 40.

Sediment transport index (STI) is another topographic index reflecting local erosion 
power (Pourghasemi et al. 2013a). Thus, the STI was introduced in landslide susceptibility 
modeling, and its value can be determined by the following formula:

The parametric significance of α and β is same as that of SPI. The STI value consists of 
five intervals, involving 0–10, 10–20, 20–30, 30–40 and > 40.

There is no doubt that lithology and soil types decide their physical and mechanical 
properties, which are generally treated as the most essential factor in slope stability assess-
ment (Abuzied and Alrefaee, 2019; Watakabe and Matsushi, 2019). In the case of lithol-
ogy, eleven classes were detected ultimately while nine kinds of soil types were found 
out. Concretely, all the soil and lithology types were illustrated in Table 1. Figure 2i and j 
demonstrate the spatial distribution of multifarious soils and lithologies. Normally, strata 
with lower shearing strength and deformation modulus are more likely to form landslides. 
Among the strata in this study, the soils and lithologies owning relatively high landslide 
susceptibility mainly compare flood-plain alluvium, interbeds of lacustrine-shallow and 
lacustrine deposits, yellow soil, paddy soil, etc. It should be explained that water was taken 
as one special soil type in this case.

Based on literature, frequency of landslide occurrence usually fluctuates with different 
land use types (Hong et al. 2017). In general, the probability of landslide spreading near 
construction land, farm land and unused land is greater than other land use types. On the 
contrary, those areas which are covered by abundant vegetations could be deemed as lower 
landslide susceptibility zones (Wang et al. 2019c). Within Jiange County, a total of six land 
use types were produced, respectively, forest land, farm land, grass land, construction land, 
unused land and water.

Normalized difference vegetation index (NDVI) is known as the quantitative measure-
ment of vegetation coverage degree (Choi et al. 2012). This index is described as follows:

where R represents the red band of electromagnetic spectrum and IR means the infrared 
band and. The limit of NDVI values is [-1, 1], as well as higher NDVI values manifest bet-
ter degree of vegetation development. In this paper, NDVI values within study area consist 
of five intervals: (-0.11)-0.12, 0.12–0.22, 0.22–0.27, 0.27–0.33 and 0.33–0.52.

In some regions, landslide hazards are inclined to spread along rivers, because rivers 
could erode slope toes and raise moisture content in slope bodies (Clapuyt et al. 2019). The 
tasks in regard to landslide susceptible mapping, the effects about rivers can be weighed by 

(2)SPI = � tan �

(3)SPI =
(

�

22.13

)0.6
(

sin �

0.0896

)1.3

(4)NDVI = (IR − R)∕(IR + R)
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Fig. 2   Landslide conditioning factors
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Fig. 2   (continued)
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Fig. 2   (continued)
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Fig. 2   (continued)
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distance to rivers and river density (Arabameri et al. 2019a; Kose and Turk, 2019). Dur-
ing the present research, distance to rivers was selected to construct landslide susceptibil-
ity model. With an interval of 200 m, five sections were acquired, comprising 0–200 m, 
200–400 m, 400–600 m, 600–800 m and > 800 m.

Road construction is another non-negligible conditioning factor in landslide suscep-
tibility assessment. Actually, some road engineering in mountainous areas could make 
radical changes on slope shapes, and engineering vibration may increase probability 
of slope deformation or failure (Du et al. 2019). In Jiange County, the distance to roads 
was analyzed and reclassifies it into five classes with 200 m as an interval, viz., 0–200 m, 
200–400 m, 400–600 m, 600–800 m and > 800 m.

The connection between landslide formation and geological structure has been revealed 
by numerous studies (Pourghasemi et  al. 2013b, 2018; Juliev et  al. 2019). Commonly, 
landslide susceptibility has negative association with distance to lineal geological struc-
tures such as faults and surface cracks. Based on ArcGIS software, the distance between 
each raster and lineaments was calculated, and the results were rearranged into five cat-
egories with 2000 m as an interval segment, including 0–2000, 2000–4000, 4000–6000, 
6000–8000 and > 8000.

3 � approach

3.1 � Bagging

The full designation of bagging is bootstrap aggregation approach, belonging to the group 
of machine learning ensemble meta algorithms (Kadavi et al. 2018). Facts have proved that 
bagging retains an outstanding function on improving stability and generalization capac-
ity of multiple base classifiers (Pham et al. 2017a; Truong et al. 2018). The core concept 
of bagging is bootstrap sampling technique which can be simply described as sampling 
with replacement. Specifically, new subsamples are generated by randomly sampling with 
replacement from initial training dataset. Then, all the subsamples were used to train base 
classifiers, and the final result could be found out through aggregating various base classi-
fiers based on majority voting strategy (Breiman 1996). Compared to boosting technique, 
bagging improves predictive performance by decreasing variance corresponding to the 
landslide susceptibility model. In the research of this paper, four base classifiers such as 
best-first decision tree, functional tree, support vector machine, classification and regres-
sion tree were prepared to generate ensemble models using bagging strategy.

3.2 � Best‑first decision tree

Best-first decision tree (BFTree) is proven to be a remarkable member inter tree-based 
algorithms (Chen et al. 2018b). The most important feature of BFTree is that the best node 
should expand in depth-first order (Nguyen et al. 2019b; Lei et al. 2020a). The best node 
could be determined by measuring information gain and Gini index, which are used to 
assess node impurity (Lay et al. 2019; Shirzadi et al. 2019). For this algorithm, there exist 
two termination conditions, including that labels of all the instances are defined or the best 
value of splitting criteria is a negative value (Kumar et al. 2013). The calculation of infor-
mation gain and Gini index can be implemented using the following formulas:
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Among them, A represents any selected landslide conditioning factor, and D represents 
the training sample. K denotes the count of labels (non-landslide and landslide here), and 
pk means the probability of an instance belonging to the k-th class.

3.3 � Functional trees

Functional tree (FT) algorithm is another tree classifier, which has excellent performance 
on reducing bias and variance (Gama 2001). In FT model, a logistic regression function 
is adopted to realize splitting and prediction on inner nodes and leaves namely (Tien Bui 
et  al. 2019). Moreover, the comprehensive capability of the FT model is controlled by 
some parameters, like the cycle of bootstrap iterations, the lowest value of each leaf node 
instance and functional trees (Gama 2004). Before establishing functional trees, the lin-
ear bayes test function is applied in producing the probability distribution of non-landslide 
class and landslide class. Then, the initial conditioning factors could be extended to form 
new dataset, and the original dataset and split-new dataset are both involved in constructing 
classification trees (Pham et al. 2017b).

3.4 � Classification and regression tree

Classification and regression tree (CART) as a nonparametric modus, and this approach 
can be seen in a number of studies such as landslide susceptibility, groundwater poten-
tial assessment, land subsidence modeling, etc. (Schifman et al. 2018; Naghibi et al. 2018; 
Sarkar et al. 2019; Rahmati et al. 2019; Choubin et al. 2019). The most notable benefit of 
CART is that this approach can deal with problems of outliers and missing values (Loh 
2011). Additionally, the CART approach is more applicable for processing data with vari-
ous types likes numeric, binary and categorical (Aertsen et  al. 2010). In this process of 
CART construction, Gini values are computed and employed as the criteria of node split-
ting. Generally, the CART which is constructed with training data needs pruning with 
some validation data, furthermore, in order to simplify model framework and optimize 
model comprehensive performance (McKenney and Pedlar 2003).

3.5 � Support vector machine

Support vector machine (SVM) is a particularly prevailing classifiers used in landslide sus-
ceptibility assessment in recent years (Xiao et al. 2018; Chang et al. 2019; Mokhtari and 
Abedian 2019). In contrast with other machine learning algorithm, the SVM model is more 
suitable for datasets consisting of a small number of samples (Huang and Zhao2018). Con-
ventional SVM is a typical binary classification model which can be implemented with 
linearly separable data and linearly inseparable data (Maxwell et al. 2018). The basic prin-
ciple of SVM is to explore out the optimal hyperplane which can divide training speci-
men into two categories with the highest accuracy. Actually, most data used in landslide 

(5)Information Gain�(D,A) = Entropy(D) −
∑ |Di|

|D|
Entropy(D)

(6)Gini(P) =

k∑

k=1

pk
(
1 − pk

)
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susceptibility modeling are linearly inseparable. Therefore, nonlinear transformation 
should be carried out to map initial data to higher dimensional space in which samples are 
linearly separable. The operation of nonlinear transformation can be achieved using differ-
ent kernel functions, mainly including linear kernel function, polynomial kernel function  
and Gaussian kernel function.

4 � Results

4.1 � Models results and analysis

In landslide susceptibility modeling, there may exist some conditioning factors which 
have no contribution to landslide occurrence. Hence, removing those minor affecting fac-
tors is a basic step to ameliorate the framework and rationality of the landslide suscep-
tibility model. This article engrains the correlation attribute evaluatrion (CAE) means to 
calculate average merit (AM) value of each affecting factor (He et al. 2019). Concretely, 
a positive AM value means that the corresponding conditioning factor indeed contributes 
to landslide susceptibility model, and the conditioning factor with higher AM value is of 
greater importance. Table 2 illustrates the AM values toward fifteen influencing factors in 
the present examination. It can be concluded from the table that the contribution of slope 
angle is the topmost (AM = 0.311), and its standard deviation is ± 0.013. And second high-
est AM value of 0.151 belongs to land use, the other ones are elevation (AM = 0.120), 
TWI (AM = 0.118), distance to roads (AM = 0.104), STI (AM = 0.083), SPI (AM = 0.069), 
distance to river (AM = 0.060), NDVI (AM = 0.042), profile curvature (AM = 0.024), 
lithology (AM = 0.018), soil (AM = 0.014), plan curvature (AM = 0.013), slope aspect 
(AM = 0.012) and distance to lineaments (AM = 0.012). It is obvious that every affecting 
factor has correlations with landslide happening. Consequently, fifteen conditioning factors 
were included in building landslide susceptibility model ultimately.

Table 2   Importance of affecting 
factors based on CAE method

Factors AM Sd

Slope angle 0.311  ± 0.013
Land use 0.151  ± 0.013
Elevation 0.120  ± 0.012
TWI 0.118  ± 0.017
Distance to roads 0.104  ± 0.012
STI 0.083  ± 0.017
SPI 0.069  ± 0.020
Distance to rivers 0.060  ± 0.010
NDVI 0.042  ± 0.014
Profile curvature 0.024  ± 0.013
Lithology 0.018  ± 0.012
Soil 0.014  ± 0.008
Plan curvature 0.013  ± 0.005
Slope aspect 0.012  ± 0.006
Distance to lineaments 0.012  ± 0.009
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4.2 � Models validation

In this case, four benchmark models were combined with bagging strategy to generate var-
ious ensemble models, viz., Bag-BFTree model, Bag-FT model, Bag-CART model and 
Bag-SVM model. In this section, AUC value corresponding to ROC curve and validation 
samples were used to measure the accuracy and predictive capacity of benchmark models 
and integrated models, respectively (Chen et al. 2021c). The results are shown in Figs. 3 
and 4. The AUC values of Bag-BFTree, Bag-FT, Bag-CART and Bag-SVM models are 
0.869, 0.763, 0.874 and 0.729 namely. For those benchmark models, AUC value of CART 
model is 0.766, exhibiting a relatively better predictive capacity, the following are BFTree 
model (0.748), FT model (0.694) and SVM model (0.650). The AUC values obtained by 
various models are larger than 0.5, indicating that all the models have predictive abilities in 
landslide susceptibility within study area. However, it should be clarified that there are sig-
nificant differences in the overall performance of the four selected models, even the results 
of some models (such as SVM and FT models) may not be satisfactory.

4.3 � Generation of landslide susceptibility maps

According to the results obtained from model validation, four ensemble models based 
on bagging were selected to establish landslide susceptibility mapping in Jiange County. 
Before generating landslide susceptibility maps, fifteen conditioning factors of each raster 
within study area were extracted using ArcGIS tools. Afterward, the probability of land-
slide occurrence in each raster can be predicted using four trained bagging-based models. 

Fig. 3   ROC curves for the models
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Furthermore, to identify different classes of landslide susceptibility, natural break method 
(Aditian et  al. 2018; Kumar et  al. 2018) was adopted here, after that the susceptibility 
of regional landslide was segmented into very high, high, moderate, low, and very low. 
Finally, all the results received are visualized in ArcGIS software, as shown in Fig.  5. 
Meanwhile, the area proportion of each class of landslide susceptibility level were com-
puted and listed in Fig. 6.

5 � Discussion

Landslides befall frequently in mountain region and could be considered as a horrible natu-
ral disaster (Haque et  al. 2019). Currently, landslide susceptibility modeling process has 
introduced a large number of mathematical models in order to generate relatively more pre-
cise results (Pourghasemi et al. 2018). In view of excellent performance of bagging strat-
egy, in the present study, four benchmark classifiers such as BFTree, FT, CART and SVM 
were combined with bagging. To systematically evaluate and contrast the quality of predic-
tion capability between various bagging-based models and benchmark models is one of the 
staple intentions of this research. Additionally, four bagging-based models (Bag-BFTree, 
Bag-FT, Bag-CART and Bag-SVM) were utilized to the production of the landslide sus-
ceptibility mapping in Jiange County, which may have significance on local landslide miti-
gation and control.

In the course of this research, the influencing factors which were employed to con-
struct landslide susceptibility models were selected based on local geological environment, 

Fig. 4   ROC curves for the benchmark models
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Fig. 5   Landslide susceptibility maps for hybrid models
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existing literature and accessibility of data resources. Furthermore, the CAE method was 
adopted to assess relative importance of each conditioning factor. As a result, through cal-
culating acquired AM values of various influencing factors are all positive, demonstrating 
that all affecting factors contributed to landslide occurrence within study area. Concretely, 
the contribution of slope angle influence factor is identified as the superior because it has 
the topmost AM value, 0.311. Generally, areas within a certainty scope of slope angles are 
especially prone to place a premium on landslides (Kasai and Yamada 2019). In addition 
to slope angle, land use was judged as another critical evaluation criteria in landslide sus-
ceptibility assessment. According to the previous report, human-induced landslides events 
have been rising in the past few decades (Yue et  al. 2018; Schmidt et  al. 2019). Hence, 
construction land and farm land where human activities may be intense usually have higher 
susceptibility to landslide occurrence. There is another conditioning factor which should be 
explained furtherly. It could be seen that contribution of distance to lineament to landslide 
occurrence was relatively limited. The reason may be that majority of landslides in this 
study area were triggered by rainfall, river, engineering construction and so on rather than 
linear geological structure.

According to results of model validation, the optimal classifiers with validation dataset 
are Bag-BFTree model and Bag-CART model, respectively, among them the Bag-CART 
possesses the best predictive performance. It should be noticed that AUC values of Bag-
SVM and SVM models are relatively lower, which means that applicability of SVM is 
inferior in this study and its performance could be boosted using optimization algorithms 
(Cheng and Hoang 2015; Wang et al. 2019d). Moreover, it is obvious that bagging-based 
models outperform those benchmark models, proving that bagging strategy is efficient on 
advancing model accuracy and predictive capacity. In the present study, for validation data, 
bagging strategy makes the BFTree model and CART model have higher AUC increments, 
which are 0.121 and 0.108 separately. It should be noted that effects of model performance 
improvement definitely have connections with benchmark model types. Consequently, 

Very low Low Moderate High Very High
Bag-BFTree model 36.64 13.15 19.09 16.66 14.46
Bag-FT model 37.27 15.13 19.07 15.84 12.69
Bag-CART model 37.27 15.13 19.07 15.84 12.69
Bag-SVM model 27.46 17.50 17.87 11.15 26.02
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bagging may be not the most suitable approach for some benchmark classifiers, and it is 
necessary to evaluate and compare comprehensive performance of hybrid models which 
are constructed by various ensemble frameworks and multiple base classifiers. In other 
words, the best landslide susceptibility model is not fixed and unique for different datasets, 
and the employed model should be determined by data characteristics and computing effi-
ciency (Pourghasemi and Rahmati 2018).

In the process of generating landslide susceptibility maps, natural break method embed-
ded in ArcGIS was applied to identify five landslide susceptibility classes. According to 
literature, the most common classification methods involve natural break method, stand-
ard deviation method, equal interval method, quantile method and so on (He et al. 2019). 
Thereinto, natural break is usually regarded as the most prevailing method, which can max-
imize differences among various categories by automatically searching breakpoints. In this 
case, the final results produced by natural break method are reasonable and functional for 
landslide prevention in study area.

6 � Conclusions

According to the content of this article, the following key conclusions can be drawn:

(1)	 The total of fifteen landslide conditioning factors were put into use in creating landslide 
susceptibility model here. Based on results of CAE analysis, slope angle is of the most 
importance while distance to lineament had the lowest importance. Moreover, all the 
landslide conditioning factors indeed contributed to landslide occurrence in Jiange 
County.

(2)	 Bagging can significantly improve performance of benchmark models such as BFTree, 
FT, CART and SVM. Among those bagging-based models in this paper, Bag-CART 
model exhibited the best predictive performance with the AUC value of 0.874, the fol-
lowing is Bag-BFTree model, which two models possessed the more optimal accuracy 
with testing dataset. Additionally, the performance of FT and SVM models might be 
not satisfying due to lower AUC values.

(3)	 Based on natural break method, four classifiers which bagging-based models are used 
to create landslide sensitivity mappings holding five levels viz., very high, high, mod-
erate, low and very low, respectively. Concretely, the low-sensitivity category has the 
highest percentage of area.

In a nutshell, the thoughts and framework of this study have reference significance on 
later relevant researches. Besides, the conclusions and achievements in this paper can be 
developed as effective tools to reduce probability and threat of landslide occurrence in 
Jiange County.
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