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Abstract
Several studies have been conducted on droughts, precipitation, and temperature, whereas 
none have addressed the underlying relationship between nonlinear dynamic properties and 
patterns of two main hydrological parameters, precipitation and temperature, and meteoro-
logical and hydrological droughts. Monthly datasets of Midlands in the UK between 1921 
and 2019 were collected for analysis. Subsequent to apply a multifractal approach to attain 
the nonlinear features of the datasets, the relationship between two hydrological parameters 
and droughts was investigated through the cross-correlation technique. A similar process 
was performed to analyze the relationship between multifractal strength variations in time 
series of precipitation and temperature and droughts. The nonlinear dynamic results indi-
cated that droughts (meteorological and hydrological) were substantially affected by pre-
cipitation than temperature. In other words, droughts were more sensitive to precipitation 
fluctuations than temperature fluctuations. Concerning temperature, meteorological, and 
hydrological droughts were dependent on the minimum and maximum temperatures ( T

min
 

and T
max

 ), respectively. The correlation between precipitation and meteorological drought 
was more long-range persistence than precipitation and hydrological drought. Besides, 
the correlation between T

max
 and droughts was more long-range persistence than T

min
 and 

droughts. Analysis of nonlinear dynamic patterns proved that the multifractal strength of 
meteorological drought depended on the multifractal strength of precipitation and T

max
 , 

whereas the multifractal strength of hydrological drought depended on the multifractal 
strength of the T

min
 . The correlation between precipitation and drought indices exhibited 

more multifractal strength than temperature and drought indices. Finally, the pivotal role 
of maximum temperature on drought events was quite alerting due to global warming 
intensification.
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1 Introduction

Drought as a complex and multifaceted event provokes considerable damage to agriculture, 
natural resources, and society (Li et al. 2015; Yu et al. 2016; An and Hao 2017; Byaka-
tonda et al. 2018; Rahmani and Fattahi 2021). Climate change has induced massive altera-
tions in temperature and precipitation behavior patterns, which has resulted in an increment 
in the occurrence of extreme phenomena (Li et al. 2020; Zhao et al. 2018; Ahmed et al. 
2018). Therefore, drought forecasting and monitoring are significant and relevant; various 
studies have been conducted to monitor and predict drought in diverse catchments (Hao 
et al. 2017a, b; Tian et al. 2018; Aghelpour et al. 2020; Hao et al. 2018; Xu et al. 2018; 
Malik et  al. 2019; Agana et  al. 2017). On average, UK experiences a meteorological or 
hydrological drought every 5 to 10 years. From 1900 to 2015, twelve and three significant 
meteorological and hydrological droughts occurred in the UK, respectively. Details con-
cerning recorded droughts are provided in Table 1.

There are numerous definitions of meteorological and hydrological droughts varying 
based on the spatial and temporal of droughts. More limited than typical precipitation lead-
ing to alterations in climate patterns in a basin is a traditional interpretation of meteoro-
logical drought suggested by meteorological experts. A more accurate definition of mete-
orological and hydrological drought is that if precipitation or runoff of each year reduces 
by more than 35% compared to the long-term average leading up to that year, it is called 
meteorological and hydrological drought, respectively. It has been proved that hydrological 
and meteorological droughts are directly associated with the hydrological basin character-
istics and climate of the study catchment (Van Loon and Laaha 2015; Yang et al. 2017); 
and recently, the relationship between meteorological and hydrological droughts has been 
investigated (Liu et  al. 2019a, b; Bhardwaj et  al. 2020; Peña-Gallardo et  al. 2019a, b). 
However, the multifractal variations’ impact of temperature and precipitation on the mul-
tifractality of meteorological and hydrological drought hitherto has not been studied. The 
aforementioned will reveal the extent to which meteorological and hydrological droughts 

Table 1  Droughts recorded from 1900 to 2015 in the UK (see www. metoffi ce. gov. uk)

Time interval Start month End month Affected area Drought type

1 1920–1921 Aug Dec UK Meteorological
2 1933–1934 Apr Nov UK Meteorological
3 1943–1944 Feb Jul UK Meteorological
4 1947–1949 Aug Sep UK Meteorological
5 1963–1965 Dec Feb UK Meteorological
6 1972–1974 Aug May UK Meteorological
7 1975–1976 May Aug UK Meteorological
8 1988–1989 Aug Nov UK Meteorological
9 1990–1992 Mar Feb UK Meteorological
10 1995–1997 Apr Apr UK Meteorological
11 2004–2006 Nov Apr UK Meteorological
12 2010–2012 Apr Mar UK Meteorological
13 1995–1998 Summer Winter UK Hydrological
14 2003–2006 Summer Winter UK Hydrological
15 2010–2012 Winter Winter UK Hydrological

http://www.metoffice.gov.uk
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are sensitive (dependent) to pattern variations in temperature and precipitation. Moreover, 
it is of great significance for better understanding the drought mechanism, drought predic-
tion, and its severity, to assess and manage the risk and consequences of drought, as well as 
hydrological studies.

Multifractality is the essence of natural phenomena, and studies have designated that 
hydrological parameters such as precipitation (Zhang et al. 2021; Morales Martinez et al. 
2021), temperature (Santos da Silva et  al. 2020; Toluwalope Ogunjo et  al. 2021), and 
drought (Adarsh et al. 2019; Tatli and Dalfes 2020; Adarsh and Priya 2021; Toluwalope 
Ogunjo et al. 2021; Hou et al. 2018) have multifractal properties. The multifractal theory, 
associated with chaos theory, was advanced by Mandelbrot in the early 1970s.

The cross-correlation technique is a valuable tool for finding the hidden connection 
between two time series, by which the underlying association reveals between two phe-
nomena or two simultaneously recorded signals. Several studies have been conducted on 
droughts that used the cross-correlation technique for prediction and studying agricultural, 
meteorological, and hydrological droughts (Crow et al. 2012; Stefan et al. 2004; Zarei et al. 
2021; Uddin et al. 2020; Nabipour et al. 2020; Ullah et al. 2021). Multifractal detrended 
cross-correlation analysis (MF-DXA) is known as a practical technique for detecting the 
multifractal properties of two cross-correlated time series. This method is used for cross-
correlated nonstationary series, applying polynomial fitting to eliminate the trends in time 
series. This theory has been employed to study on future market of energy (Wang et  al. 
2019), global methane and temperature (Tzanis et al. 2020), air pollutants (Manimaran and 
Narayana 2018), Bitcoin market (Zhang et al.2018), carbon market future in Europe (Zou 
and Zhang 2020), RMB exchange rates (Xie et al. 2017), streamflow and sediment fluctua-
tion (Wu et al. 2018), river level records (Wu et al. 2020), the temperature anomalies and 
the SENSEX fluctuations (Chatterjee and Ghosh 2021), North Atlantic oscillation and pre-
cipitation (Tatli and Menteş 2019).

Met Office (the Met Office is the national meteorological service for the UK provid-
ing weather services and world-leading climate science) provides UK State of the Climate 
report annually. This governmental institution has recently published a report (Kendon 
et  al. 2020) providing information on climate trends and observational data concerning 
climate quality in the UK. This report ignored the invisible mechanism between climatic 
parameters (precipitation, temperature, meteorological and hydrological droughts) and 
failed to examine the impact (sensitivity) of precipitation and temperature on droughts. In 
addition, this report paid scant attention to the nonlinear dynamic patterns of precipita-
tion and temperature and their influence on the behavioral patterns of meteorological and 
hydrological droughts. In conclusion, the report delivered a superficial understanding of 
the climate parameters in the region (to be specific, precipitation, temperature, meteoro-
logical and hydrological droughts), whereas this study provided a profound perception of 
the underlying mechanisms governing the relationship between precipitation and tempera-
ture and meteorological and hydrological droughts. This study investigated the sensitivity 
(dependency) of meteorological and hydrological droughts to temperature and precipita-
tion, as well as meteorological and hydrological droughts multifractality dependence on the 
multifractal variations in precipitation and temperature. It was conducted to reveal 1—the 
nonlinear dynamic patterns governing the climate of the study area; 2—the variation in the 
nonlinear dynamic behavior of precipitation and temperature after how long brings about 
a difference in the patterns of hydrological and meteorological droughts in the study area; 
3—how strongly alterations in precipitation and temperature patterns affect droughts pat-
terns (in other words, the severity of meteorological and hydrological droughts can be esti-
mated by observing anomalies magnitude in the precipitation and temperature patterns); 
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4—the hidden correlation between precipitation and temperature and meteorological and 
hydrological droughts, and the latent effects of nonlinear dynamic behavioral patterns gov-
erning precipitation and temperature on meteorological and hydrological droughts patterns. 
Accordingly, this study serves to predict meteorological and hydrological droughts more 
efficiently and develop drought prediction methods by expanding our understanding of the 
underlying mechanisms governing the relationship between precipitation and temperature 
meteorological and hydrological droughts.

Standard Precipitation Index (SPI) and Streamflow Drought Index (SDI) were employed 
to estimate meteorological and hydrological droughts, respectively. To examine multifrac-
tal strength variations in precipitation and temperature time series, correlation analysis of 
meteorological and hydrological droughts with precipitation and temperature, multifrac-
tal detrended fluctuations analysis (MF-DFA), Pearson correlation coefficient (PCC), and 
Spearman rank correlation coefficient were employed, respectively. Additionally, to esti-
mate droughts’ multifractal strength variations dependence on multifractal strength varia-
tions in precipitation and temperature, and cross-correlation among time series, cross-cor-
relation, and multifractal detrended cross-correlation analysis (MF-DXA) techniques were 
applied, respectively.

The study is separated into five main segments. Chapter 2 discusses details concerning 
the study area, data sources, and theoretical and analytical details regarding cross-corre-
lation, MF-DFA, MF-DXA, SPI, and SDI. In part 3, the results and discussions are pre-
sented, and finally, a summary and conclusion are delivered in chapter 4.

2  Materials and methods

The employed precipitation, temperature, and river flow data were associated with the Mid-
lands in the UK (Fig. 1). The data were monthly and considered between 1921 and 2019 
(99 years), and precipitation and temperature datasets and river flow data were collected 
from www. metoffi ce. gov. uk and www. nrfa. ceh. ac. uk websites, respectively. The Midlands 
area embraces the Peak District, the Cotswold Hills, and the Northamptonshire, toward 
the north, south, and east, respectively. The Midlands area is bounded by the Welsh border 
to the west. Mean annual temperatures over the study area vary from 8 °C to over 10 °C. 
The wettest and the driest areas in the Midlands experience, on average, 800- and 600-mm 
precipitation per year, respectively (for further details, see www. metoffi ce. gov. uk). Gauged 
daily flow data (m3/s) related to station Severn at Bewdley (ID 54,001, see www. nrfa. ceh. 
ac. uk), and daily data were converted to monthly to fit the drought estimation.

Since the long-term correlations and the multifractal spectrum width (for multifractal 
strength estimation) are strongly susceptible to the periodicities in hydrological time series, 
the Seasonal and Trend decomposition using Loess (STL) technique suggested by Cleveland 
et al. (1990) was employed to eliminate the periodic seasonal trends in temperature and pre-
cipitation time series. Following, hydrological and meteorological droughts were estimated 
using SDI and SPI, respectively. To evaluate the multifractal strength variations in tempera-
ture, precipitation, and drought indices, multifractal detrended fluctuation analysis (MF-DFA) 
was employed. Pearson correlation coefficient (PCC), Spearman rank correlation coefficient 
(SRCC), and cross-correlation technique, and multifractal detrended cross-correlation analysis 
(MF-DXA) were applied for correlation and cross-correlation evaluation between time series 
and persistency determination of cross-correlation between time series, respectively. The PCC 
method examines the correlation based on the linear relationship and linear trend between 

http://www.metoffice.gov.uk
http://www.nrfa.ceh.ac.uk
http://www.metoffice.gov.uk
http://www.nrfa.ceh.ac.uk
http://www.nrfa.ceh.ac.uk
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time series. PCC values are ranged between -1 and 1. PCC equal to zero indicates the absence 
of correlation between the two time series. Values close to 1 and -1 indicate a strong depend-
ency and correlation between the two time series, in which negative and positive values repre-
sent the negative and positive correlation between the two series, respectively.

SRCC suggests a nonparametric method, evaluating the statistical rank correlation between 
two sets of rankings. SRCC assesses linear or nonlinear monotonic relationships between two 
time series. SRCC values and their interpretation are the same as the PCC method, with the 
difference that it describes the monotonic relationship between time series.

The cross-correlation function can be applied to assess the similarity between a time series 
and lagged versions of another time series as a function of the lag. Suppose the time series y1a 
and y2a and lags l  where l=  0, ± 1, ± 2, …. For data pairs 

(

y11, y21
)

,
(

y12, y22
)

,… ,
(

y1N , y2N
)

 , 
cross-correlation can be computed based on the sample standard deviations and the lag l cross-
covariance (Eqs. (1–2)):

where Cymyn
 , Sym , and rymyn are the lag l cross-covariance, the sample standard deviations, 

and cross-correlation, respectively.

(1)
Sy1 =

√

Cy1y2
(0), where Cy1y2

(0) = Var
(

y1
)

Sy2 =
√

Cy2y2
(0), where Cy2y2

(0) = Var
(

y2
)

(2)ry1y2 (l) =
Cy1y2

(l)

Sy1Sy2

; l = 0, ± 1,±2,…

Fig. 1  Selected region in the UK, 
marked with a green area (see 
www. metoffi ce. gov. uk)

http://www.metoffice.gov.uk
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In the following, the utilized drought indices and multifractal techniques will be 
introduced.

2.1  Standard precipitation index (SPI) and Streamflow drought index (SDI)

Standard Precipitation Index (SPI) and Streamflow Drought Index (SDI) were intro-
duced by McKee (1993) and Nalbantis (2009), respectively, to determine duration, 
severity, and intensity of meteorological and hydrological drought in a catchment at 
multi-timescales. SPI is based on the probability density function and the gamma dis-
tribution. The transformed probability density function and the gamma distribution to 
the standard normal distribution are represented by Z, addressing the SPI (Harisuseno 
2020). Z is characterized as Eq. (3):

where c and d are constant and t is calculated based on the probability density function and 
the gamma distribution.

The computational process difference between SPI and SDI is that in SPI, the values 
of precipitation are applied, while in SDI, the values of river flow are applied. SDI can 
be estimated by Eq. (4) (Ozkaya and Zerberh 2019):

k and i show the months and years, respectively, and Vi,k , V̄k , and Sk are the cumula-
tive streamflow volumes, mean, and standard deviation of cumulative streamflow vol-
umes, respectively.

Drought can be classified as follows based on SPI and SDI values (Table 2).
In this study, to scrutinize the meteorological and hydrological droughts, the values 

of SPI and SDI were calculated and applied monthly. To evaluate SPI and SDI, DrinC 
software (Tigkas et al. 2015) was employed, which is available at https:// droug ht- softw 
are. com/ downl oad/.

(3)Z = SPI = −

(

t −
c0 + c1 + c2t

2

1 + d1t + d2t
2 + d3t

3

)

(4)SDIi,k =
Vi,k − V̄k

Sk
i = 1, 2, … k = 1, 2, …

Table 2  Drought’s classifications 
based on SPI and SDI values 
(Tigkas 2008)

Values of SPI and SDI Class description

 + 2.0 and more Extremely wet
 + 1.5 to + 1.99 Very wet
 + 1.00 to + 1.49 Moderately wet
 + 0.5 to + 0.99 Mild wet
− 0.49 to + 0.49 Normal
− 0.5 to -0.99 Mild drought
− 1.0 to − 1.49 Moderate drought
− 1.5 to − 1.99 Severe drought
− 2.0 and less Extreme drought

https://drought-software.com/download/
https://drought-software.com/download/
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2.2  Multifractal detrended fluctuation analysis (MF‑DFA)

Detrended fluctuation analysis (DFA) method is widely used for the determination of 
monofractal scaling features and discovering long-range correlations in noisy, nonstation-
ary time series (Kantelhardt et  al. 2002). In geo-physical phenomenon including hydro-
logic processes which are expressing in time series formation, the complexity of multitude 
scaling behaviors makes it necessary to employ a multifractal approach to fully describe 
these interwoven connections. The multifractal detrended fluctuation analysis (MF-DFA) 
method is regularly exercised for estimation of the multifractality in the time series. MF-
DFA method is acknowledged as the most effective technique for multifractality determi-
nation of time series and its appropriate function for nonstationary time series analysis 
(Adarsh et al. 2020; Miloş et al. 2020), making this technique proper for multifractal analy-
sis of hydrological time series. Consequently, we employed the MF-DFA method to exam-
ine multifractal strength in time series. The singularity spectrum f (�) is a mechanism for 
representing the multifractality of a time series. The singularity spectrum is assessed based 
on the scaling exponent �(q), and first-order Legendre transforms (Eq.  (5)) and registers 
the time series segment dimensions distinguished by α (see Eq. (6)). Moreover, the width 
of f (�) denotes the strength of the multifractality in a time series. Essentially, if f (�) is a 
single point, then the time series is monofractal.

where � is perceived to be the Hölder exponent (singularity index) and q is the order 
weighting the local variations. H(q) represents the generalized Hurst exponent and is 
defined by Eq. (7).

Equation 7 is the power-law relationship between fluctuation segment Fq(s) and time-
scale s. The slope of the fitted Fq(s) and s estimates H(q).

The singularity index is utilized extensively to mark the degrees of the singularity of the 
time series. The width of f (�) is exposed by Δ� and details related to the distribution even-
ness of the prospect of the fractal formation. The higher the value of Δ�

((

�max − �min

))

 , 
the more substantial the multifractality and complexity of the time series. It involves an 
asymmetrical time series with more severe fluctuations. Δ� was measured to estimate the 
multifractality of each window.

The graphs of the H(q) ∼ q depict monofractal or multifractal behavior of the time 
series. A time series is multifractal when H(q) is dependent on the q values. Despite this, 
H(q) independency on the q values shows monofractality of the time series. The positive 
q for H(q) is granted to interpret the scaling behavior of fragments, which comprises con-
siderable fluctuations. However, negative q is accepted to elucidate the scaling behavior of 
sections holding miniature fluctuations (Livina et al. 2007; Sun et al. 2001). To assess the 
multifractal strength variations in the time series, a fixed-size window was considered (for 
illustration, a window with 6-month long or lag = 6). This window was then moved from 
the beginning to the end of the time series and the multifractal strength was estimated in 
each window.

(5)�(q) = q × H(q) − 1

(6)� =
��(q)

�q
, f (�) = �q − �(q)

(7)Fq(s) ∝ sH(q)
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2.3  Multifractal detrended cross‑correlation analysis (MF‑DXA)

In 2008, the multifractal detrended cross-correlation analysis (MF-DXA) theory was intro-
duced by Zhou. This method was suggested to assess the multifractal behaviors in the 
power-law cross-correlations between two signals, which is suitable for analyzing complex 
systems, including finance, ecology, physiology, geohydrology, and hydrology.

Suppose two time series x(i) and y(i) with the same length. The profile for calculation 
MF-DXA is shown in Eq. (8) (see (Zhou 2008)):

x̄ and ȳ represent the sample means, and N represents the time series length. In the next 
step, X(i) and Y(i) subsequences are divided into cell of length s , while the cells should not 
have any overlap. The similar process is repeated starting from the other end of the time 
series due to timescale s that may not be a multiple of N (Cao and Shi 2017). To obtain the 
q-order fluctuation function, averaging should be applied through all segments (Eq. (9)).

where F2(s, �) is the variance of each segment �.
For two long-range cross-correlated time series, according to the power-law, Fq(s) val-

ues augment for large s values (Eq. (10)).

The power-law connection between two recorded signals (time series) is described by 
the generalized Hurst cross-correlation exponent, which is shown in Eq.  (10) by Hxy(q) . 
The interpretation of Hxy(q) values and H(q) values in the MF-DFA method is similar, with 
the difference that Hxy(q) determines the multifractality and persistency properties of cross-
correlation between two time series.

MATLAB software was utilized to estimate cross-correlation, PCC, SRCC, MF-DFA, 
and MF-DXA.

3  Results and discussion

First, meteorological and hydrological droughts (SPI and SDI, respectively) were analyzed 
in the study area. Then, correlation, cross-correlation, and cross-correlation persistency 
were evaluated between hydrological parameters (precipitation, maximum temperature, 
and minimum temperature) and meteorological and hydrological droughts (SPI and SDI, 
respectively) to investigate the susceptibility of meteorological and hydrological droughts 
(SPI and SDI, respectively) to precipitation, maximum temperature, and minimum tem-
perature. Subsequently, the identical process was applied to multifractal strength variations 
in the aforementioned data. Table 3 exposes the abbreviations adopted in this study, which 

(8)X(i) =

i
∑

t=1

(x(t) − x̄), Y(i) =

i
∑

t=1

(y(t) − ȳ), i = 1, 2,… ,N

(9)
Fq(s) =

�

1

2Ns

∑2Ns

�=1

�

F2(s, �)
�
q∕2

�
1

q

q ≠ 0

F0(s) = exp
�

1

4Ns

∑2Ns

�=1
ln
�

F2(s, �)
�

�

q = 0

(10)Fq(s) ∼ SHxy(q)
→ logFq(s) = Hxy(q) log (s) + logA
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from now on the results are presented based on these abbreviations. The analysis steps are 
illustrated in Fig. 2.

First, the drought analysis results are presented, and then the sensitivity analysis results 
will be reviewed. According to the Met Office data, the average annual precipitation, maxi-
mum temperature, and minimum annual temperature in the UK from 1961 to 2010 were 
1126.9  mm, 12.6 °C, and 5.07 °C, respectively. However, the computed average annual 
precipitation, maximum temperature, and minimum temperature for the Midlands were 
780.86 mm, 13.07 °C, and 5.38 °C, respectively. It indicated that the study area was drier 
and warmer (lower average precipitation and higher average temperature) than the entire 
UK.

As shown in Fig. 3a, the study area experienced five severe or extreme dry months 
and two very wet months between 1921 and 1923. By examining the fluctuations trend 
of SPI and SDI, it was revealed that the impact of meteorological dry or wet months 
affected the hydrology of the region with a delay of one to three months. A similar 
examination was conducted for subsequent years and confirmed the mentioned results. 
The general trend of SPI and SDI fluctuations registered that the fluctuations had an 

Table 3  Utilized abbreviations 
and the meanings

Abbreviation Meaning

Sx,y Spearman’s value between time series x and y
Px,y Pearson’s value between time series x and y
Hx,y Generalized Hurst exponent’s value between 

time series x and y calculated by MF-DXA
Tmax Maximum temperature
Tmin Minimum temperature

Fig. 2  Analysis steps for evaluation of meteorological and hydrological drought sensitivity to precipitation, 
Tmax , Tmin , and multifractal strength variations in the time series
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upward trend and a slope equal to 3 × 10−6 . The fluctuations of SPI were much more 
severe than the SDI fluctuations (Fig. 3b).

Examination of anomalies in the monthly precipitation time series revealed that the 
number of anomalies (significant precipitation in a month; total precipitation above 
150 mm in one month was considered an anomaly) in one year decreased over time. 
On the other hand, the number of anomalies in the minimum and maximum tempera-
ture time series (extremely high or notably low temperature in a month; concerning 
maximum temperature, temperatures above 23 °C and temperatures below 3 °C were 
considered anomalies, and concerning minimum temperature, temperatures above 
12  °C and temperatures below −  2  °C were considered anomalies) increased. These 
anomalies can be seen in Fig. 4.

Fig. 3  SPI and SDI values for short- (1921–1923) (a) and long-term (1921 to 2019) (b) concerning Mid-
lands in the UK
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3.1  Results of Pearson, Spearman, Cross‑Correlation, and Hurst’s values 
concerning precipitation and temperature time series

To investigate the dependency and sensitivity of meteorological and hydrological 
droughts to precipitation and temperature, Hurst exponent, Pearson correlation coeffi-
cient (PCC) (see Benesty et  al. 2009), Spearman rank correlation coefficient (SRCC) 
(see Lyerly 1952), and cross-correlation were estimated for hydrological datasets (pre-
cipitation, Tmax and Tmin ) and drought indices (SPI and SDI) time series, the results of 
which are sorted in Table 4 and Fig. 5.

To describe Spearman and Pearson’s values, the word Pre is used instead of precipi-
tation. The values of PPre, SPI , PPre, SDI , PTmax, SPI , and PTmax, SDI were negative (Table 4), 

Fig. 4  Monthly precipitation graphs, average monthly maximum temperature, and average monthly mini-
mum temperature for Midlands in the UK between 1921 and 2019
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indicating the presence of a negative (reverse connection) linear relationship between 
the two time series. The values of PTmin, SPI and PTmin, SDI were positive, suggesting a 
level of positive (direct connection) linear correlation between the two time series. The 
correlation between precipitation time series and drought indices was higher than tem-
perature time series. This was indicative of a stronger linear relationship between pre-
cipitation and droughts. In other words, in the study area, meteorological and hydro-
logical droughts were more susceptible to precipitation fluctuations than temperature 
fluctuations. Precipitation and Tmin had a stronger linear correlation (negative and posi-
tive, respectively) with meteorological drought than hydrological drought. Moreover, 
hydrological drought exposes more correlation (a negative linear correlation) to Tmax 
than meteorological drought.

Table 4 illustrates that the values of SPre, SPI , STmax, SDI , and STmin, SDI were negative. 
It provided evidence for a negative monotonic relationship between precipitation and 
meteorological drought and temperature and hydrological drought. On the contrary, 
the values of SPre, SDI , STmax, SPI , and STmin, SPI were positive, implying that temperature 
and meteorological drought and precipitation and hydrological drought are monotoni-
cally related. Besides, the values of SPre, SPI and STmin, SPI were higher than SPre, SDI and 
STmin, SDI . It would suggest that, in the study area, meteorological drought exhibited a 
potent monotonical relation with precipitation and Tmin . However, the value of STmax, SPI 
was less than STmax, SDI , drawing a conclusion of an effective monotonical relation 
between Tmax and hydrological drought.

Figure  5 illustrates the cross-correlation values between precipitation and tempera-
ture time series and drought indices. It was obvious from Fig. 5 that the cross-correlation 
between precipitation and drought indices was higher than temperature and drought indi-
ces. Besides, the cross-correlation between precipitation and SPI was more substantial than 
precipitation and SDI (the maximum cross-correlation value and red lines crossed confi-
dence bounds). It implied that meteorological drought showed more sensitivity to precipi-
tation in comparison with hydrological drought. The maximum cross-correlation between 
precipitation and SPI was at lag 3, while between precipitation and SDI was at lag 19. The 
former supported the notion that precipitation fluctuations affected meteorological drought 
(first) and hydrological drought (subsequently) with a delay of 16 months.

More sensitivity of hydrological drought to temperature than meteorological drought 
to temperature was inferred from stronger cross-correlation between temperature and SDI 
than temperature and SPI. The cross-correlation between Tmax and SDI was more solid 
(more values bigger than confidence bounds) than Tmin and SDI, indicating more sensitivity 
of hydrological drought to Tmax than Tmin . The cross-correlation between temperature and 
SPI was negligible, and the maximum cross-correlation between temperature and SDI was 

Table 4  Generalized Hurst 
exponent, PCC, and SRCC’s 
values concerning precipitation 
and temperature time series and 
drought indices

y series x series

Precipitation Tmax Tmin

Hx,y SPI 0.8261 0.7508 0.7339
SDI 0.7467 0.7367 0.7207

Px,y SPI − 0.0996 − 0.0012 0.0022
SDI − 0.0072 − 0.0028 0.0018

Sx,y SPI − 0.0902 0.0034 0.0062
SDI 0.0038 − 0.0055 − 0.0032
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at lag 498 (maximum cross-correlation values concerning Tmax and Tmin were -0.0645 and 
-0.0656, respectively.)

The time series persistency was investigated by application of the Hurst exponent, 
and the results are provided in Table 4. As shown in Table 4, HSPI values were higher 
than HSDI values. It supported that precipitation and temperature registered cross-cor-
relation with a stronger long-range persistency with meteorological than hydrological 

Fig. 5  The cross-correlation graphs concerning precipitation and temperature time series and drought indi-
ces (the blue horizontal lines are confidence bounds consisting of 2 standard errors)



2210 Natural Hazards (2021) 109:2197–2219

1 3

drought. Besides, HPre,SPI and HPre,SDI held the highest values, corroborating a cross-
correlation with long-range persistency between precipitation time series and drought 
indices.

A long-range persistent cross-correlation between Tmax and drought indices was 
inferred from greater values of HTmax,SPI and HTmax,SDI than HTmin,SPI and HTmin,SDI . The 
cross-correlation between meteorological drought and precipitation exhibited more 
long-range memory than hydrologic drought and precipitation, concluded from the 
higher value of HPre,SPI than HPre,SDI . The Hurst values confirmed linear, monotonic, 
and sensitivity analysis results concerning relationship between precipitation and tem-
perature and drought indices. It was verified that there was an influential association 
between meteorological drought and precipitation.

To evaluate the timescale influences on Hurst’s values and time series multifractal-
ity, four timescales were considered (6–24  months (2  years), 6–60  months (5  years), 
6–120 months (10 years), and 6–228 months (19 years)) (Table 5). The results proved 
that the cross-correlation long-range persistency intensified between hydrological series 
and drought indices owing to the reduction in scale length. However, the multifractal 
strength declined as a cutback in scale length except for the 6–24 months scale. At the 
6–24 months scale, Δ�Tmax,SPI , Δ�Tmin,SPI , Δ�Tmax,SDI , and Δ�Tmin,SDI experienced incre-
ments. The Δ� positive values for all scale-lengths provided evidence for more probabil-
ity of large local fluctuations than small local fluctuations in the time series.

Table 5  Generalized Hurst exponent and multifractal strength’s values concerning hydrological time series 
and drought indices

Scale y series x series

Precipitation Tmax Tmin

6–24 months (2 years) Hx,y SPI 0.9515 0.9695 0.9449
SDI 0.9245 0.9435 0.9103

Δ�x,y SPI 1.5870 1.9662 1.8963
SDI 1.6172 2.0480 1.9763

6–60 months (5 years) Hx,y SPI 0.8513 0.9493 0.9289
SDI 0.8160 0.9216 0.8968

Δ�x,y SPI 1.7909 1.9057 1.8655
SDI 1.7778 1.9044 1.8580

6–120 months (10 years) Hx,y SPI 0.8465 0.8201 0.7974
SDI 0.7564 0.7822 0.7614

Δ�x,y SPI 1.9318 1.9587 1.9319
SDI 1.8917 1.9447 1.9203

6–228 months (19 years) Hx,y SPI 0.8275 0.7513 0.7342
SDI 0.7435 0.7360 0.7201

Δ�x,y SPI 2.0109 1.9934 1.9712
SDI 1.9630 1.9850 1.9663
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3.2  Results of Pearson, Spearman, Cross‑Correlation, and Hurst’s values 
concerning multifractal strength variations in precipitation, temperature, 
and drought indices time series

The variations in multifractal strength in the time series were estimated (by MF-DFA) 
and analyzed by PCC, SRCC, cross-correlation, and MF-DXA; the results are sorted in 
Table 6 and Fig. 6. To analyze the multifractal strength variations in the time series (Pre-
cipitation, Tmax , Tmin , SPI, and SDI), the multifractality of each window was arranged 
sequentially to form a series (see Sect. 2.2) representing the multifractal strength fluc-
tuations in each dataset.

The values of PPre, SPI , Ptemp, SPI , and PTmin,SDI were positive (Table 6). It was a proof 
of positive linear correlation between time series’ multifractal variations. The negative 
values of PPre, SDI and PTmax, SDI supported the notion that multifractal strength varia-
tions in precipitation and SDI, and Tmax with SDI had negative (reverse) linear rela-
tionship. The results confirmed that as multifractal strength augments in precipitation 
and temperature time series, multifractal strength increases in meteorological drought. 
Likewise, augmentation of the multifractal strength in Tmin increases the multifractality 
in hydrological drought. Conversely, multifractal strength augmentation in precipitation 
and Tmax brings about a reduction in the multifractality of hydrological drought. Multi-
fractal strength of meteorological drought exhibited more correlation with multifractal 
strength variations in precipitation and Tmax , whereas hydrological drought multifractal-
ity displayed more correlation with multifractal strength variations in Tmin . SPI and SDI 
presented the weakest linear relationship to Tmin and Tmax , respectively.

As shown in Table  5, the values of SPre,SPI , STmax,SPI , STmin,SDI , and STmax,SDI were 
positive while STmin,SPI and SPre,SDI were negative, verifying a positive (direct) and a 
negative (reverse) monotonical relation between time series, respectively. STmax,SPI was 
higher than STmax,SDI , indicating that the multifractal strength variations in the Tmax time 
series and the SPI were more monotonically related than Tmax and SDI. Higher values 
of SPre,SDI and STmin,SDI in comparison with SPre,SPI and STmin,SPI suggested the existence 
of a more substantial relationship between multifractality in precipitation and Tmin with 
hydrological drought multifractality than meteorological drought. The results made 
clear that multifractality variations in meteorological and hydrological droughts exhib-
ited noticeable monotonic relation with Tmax and Tmin , respectively. On the contrary, 
multifractality variations in meteorological and hydrological drought displayed negligi-
ble monotonic relationship with precipitation and Tmin multifractal strength variations, 
respectively.

Table 6  Hurst, PCC, and SRCC’s 
values concerning multifractal 
strength variations in the time 
series

y series x series

precipitation Tmax Tmin

Hx,y SPI 0.7811 0.7555 0.7474
SDI 0.7880 0.7422 0.7048

Px,y SPI 0.0604 0.0947 0.0139
SDI − 0.0341 − 0.0007 0.1116

Sx,y SPI 0.0085 0.0575 − 0.0312
SDI − 0.0374 0.0015 0.1468



2212 Natural Hazards (2021) 109:2197–2219

1 3

Fig. 6  The cross-correlation graphs concerning multifractal strength variations in precipitation and tem-
perature time series and drought indices (the blue horizontal lines are confidence bounds consisting of 2 
standard errors)
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According to Fig.  6, the highest cross-correlation was recorded between multifractal 
variations in precipitation and drought indices. Besides, the cross-correlation between mul-
tifractal variations in precipitation and SPI was more effective than precipitation and SDI. 
It implied that multifractal variations in meteorological and hydrological droughts were 
more sensitive to multifractal changes in precipitation than temperature. Moreover, multi-
fractal fluctuations in precipitation more influenced multifractal variations in meteorologi-
cal drought than hydrological drought.

A higher level of cross-correlation was recorded between multifractal variations of Tmax 
and drought indices than Tmin and drought indices. It proved that multifractal variations in 
drought indices were more sensitive to multifractal fluctuations in Tmax than Tmin . The max-
imum recorded cross-correlation value related to multifractal variations in temperature and 
SDI, providing evidence for high sensitivity of multifractal variations in hydrology drought 
(compared with meteorological drought) to multifractality in temperature.

The existence of the long-range persistence cross-correlation between multifractal 
strength variations in all time series was illustrated by the generalized Hurst exponent 

Fig. 7  The q-order Hurst exponent diagram ( H(q) ∼ q ) concerning precipitation, Tmax , and Tmin and SPI 
(left) and SDI (right) time series

Fig. 8  The q-order Hurst exponent diagram ( H(q) ∼ q ) concerning multifractal strength variations in pre-
cipitation, Tmax , and Tmin and SPI (left) and SDI (right) time series
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values greater than 0.5 (Table  6). The highest value of generalized Hurst exponent was 
associated with precipitation, confirming the highest long-range persistent cross-corre-
lation between precipitation and drought indices. The generalized Hurst exponent values 
confirmed the linear and sensitivity analysis results concerning the relationship between 
multifractal strength variations in the time series. It verified that there was a substantial 
connection between meteorological drought and precipitation.

The q-order Hurst exponent diagram ( H(q) ∼ q ) was used to investigate the fractality of 
cross-correlation between time series (Figs. 7 and 8).

It is clear from Figs. 7 and 8 that cross-correlation between the time series exhibited 
multifractal properties due to the nonlinear dependence of H(q) on q . The more nonlin-
ear relationship between H(q) and q , the greater the multifractal strength. Therefore, the 
cross-correlation between precipitation and drought indices (for original time series and 
multifractal strength variations in the time series) was more multifractal than temperature 
and drought indices. The multifractal analysis confirmed PCC, SRCC, and cross-correla-
tion results concerning the quality of the relationship between precipitation and drought 
indices. The multifractal, PCC, SRCC, and cross-correlation results indicated that drought 
indices were highly sensitive to precipitation than temperature. Moreover, variations in 
droughts multifractality were more influenced by precipitation multifractality than tem-
perature multifractality. Furthermore, meteorological drought and its multifractality were 
significantly impacted (sensitive and dependent) by precipitation and its multifractality, 
whereas hydrological drought and its multifractality were considerably affected by tem-
perature and its multifractality.

According to mentioned results, we are able to draw a number of conclusions:
The linear correlation between precipitation and drought indices was stronger than tem-

perature and drought indices. Meteorological drought had a significant linear and mono-
tonic relationship with precipitation and Tmin , whereas hydrological drought had a consid-
erable linear and monotonic relationship with Tmax . It was verified that cross-correlation 
between precipitation and drought indices was more long-range persistent than temperature 
and drought indices. Moreover, the cross-correlation between precipitation and meteoro-
logical drought had more long-term memory than precipitation and hydrological drought. 
Additionally, the cross-correlation between Tmax and drought indices exhibited more long-
range persistency than Tmin and drought indices. The multifractal analysis confirmed cor-
relation, monotonic, and sensitivity analysis results so that meteorological drought was 
sensitive to precipitation fluctuations and hydrological drought presented sensitivity to 
temperature variations.

The analysis results of multifractal strength variations demonstrated that meteorological 
drought multifractality had a strong linear correlation with multifractal strength variations 
in precipitation and Tmax , whereas hydrological drought multifractality had a substantial 
linear relationship with Tmin . The multifractal strength variations in Tmax and meteorologi-
cal drought (SPI) were monotonically related. Likewise, the multifractal strength variations 
in hydrological drought (SDI) and precipitation and Tmin exhibited an influential mono-
tonical relationship. The generalized Hurst exponent indicated that the cross-correlation 
between multifractal strength variations in all time series was long-range persistent. It was 
verified that as meteorological drought depended on precipitation and hydrological drought 
depended on temperature from linear correlation, monotonic relation, and cross-correlation 
points of view, multifractality in meteorological and hydrological droughts was dependent 
on multifractal variations in precipitation and temperature, respectively.

The analysis results of timescale changing proved augmentation of the long-range 
persistency of cross-correlation owing to the reduction in scale length. However, the 
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multifractal strength declined as a cutback in scale length except for the 6–24 months scale. 
At the 6–24  months scale, Δ�Tmax,SPI , Δ�Tmin,SPI , Δ�Tmax,SDI , and Δ�Tmin,SDI experienced 
increments. The Δ� positive values for all scale-lengths provided evidence for more prob-
ability of large local fluctuations than small local fluctuations in the time series.

The q-order Hurst exponent graph ( H(q) ∼ q ) verified that cross-correlation between 
the time series exhibited multifractal properties, and the cross-correlation between precipi-
tation and drought indices was more multifractal than temperature and drought indices. 
Since the multifractal strength of the cross-correlation between precipitation and droughts 
(meteorological and hydrological) was stronger than the multifractal strength of the cross-
correlation between temperature and droughts, droughts’ sensitivity to precipitation is 
less than temperature. In other words, it demonstrates the leading role of temperature on 
drought events. Multifractal analysis indicated that as there was a more substantial linear 
relation, monotonical correlation, and long-range persistency between precipitation and 
droughts than temperature and droughts, the cross-correlation between droughts and pre-
cipitation was more multifractal than droughts and temperature. The cross-correlation of 
multifractal strength variations between precipitation and droughts (meteorological and 
hydrological) was multifractal than temperature and droughts. This proved that multifractal 
strength variations in droughts are more affected by temperature than precipitation.

Several studies hitherto have been conducted on meteorological and hydrological 
drought association (Li et al. 2020, 2018; Liu et al. 2019a, b; Zhu et al. 2019; Yao et al. 
2020), cross-correlation analysis of hydro-meteorological time series (Wei et al. 2020), and 
multifractal characterization of drought (Adarsh et al. 2019; Hou et al. 2018; Toluwalope 
Ogunjo 2021; Adarsh and Priya 2021); however, no research has been performed on the 
sensitivity of meteorological and hydrological drought to precipitation and temperature, 
besides meteorological and hydrological droughts’ multifractality dependence on precipi-
tation and temperature multifractality. Therefore, this issue was addressed in the present 
study to broader our understanding of droughts mechanism.

4  Conclusion

It was attempted to evaluate meteorological and hydrological droughts’ susceptibility to 
precipitation and temperature, besides meteorological and hydrological droughts’ mul-
tifractality dependence on precipitation and temperature multifractality. The nonlinear 
dynamic and cross-correlation results indicated that precipitation had a greater effect on 
droughts (meteorological and hydrological) than temperature. In other words, droughts 
were more sensitive to precipitation fluctuations than temperature fluctuations. Concern-
ing temperature, meteorological and hydrological droughts were dependent on the mini-
mum and maximum temperatures, respectively. The relationship between precipitation and 
meteorological drought was more long-range persistence than precipitation and hydrologic 
drought. Besides, the correlation between maximum temperature and droughts was more 
long-range persistence than minimum temperature and droughts. Analysis of nonlinear 
dynamic patterns governing the systems proved that the multifractal strength of mete-
orological drought depended on the multifractal strength of precipitation and maximum 
temperature, whereas the multifractal strength of hydrological drought depended on the 
multifractal strength of the minimum temperature. The analysis results of timescale chang-
ing proved augmentation of the long-range persistency of cross-correlation owing to the 
reduction in scale length. However, the multifractal strength declined as a cutback in scale 
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length except for the 6–24 months scale. At the 6–24 months scale, Δ�Tmax,SPI , Δ�Tmin,SPI , 
Δ�Tmax,SDI , and Δ�Tmin,SDI experienced increments. The Δ� positive values for all scale-
lengths provided evidence for more probability of large local fluctuations than small local 
fluctuations in the time series. The q-order Hurst exponent graph ( H(q) ∼ q ) verified that 
cross-correlation between the time series exhibited multifractal properties, and the cross-
correlation between precipitation and drought indices was more multifractal than tempera-
ture and drought indices, demonstrating the leading role of temperature on drought events.

This study had a few limitations, including it did not consider the underlying relation-
ship between other parameters (such as wind speed, sunshine, and evapotranspiration) 
and droughts (meteorological and hydrological). Moreover, it did not examine the impact 
of other non-climatic (or human factors) elements such as land-use or -cover change on 
nonlinear dynamic patterns governing meteorological and hydrological droughts. How-
ever, this study suggested a novel approach for those interested in studying the nonlinear 
dynamic mechanisms governing droughts (meteorological and hydrological) and hydro-
logical elements.
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