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Abstract
Rainfall intensity or depth estimates are vital input for hydrologic and hydraulic models 
used in designing drainage infrastructures. Unfortunately, these estimates are suscepti-
ble to different sources of uncertainties including climate change, which could have high 
implications on the cost and design of hydraulic structures. This study adopts a systematic 
literature review to ascertain the disregard of credibility assessment of rainfall estimates 
in Nigeria. Thereafter, a simple framework for informing the practice of reliability check 
of rainfall estimates was proposed using freely available open-source tools and applied to 
the north central region of Nigeria. The study revealed through a synthesis matrix that in 
the last decade, both empirical and theoretical methods have been applied in predicting 
design rainfall intensities or depths for different frequencies across Nigeria, but none of the 
selected studies assessed the credibility of the design estimates. This study has established 
through the application of the proposed framework that drainage infrastructure designed 
in the study area using 100–1000-year return periods are more susceptible to error. And 
that the extent of the credibility of quantitative estimates of extreme rains leading to flood-
ing is not equal for each variability indicator across a large spatial region. Hence, to opti-
mize informed decision-making regarding flood risk reduction by risk assessor, variability 
and uncertainty of rainfall estimates should be assessed spatially to minimize erroneous 
deductions.

Keywords  Parametric bootstrap · Variability and uncertainty analysis · Two-dimensional 
Monte Carlo framework · Stochastic simulation · Design rainfall estimates

1  Introduction

The estimate of design events must be reasonably accurate to avoid high costs of construct-
ing hydraulic structures. When flood magnitudes are overvalued, the cost of constructing 
hydraulic structures may be high, while excessive damage and even loss of human lives 
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may be unavoidable if the flood potential is underestimated. Hence, it is essential to esti-
mate how often a specific heavy rain leading to a flooding event will occur or how massive 
a storm will be for a particular probability of exceedance or recurrence interval. This might 
be achieved through the estimation of distributional parameters and the extrapolation of 
cumulative distribution functions (CDFs) to generate extreme flood values.

Design estimates of rainfall can be susceptible to different uncertainties and variabilities 
that question their credibility. Therefore, by ignoring credibility assessment of design rain-
fall estimates in terms of uncertainties and variabilities, practitioners fail to highlight the 
inherent dangers of designing unsustainable drainage infrastructure (Chuah et  al. 2017). 
According to Hassan et al. (2019), uncertainties are unavoidable in hydrologic frequency 
analysis, and they may arise from various sources distinguished as data uncertainties, 
structural uncertainties and parameter uncertainties (Leandro et  al. 2013; Leandro et  al. 
2019). Various origins of uncertainties have also been described by Mamoon and Rahman 
(2014). According to Nathan and Weinmann (2013) and Renard et al. (2010), the credibil-
ity of hydrologic simulations could be attenuated by the model selection process, the input 
of the model and its parameters, the structure of the model established and assumptions 
made, the slips contained in data used for simulation training and the output of the model. 
Climate change has also been proved to affect the credibility of design estimates of rainfall 
for flood control (Wang et al. 2013), due to alterations of future severity and frequency of 
storms (Hajani and Rahman, 2018a, b).

The usual practice in hydrologic frequency analysis is to select a small sample size of 
peak rains or discharge, which may not represent the statistical characteristics of the dis-
tribution of the population; as a result, estimated parameters of selected PDF (probability 
density function) are expected to be prone to uncertainties despite employing the proper 
parameter estimation methods. Uncertainty is always present when planning, developing, 
managing and operating water resources systems. It arises because many factors that affect 
the performance of water resources systems are not and cannot be known with certainty.

Variability is associated with temporal, geographical and/or individual heterogeneity 
among affiliates of a statistical population, and it is a complicated and integral character-
istic of a system (Pouillot and Delignette-Muller 2010). Begg et  al. (2014) asserted that 
variability can be assessed by a distribution of frequencies of several occurrences of the 
quantity resulting from an observed record. For instance, Loveridge and Rahman (2018) 
affirmed that frequent flood events pronounce the variability of factors that lead to flood, 
which further intensifies the uncertainties. Measurement or observation of data through 
statistical manipulations is used for computing variability (Begg et  al. 2014), and these 
can be represented by frequency distribution. In flood risk management, variability and 
uncertainty have different implications and should be treated separately (Pouillot and Del-
ignette-Muller 2010). The mean population risk and its connected uncertainty are impor-
tant to decision-makers, which involve estimating the uncertainty of an estimate after its 
variability has been computed. This distinction has been advanced and validated by various 
methods in recent times.

Different methods have been proposed for the valuation of uncertainties to increase the 
credibility of design estimates, which include analytical, Monte Carlo simulation, Bayesian, 
first-order variance estimation centered on the development of Taylor’s series, bootstrapping, 
cross-validation and fuzzy-based methods (Mamoon and Rahman 2014). But bootstrapping 
and Monte Carlo simulation have been widely applied for assessing the credibility of design 
rainfall estimates used in the construction of hydraulic structures. For instance, Chuah et al. 
(2017) and Mamoon and Rahman (2019) adopted Monte Carlo simulation in computing cred-
ibility intervals of design rainfall, while Seo and Park (2011), Hassan et al. (2019), Mamoon 
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and Rahman (2019) adopted the bootstrapping method to ascertain the credibility of the 
parameters of suitable models.

Various studies have amplified the importance of using the two-dimensional Monte Carlo 
simulation framework in quantitative risk assessment involving the distinction of variabilities 
and their associated uncertainties (Pouillot and Delignette-Muller 2010; Begg et  al. 2014). 
The two-dimensional Monte Carlo simulation framework is a valuable method for reduc-
ing the complexity of estimating the densities of distribution, through the development of an 
empirical distribution that is asymptotically related to the distribution of the risk crosswise a 
population (Pouillot and Delignette-Muller 2010). The uncertainty of risk arising from param-
eter estimates can be evaluated by the two-dimensional Monte Carlo simulation, and it has 
been used in numerous risk assessment domains (Vicari et al. 2007; Jang et al. 2009a, b; Jones 
et  al. 2009; Özkaynak et al. 2009; Guo et al. 2020), flood management inclusive (Rahman 
et al. 2002; Kalyanapu et al. 2011; Liu and Liu 2019).

Extensive studies have been recently done in Nigeria on hydrologic frequency analysis 
to reduce flood risk based on peak rainfall and river discharge (Manta and Ahaneku 2009; 
Agbede and Abiona 2012; Ehiorobo and Izinyon 2013; Izinyon and Ajumuka 2013; Gbadebo 
et al. 2014; Agbede and Aiyelokun 2016; Aiyelokun et al. 2017; Okeke and Ehiorobo 2017; 
and Aiyelokun et al. 2018). Some of these studies endeavored to present statistical models or 
plots that relate design floods or rainfall estimates with return periods but failed to address the 
level of reliability of the models and credible intervals of their variability.

The assessment of the credibility of design rainfall estimates has been disregarded by many 
researchers owning to difficulties associated with the procedure of conducting it (Huang et al. 
2016), intentional underestimation of risk by practitioners (Overeem et al. 2008) and the lack 
of interest by researchers, which have led to limited studies on credibility of design rainfall 
estimates (Tung and Wong 2014). It is also interesting to note that in situations where uncer-
tainty and variability were conducted to validate hydraulic designs, they were not investigated 
spatially across a large region. In this regard, the innovative aspect of the study is that it pre-
sents a simplified framework for assessing the uncertainty and variability of design rainfall 
estimates to optimize flood risk reduction and management. The outcome of this study is 
beneficial to policymakers, researchers and engineers by informing a reliable risk assessment 
practice when designing hydraulic structures for flood control in Nigeria and other parts of the 
world.

The present study aims to assess the level of disregard of credibility evaluation of design 
rainfall estimations by Nigerian researchers and to establish a framework for assessing the 
credibility of design rainfall estimates and models, using the north central region of Nigeria as 
a case study. The objectives of the study are (1) to conduct a systematic review on the extent 
of disregard of credibility assessment of design rainfall estimation in Nigeria, (2) to evaluate 
the performance of selected probability models in fitting the empirical distribution of 24-h 
annual maxima series (AMS) in the study area, (3) to assess the uncertainty of the parameters 
of suitable models, (4) to assess the uncertainty of design rainfall estimate for different return 
periods and (5) to assess the variabilities of AMS and their uncertainties at 95% credible level 
through stochastic simulations across the study region.
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2 � Materials and methods

2.1 � Study area and data acquisition

The study area is the north central region of Nigeria, which is located approximately 
between longitude 2° 40′ 20.14" and 10° 37′ 47.93" east and latitude 6° 25′ 57.09" and 11° 
26′ 39.57" north. The region consists of Benue, Nasarawa, Plateau, Federal capital territory 
(FCT), Koji, Kwara and Niger States (Fig. 1), covering a landmass of about 229,028 km2. 
The study area has a tropical climate characterized by wet and dry seasons. Monthly mean 
rainfall varies from 6.50 to 225.9 mm in the southwestern (Ilorin) part and from 0.61 to 
271.38 mm in the northeastern region (Jos), while monthly maximum temperature ranged 
from 29.04 to 35.66 °C in Ilorin and 24.13–30.91 °C in Jos. This statistic is based on the 
monthly climate data recorded between 1960 and 2016. A daily 30-year (1981–2010) rain-
fall data recorded at Lokoja, Bida, Makurdi, Minna, Yelwa, Abuja, Jos and Ilorin mete-
orological stations were obtained from the Nigerian Meteorological Agency (NIMET) to 
generate AMS of rains for north central Nigeria.

2.2 � Synthetic literature review

The study adopted a systematic literature review. Available publications were searched 
from existing databases such as Web of Science, SCOPUS, Google Scholar, African Jour-
nal Online, professional association affiliated journals and other online sources published 
in the past decade. The publications were systematically searched using keywords such as 
rainfall, design storms, probability distributions, stochastic modeling, frequency analysis 
of annual maximum and Nigeria. The primary source of the review was adopted for this 
study; herein, the report of the original researchers was assessed and analyzed (Cronin 
et. al. 2008). The qualitative assessment method (Grant and Booth 2009) in the form of 
the synthesis matrix was adopted; this was organized to present the indexed database of the 

Fig. 1   Map of north central Nigeria
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publications, the year of publication, study area, period of data selection, assessment of the 
goodness of fit of various probability models, developed model, assessment of the credibil-
ity of model parameters and assessment of the credibility of model quantiles.

2.3 � Proposed framework for credibility assessment of design rainfall estimates

To inform the practice of assessing the credibility of design rainfall estimates by practi-
tioners before employing them in the designs of drainage infrastructure, a methodological 
framework was constructed based on the authors’ synthesis of closely related studies as 
shown in Fig. 2. The framework constitutes five (5) stages, which include the preliminary 
assessment, performance evaluation of selected theoretical distributions, credibility assess-
ment of model parameters, the credibility of suitable model quantiles and propagation of 
variability and uncertainty stage.

The preliminary assessment stage constitutes data selection and preprocessing, which 
involves sourcing for data by the practitioner. This has been reported to be a major bottle-
neck for reliable hydrological modeling, as data acquisition is very difficult in most regions 
of the world. Data are either not readily available for research purposes or characterized by 
missing values. Therefore, at this step, it is important to investigate the data for error detec-
tion and removal of anomalies. In general, rainfall data used must be relevant, adequate and 
accurate (Ojha et al. 2008).

After the relevance, adequacy and accuracy of the data have been ensured, annual maxi-
mum or instantaneous peak rainfall intensity for different durations or in the case where 
they are not available, the 24-h duration is then abstracted. This is followed by the compu-
tation of descriptive statistics of the abstracted data. Descriptive statistics are employed to 
support the selection of candidate probability distributions to fit the abstracted AMS (Del-
ignette-Muller and Dutang 2015). These statistics include central tendency estimates such 
as mean, mode, median; dispersion estimates such as the coefficient of variation, standard 
deviation and the shape estimates such as skewness and kurtosis quantities of the annual 
maximum series which measures the empirical distribution. More so, a Cullen and Frey 
graph (skewness–kurtosis graph) could be employed to select potential probability distri-
butions (Delignette-Muller and Dutang 2015).

Fig. 2   Framework for assessing the credibility of design rainfall estimates
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Having selected candidate probability distributions, the second stage of the frame-
work is employed, which involves the estimation of the parameters and evaluation of 
the performance of the selected probability model to select the most suitable model 
that explains the distribution of the abstracted AMS. Various parameter estimation 
methods have been proposed; however, any of maximum likelihood estimation (MLE), 
probability-weighted moment (PWM) and linear moment (L-M) method may be 
used since they have been reported to be robust than the method of moment (MOM) 
procedure.

The second stage also involves quantitative and qualitative assessment procedures. 
The quantitative constitutes the adoption of the goodness-of-fit statistics and good-
ness-of-fit criteria. The goodness-of-fit statistics such as Cramer–von Mises, Kolmogo-
rov–Smirnov and Anderson–Darling statistics (Delignette-Muller and Dutang 2015) or 
Chi-square statistics (Delignette-Muller et  al 2015) may also be employed. Also, the 
goodness-of-fit criteria based on the  log-likelihood such as AIC and BIC or with an 
inclusion of diagnostic statistics such as the D-index test (Vivekanandan 2015) may be 
employed at the second stage. The qualitative assessment procedure basically consti-
tutes the adoption of graphical plots to assess the extent of fit of the candidate distri-
butions; examples include a density plot of candidate distributions with the histogram 
empirical distribution, CDF plot that combines the empirical and the candidate prob-
ability distributions, Q–Q plot which relates the quantiles of the empirical distribution 
to the candidate probability distribution and the P–P plot which relates the probabili-
ties of the empirical distribution to the candidate probability distributions. The final 
step of this stage is to establish the most suitable model based on the combination of 
the quantitative and qualitative procedures, the practitioner may adopt rank scores as 
found in Hassan et  al (2019) and Mamoon and Rahman (2019); however, the more 
attention may be given to the Anderson–Darling statistics due to its robustness and 
emphasis of fit around the tails, with the backing of a qualitative assessment in situa-
tions where more than one GOF test favors a particular probability distribution.

Once the most suitable probability distribution has been established for a particular 
annual maximum series, parametric bootstrapping is conducted, while the level of the 
credibility of the estimated parameters may be assessed by comparing their estimates 
with the median and the 95% confidence interval (CI) of the bootstrapped estimates. 
Those estimates of the parameters that are close to the median and also within the 95% 
CI of the bootstrapped estimate may be termed to be credible.

The next stage of the framework is based on the assessment of model quantiles of 
the bootstrapped samples for different return periods through the adoption of the quan-
tile function and parameters of the most suited probability model. Then the estimates 
of the quantiles and their upper and lower bounds (95% credible intervals) are pre-
sented in the form of plots or tables. Quantiles with wider uncertainty or larger stand-
ard error are considered to be less reliable.

The final stage of the framework involves the propagation of variability and uncer-
tainty of the design rainfall estimates using the two-dimensional Monte Carlo (2D-
MC) simulation framework and the evaluation of various percentiles and their uncer-
tainty for informed decision-making.

The codes used for implementing the framework are based on the integration of two 
packages of R programming environment that include the “mc2d” and “fitdisrtplus” 
which are freely available.
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2.4 � Statistical tools for credibility assessment

2.4.1 � Statistical description and plotting position

Statistical summaries of the generated AMS were computed using mean, standard devi-
ation, skewness and kurtosis to provide concise information of the series. The generated 
1-day extremes were arranged in descending order of magnitude. After that, the prob-
abilities that the ranked maxima will be equaled or exceeded for any return period were 
computed by Hazen’s plotting position represented as:

where Tr is the return period, m is the order or rank, while n is the number of years 
of study.

2.4.2 � Probability distributions

Preliminary assessment of the AMS leads to the selection of four probability distribu-
tions. These include the two-parameter distributions, such as Weibull, gamma, log-nor-
mal, normal. The probability density function (PDF) of Weibull, gamma, log-normal 
and normal distributions are represented in Eqs. (2–5), respectively.

where �x and �y are the mean and standard deviation of the series of the annual extreme 
storm; �y and �y are the mean and standard deviation of the log-transformed series of 
extreme annual rainfall, α and β are the scale and location parameters, respectively (Rao 
and Hamed 2000).

These distributions are suitable for series with positive skewness and kurtosis not 
far from zero, which were observed for all the stations within the study area. This study 
uses the MLE method to estimate distributions’ parameters. The theoretical terms and 
the formulae for parameter estimation using ML of the selected distributions are given 
by Hassan et al. (2019).
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2.4.3 � Goodness‑of‑fit statistics

The goodness-of-fit (GOF) statistics based on the Anderson–Darling (AD) test (Laio 
2004), Kolmogorov–Smirnov (KS) test (Chowdhury et al. 1991) and Cramer–von Mises 
(CM) test (Arnoldand Emerson 2011) were employed to assess the suitability of the 
selected probability distributions.

2.4.3.1  The Anderson–Darling (AD) test  The Anderson–Darling (AD) test was used to com-
pare the cumulative distribution functions of the empirical and the probability distributions, 
and it gives more attention to outlier detection. AD test (A2) is represented in Eq. (6) as:

where A2 is the Anderson–Darling test statistic, Fe is the cumulative distribution function 
of the specified distribution and Qi is the ordered observed data.

2.4.3.2  Kolmogorov–Smirnov (KS) test  Kolmogorov–Smirnov (KS) test is based on the 
maximum vertical distance between the CDFs of empirical distribution and the theoretical 
distribution and is represented as:

where F(Qi ) is the theoretical cumulative distribution of distribution being assessed.

2.4.3.3  Cramer–von Mises (W2) test  Cramer–von Mises statistic (W2) was used to test the 
discrepancy between the CDFs of the empirical and hypothetical distribution by measuring 
the mean squared difference between them (Laio, 2004); and it is represented in Eq. (8) as:

2.4.4 � Goodness‑of‑fit criteria

The goodness-of-fit (GOF) criteria such as the Akaike’s information criterion (AIC) and 
Bayesian information criterion (BIC) were employed to further established the appropriate-
ness of suitable models.

2.4.4.1  Akaike information criterion (AIC)  Concerning the adopted GOF criteria, the 
Akaike information criterion is widely adopted for selecting suitable stochastic models and 
is represented in Eq. (9):

where σ2 and p present the variance and the number of parameters of the subset stochastic 
model.
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2.4.4.2  Bayesian Information Criterion (BIC)  BIC is closely related to AIC, and it is par-
tially based on the likelihood function and is represented by Eq. (10):

where x is the observed data, n is the sample size, k is the number of free parameters to 
be estimated, p(x|k) is the probability of likelihood of parameters for given data set and L is 
the maximized value of the likelihood function.

In a situation where more than one distribution is favored by multiple goodness-of-fit 
statistics or criteria, the AD test that has been considered to be very powerful (Laio 2004) 
was used for final selection. Herein, the probability distribution whose cumulative distribu-
tion function (CDF) is close to the empirical distribution, that is, whose AD is lowest, was 
selected. A graphical or qualitative assessment method in the form of CDF plots was fur-
ther used to affirm the fit of the distributions.

2.4.5 � Parametric bootstrap method

The study employed the parametric bootstrap method for assessing the uncertainty of the 
parameters of the most suitable statistical models for north central Nigeria. The parametric 
bootstrap method, which is based on the resampling of distributions with the best fit, was 
employed for evaluating how well statistical estimates are accurate and for estimating the 
standard error of summary statistics based on the plug-in principle (Seo and Park 2011).

Assuming that X =
(
x1x, x2x, ..., xnx

)
 is the constructed series of peak rainfall; its empir-

ical distribution denoted by Fn may be defined below:

Once the empirical function Fn has been calibrated to a known parametric distribution 
F� ∗ (x) , with its estimated parameters θ*, the parametric bootstrap is based on generating 
several samples of F� ∗ (x) based on the sample size of the rainfall series, after which the 
credible intervals of quantiles and parameters may be estimated. In this study, bootstrapped 
sampling of the parameters of suitable distributions was done one thousand and one (1001) 
times.

2.4.6 � 2‑dimensional Monte Carlo simulation framework

The two-dimensional Monte Carlo (2D-MC) simulation framework employed in the study 
is based on the one recommended by McMillan et al. (2018) and Pouillot and Delignette-
Muller (2010) (Fig. 3). The 2D-MC simulation, as explained by Pouillot and Delignette-
Muller (2010), is established after the disintegration of all input into the uncertain or 
variable input. This is followed by the random sampling of uncertain inputs from their 
separate distributions in row vectors nu of elements; thereafter, variable inputs are sam-
pled randomly from their separate distributions in the column vectors nv. where nu and nv 
are specified number of iterations in the row and column dimension, respectively; 1001 
iterations similar to what was adopted for the bootstrap method was used. Then a nv × nu 
matrix is developed based on the conditional random sampling of nv (variable parameters) 
to their nu values (uncertain parameters). Finally, the quantitative risk assessment model 

(10)−2 ln p(x|k ) ≈ −2 lnL + K ln (n)

(11)Fn =

⎧
⎪⎨⎪⎩

0, x < x(1)
k

n
, xk ≤ x < x(k+1)
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conglomerates these elements to derive the nv × nu ultimate matrix of outputs. A detailed 
procedure for adopting the 2D-MC is presented in Pouillot and Delignette-Muller (2010) 
and Pouillot et al. (2016).

3 � Results and discussion

3.1 � Disregard of credibility assessment of design rainfall estimation in Nigeria

Table 1 presents a synthesis matrix that summarizes the investigations, which have been 
conducted by various researchers in Nigeria for the last decade on the estimation of design 
rainfall for flood control. It could be seen that the majority of the available publications that 
were used for the systematic literature review were drawn from Google Scholar, followed 
by those drawn from the database of African journal online (AJO), while the least publica-
tion was drawn from a Nigeria-based association journal. No related work conducted in 
Nigeria was found in other existing online databases such as Web of Science and Scopus. 
The selected studies span from 2010 to 2019 and were conducted in different parts of Nige-
ria. The majority of the work was done specifically in areas within the southwest, southeast 
and south–south regions of Nigeria. However, Nnaji (2014) is the only researcher that con-
ducted a study spanning across selected states in Nigeria, including few cities in Northern 
Nigeria region, such as Ilorin, Jos, Kaduna, Bauchi, Kano and Gusau.

As shown in Table  1, both empirical and theoretical methods have been used by the 
researchers in Nigeria to predict design storms for different return periods. Their results 

Fig. 3   Schematic representation of a two-dimensional Monte Carlo simulation
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were presented in form of IDF (intensity–duration–frequency) or depth–frequency plots 
and sometimes in combination with equations. It could be seen that not all researchers 
endeavor to compare different candidate probability distributions to ascertain their fit; for 
instance, Nwaogazie and Ekwueme (2017) and Olatunde and Adejoh (2017) disregarded 
the adequacy of fit of Gumbel distribution, while Agbede and Abiona (2012) did not evalu-
ate the fit of the empirical methods adopted.

Furthermore, Table 1 show that all the researchers in the selected studies did not inves-
tigate the reliability of the models or equations presented. The uncertainty of the devel-
oped models parameters and their predicted quantiles was not assessed. The assessment of 
uncertainty and variability dimensions of the rainfall estimations were generally neglected 
by investigators. This shows that the credibility of the design rainfall estimations for flood 
control structures has been largely disregarded in Nigeria.

3.2 � Application of proposed framework in central Nigeria

When designing hydraulic infrastructures, the credibility of design estimates of rainfall 
should be assessed and reported, but unfortunately, it is usually ignored (Overeem et  al. 
2008; Tung and Wong 2014; Huang et al. 2016). This study conducted a systematic review 
of past literature in the last decade on how Nigerian researchers have ignored the assess-
ment of the uncertainty of probability models and their parameters, before being used in 
the design of flood control structures. The study then proposed a simple framework (Fig. 3) 
for assessing the credibility of design rainfall estimates by practitioners, using the north 
central region of Nigeria as a case study. In order to apply the framework for the first time, 
the study evaluated the performance of selected probability models in fitting the empirical 
distribution of 24-h annual maxima (AM) in the study area, assessed the uncertainty of 
the parameters of suitable models, assessed the uncertainty of design rainfall estimate for 
different return periods and assessed the variabilities of AM and their uncertainties at 95% 
credible level through stochastic simulations.

3.3 � Statistical description of AM rainfall in the study area

The statistical summary of the series of 1-day extreme rains for north central Nigeria is 
presented in Table 2. It could be observed in the table that Lokoja recorded the highest 

Table 2   Statistical summary of peak rainfall stations (1981–2010)

Station Minimum 
(mm)

Maximum 
(mm)

Median (mm) Mean (mm) Standard 
deviation 
(mm)

Skewness Kurtosis

Lokoja 54.400 108.500 75.650 79.850 17.790 0.481 2.220
Bida 46.300 134.400 69.550 79.210 22.010 0.821 2.993
Makurdi 45.200 149.300 81.800 84.570 23.640 0.789 3.748
Minna 52.100 110.400 80.700 80.190 15.680 0.026 2.147
Yelwa 39.600 104.000 70.100 70.230 17.340 0.017 1.984
Abuja 48.400 200.200 79.400 94.190 37.430 0.974 3.509
Jos 48.000 105.300 61.150 66.400 15.310 0.923 2.981
Ilorin 48.100 144.000 86.150 87.750 23.980 0.606 2.927
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minimum peak instantaneous rainfall, while Yelwa recorded the lowest minimum; Abuja 
recorded the highest maximum peak rainfall, while Yelwa recorded the lowest maximum 
peak storm. Furthermore, Ilorin recorded the highest median, while Jos recorded the low-
est average, and the highest mean peak rainfall was observed at Abuja, while the lowest 
mean was recorded at Jos. Also, the table shows that Abuja had the largest spread from 
its mean values when compared with other stations, while Jos had the lowest dispersion 
from its mean. In general, areas with lower elevations appear to be subjected to the high-
est extreme values (such as Abuja station) and areas at higher elevations tend to have had 
lower extremes (such as Jos station) in the study area.

Table 2 further reveals that the peak rainfall distribution at all stations is not symmetric 
since the skewness is not equal to zero, which majorly informed the choice of the candi-
date probability distributions used in fitting the data. Furthermore, the kurtosis estimations 
reveal that 1-day extreme rains at Lokoja, Minna and Yelwa have their extremes tails lower 
than a normal distribution, while other parts of north central Nigeria have higher peaks 
close to or higher than the rear of the normal distribution. The basic statistics presented in 
Table 2, it shows the intensity of heavy rains is largely dispersed across the study area.

These results corroborate similar studies conducted for the southwestern geopolitical 
region of Nigeria. For instance, rains were found to be positively skewed with spatial vari-
ation in kurtosis (Aiyelokun et al. 2018), while Olofintoye et al. (2009) investigated fifty-
four (54) rainfall stations in Nigeria and revealed that all stations were positively skewed.

3.4 � Performance evaluation of probability distribution models

The goodness-of-fit (GOF) statistics and goodness-of-fit (GOF) criteria employed for the 
study to select the most suitable model for Lokoja, Bida, Makurdi and Minna are presented 
in Table 3. The log-normal distribution was found to be favored by both the GOF statistics 
and criteria for Lokoja, Bida and Makurdi stations (Table 3). The Weibull distribution was 
found to fit best to the Minna station (Table3). The fit of the selected distributions is further 
emphasized in the CDF plots (Fig. 4).

All the distributions describe the left tail of the empirical distribution of Lokoja expect 
Weibull (Fig. 4a). Figure 4b emphasizes the ability of log-normal to fit the left and right 
tails as well as part of the center of the distribution of heavy rains at Bida station. Figure 4c 
emphasizes the weak fit of gamma distribution at the center and right tail, while Fig. 4d 
emphasizes the fit of Weibull against other distributions to heavy rains at Minna station; 
the fit was found to be strong at the center and the right tail of the empirical distribution.

The GOF statistics and criteria employed for the study to select the most suitable model 
for Yelwa, Abuja, Jos, Ilorin are explored in Table 4, which reveals that the GOF statistics 
and GOF criteria favor the gamma distribution for Yelwa station. Log-normal distribution 
was found to be favored by both the GOF statistics and criteria for Bida station (Table 4), 
while for Jos and Ilorin, both the GOF statistics and criteria prefer the log-normal distribu-
tion. The fit of the selected distributions is further emphasized in the CDF plots Fig. 5.

Every distribution was close to the empirical distribution of Yelwa; however, the 
Weibull distribution fits most to the heavy rains recorded at Yelwa station (Fig. 5a). Fig-
ure 5b emphasizes the ability of log-normal fit to the left and right tails of the empirical 
distribution of heavy rains at Abuja station. Figure  5c emphasizes the strong fit of log-
normal distribution to heavy rains at Jos station, while Fig. 5d emphasizes the fit of all the 
distributions to heavy rains at the Ilorin station, although the log-normal outperformed oth-
ers being stronger at the left and right tails of the empirical distribution.
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These results show that no single candidate distribution can be selected for a particular 
region, as it has been revealed in similar hydrologic frequency analysis studies presented 
by Drissia et al. (2019); Hassan et al. (2019); Aiyelokun et al. (2018); Ahmad et al. (2015) 
and Olofintoye et al. (2009).

3.5 � Establishment of suitable statistical models

Figure 6 shows the flood frequency curves of the most suitable stochastic model for each 
rainfall station. The figure also shows the established logarithm models for each station 
along with their respective coefficient of determination (R2) being equal to 0.992, 0.992, 
0.993, 0.925, 0.934, 0.998, 0.988 and 0.992 for Lokoja, Bida, Makurdi, Minna, Yelwa, 
Abuja, Jos and Ilorin stations, respectively. The models are considered adequate for 
enhancing decision-making concerning drainage infrastructure for flood management, 
because of their strong ability to predict design storms based on return periods, as they 
can predict more than 92% of the variation of heavy rains of a particular return period. In 

Table 3   Summary of GOF 
statistics and criteria of stochastic 
models for Lokoja, Bida, 
Makurdi and Minna stations

Station Weibull Gamma Log-normal Normal

Lokoja GOF statistics
KS test 0.162 0.127 0.114 0.149
MS test 0.145 0.080 0.066 0.115
AD test 0.851 0.498 0.426 0.694
GOF criteria
AIC 255.634 252.112 251.693 253.694
BIC 258.437 254.914 254.496 256.496

Bida GOF statistics
KS test 0.179 0.172 0.161 0.190
MS test 0.186 0.154 0.135 0.196
AD test 1.031 0.785 0.687 1.045
GOF criteria
AIC 274.727 270.017 268.977 273.605
BIC 277.530 272.820 271.779 276.408

Makurdi GOF statistics
KS test 0.111 0.086 0.095 0.104
MS test 0.086 0.028 0.022 0.065
AD test 0.544 0.188 0.153 0.421
GOF criteria
AIC 279.155 275.089 274.703 277.896
BIC 281.957 277.891 277.506 280.698

Minna GOF statistics
KS test 0.086 0.094 0.103 0.084
MS test 0.028 0.045 0.054 0.036
AD test 0.205 0.271 0.319 0.226
GOF criteria
AIC 253.531 253.393 253.861 253.259
BIC 256.333 256.195 256.663 256.061
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general, the design rainfall estimate of any return period can be estimated from the statisti-
cal models.

3.6 � Credibility analysis of quantiles and parameters of selected statistical models

The uncertainty of the estimated parameters for the most suitable models based on the 
maximum likelihood estimation method was assessed by employing the parametric boot-
strap method. Table  5 shows the comparison between the bootstrapped estimates at the 
median and 95 percent confidence intervals and the estimates of the selected distributions 
for each station. It could be observed in the table that the estimated parameters of the suita-
ble distributions were close to the median as well as being within the 95 percent confidence 
level of the bootstrapped parameters. These results established that the parameters of the 
suitable probability models incurred slight chance of being uncertain.

Figures 7 and 8 depict the plots of the estimated quantiles for 5, 10, 25, 50, 100, 200, 
500 and 1000-year return periods based on the quantile function of the bootstrapped sam-
ples and parameter values of the best-fitted distributions for each station. Both Figs. 7 and 
8 show that for each of the stations, the estimated quantiles for return periods were within 
the confidence interval of the bootstrapped sample. However, the larger spread of the quan-
tiles of the bootstrapped percentiles (at 95% confidence intervals) at the right tails shows 

Fig. 4   CDF plots of fitted distribution and empirical distributions of (a) Lokoja, (b) Bida, (c) Makurdi and 
(d) Minna stations
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that the estimated parameters of the established models are more uncertain between 100- 
and 1000-year return periods. This is in agreement with Mamoon and Rahman (2019) who 
reported that rainfall intensity estimates of 100-year return period were more susceptible 
to uncertainty as a result of larger confidence band compared to lower return period. Fur-
thermore, Overeem et al. (2008), Hu et al. (2013) and Huang et al. (2016) established that 
uncertainties of rainfall estimates increase substantially with increase in length of return 
period, despite using a long record of rainfall data, indicating that increasing the length 
of rainfall records does not guarantee certainty of records (Chuah et al. 2017). This fur-
ther reinstates that practitioners should always ascertain the credibility of rainfall estimates 
and not to assume that continuous data collection to increase the length of rainfall records 
would reduce uncertainty. 

3.7 � Variability and uncertainty analysis of simulated extreme rainfall estimates

The variability of regional extreme rains and their uncertainty within the 95% credible 
interval based on the Monte Carlo simulation is presented in Table 6. The table shows that 

Table 4   Summary of GOF 
statistics and criteria of stochastic 
models for Yelwa, Abuja, Jos and 
Ilorin stations

Station Weibull Gamma Log-normal Normal

Yelwa GOF statistics
KS test 0.133 0.165 0.171 0.150
MS test 0.074 0.094 0.103 0.085
AD test 0.437 0.539 0.594 0.490
GOF criteria
AIC 258.960 259.462 260.159 259.298
BIC 261.762 262.264 262.961 262.100

Abuja GOF statistics
KS test 0.174 0.154 0.129 0.194
MS test 0.171 0.143 0.114 0.219
AD test 0.948 0.767 0.634 1.162
GOF criteria
AIC 303.527 299.583 298.085 305.464
BIC 306.330 302.386 300.887 308.266

Jos GOF statistics
KS test 0.152 0.139 0.130 0.155
MS test 0.209 0.145 0.123 0.197
AD test 1.216 0.877 0.765 1.143
GOF criteria
AIC 254.443 248.270 246.933 251.846
BIC 257.246 251.073 249.735 254.648

Ilorin GOF statistics
KS test 0.130 0.083 0.081 0.117
MS test 0.073 0.032 0.028 0.062
AD test 0.470 0.208 0.176 0.401
GOF criteria
AIC 279.676 276.464 276.173 278.756
BIC 282.479 279.267 278.976 281.558
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the variability dimension is evaluated based on nine statistics, which include the mean, 
standard deviation, minimum, 2.5th percentile, 25th percentile, 50th percentile, 75th per-
centile, 97.5th percentile and maximum, while the uncertainty dimension of the median 
of the estimators was evaluated for 2.5% and 97.5% values (95% confidence interval). The 
table shows that the expected extreme rainfall at Lokoja is 79.6 mm and has a 95% chance 
of falling within 74.3 mm and 85.3 mm. Extreme rainfall at Bida has an expected value of 
79.0 mm and has a 95% chance of falling within 71.6 mm and 87.0 mm; extreme rainfall 
at Makurdi station with an expected value of 84.3 mm has a 95% chance of falling within 
75.9 mm and 93.4 mm, while Minna has an expected value of 80.2 mm and a 95% chance 
of falling within 74.4 mm and 86.0 mm. Table 6 further shows that the expected extreme 
rains at Yelwa could be up to 70.3 mm with a 95% chance of falling within 64.1 mm and 
76.1 mm; the expected extreme rains at Abuja could be up to 93.4 mm with a 95% chance 
of falling within 81.3 mm and 107.2 mm; the extreme rainfall at Jos has an expected value 
of 66.2 mm and has a 95% chance of falling within 61.3 mm and 71.5 mm, while Ilorin sta-
tion has an expected extreme rain of 87.4 mm and a 95% chance of falling within 79.4 mm 
and 96.3 mm. The median of the simulated statistics for all stations was within the 95% 
credible level as shown in Table  6. Depending on the interest of the risk assessor, the 
estimates of 2.5th to 97.5th percentiles of extreme rainfall with their uncertainty at 95% 

Fig. 5   CDF plots of fitted distribution and empirical distributions of (a) Yelwa, (b) Abuja, (c) Jos and (d) 
Ilorin stations
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Fig. 6   Rainfall frequency curves for design floods based on suitable probability distributions for each sta-
tion, with their established models

Table 5   Comparison of parametric bootstrapped and probability distribution parameters for north central 
Nigeria

Station Model parameters Bootstrapped estimates Distribution

Median (mm) 2.50% 97.50% Estimate (mm) Std. error

Lokoja Mean log 4.363 4.293 4.432 4.362 0.035
Sd log 0.185 0.143 0.238 0.192 0.025

Bida Mean log 4.337 4.245 4.430 4.337 0.048
Sd log 0.254 0.188 0.320 0.262 0.034

Makurdi Mean log 4.399 4.298 4.496 4.401 0.049
Sd log 0.265 0.199 0.333 0.270 0.035

Minna Shape 5.960 4.592 8.015 5.850 0.830
Scale 86.355 80.549 91.586 86.568 2.855

Yelwa Shape 4.775 3.699 6.609 4.674 0.673
Scale 76.835 70.487 82.285 76.912 3.172

Abuja Mean log 4.473 4.345 4.603 4.475 0.068
Sd log 0.359 0.270 0.457 0.371 0.048

Jos Mean log 4.173 4.098 4.248 4.172 0.039
Sd log 0.208 0.154 0.262 0.214 0.028

Ilorin Mean log 4.436 4.350 4.538 4.439 0.049
Sd log 0.259 0.189 0.330 0.267 0.034
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confidence level in the study area may be abstracted from Table 6 for designing hydraulic 
works in the study area.

Figure 9(a–d) and Fig. 10(a–d) show the variability of cumulative distribution plots 
with uncertainty indications of extreme rains in the study area. It could be observed that 
the figures show the credibility bands on each quantile of the variability of peak rainfall 
at 50% CI (gray band) and 95% (light gray band) in the study region. A close observation 
of the plots reveals that at each station the extent of credibility varied for each quantile 
of rainfall variability. For example, extreme rainfall of 88.8 mm–142.0 mm at Lokoja 
(Fig.  9a), 90.7  mm–125.0  mm at Bida (Fig.  9b) and 97.2  mm–137.0  mm at Makurdi 
(Fig.  9c), respectively, representing the 75th to 97.5th percentile is more unreliable, 
whereas at Minna (Fig.  9d), 2.5% percentile, as well as the 75th to 97.5th percentile, 
were found to have high uncertainty (47.0 mm, 91.4 mm and 107.5 mm, respectively). 
In addition, Fig.  10(a-d) shows that at Yelwa station, peak rainfall estimates between 
50th and 75th percentile of values of 71.0–82.2 mm are more credible than other per-
centiles, at Abuja station peak rainfall estimates between 2.5th and 50th percentile of 
values of 43.2–87.4  mm are more credible than other percentiles, at Jos station peak 
rainfall estimates between 2.5th and 75th percentile of values of 43.3 mm–74.5 mm are 
more credible than other percentiles, while at Ilorin station, peak rainfall estimate of 

Fig. 7   Estimation of design storm of different return periods by bootstrap method at 95% confidence inter-
val and by most suitable probability distributions for (a) Lokoja, (b) Bida, (c) Makurdi and (d) Minna. The 
plots emphasized that uncertainty becomes larger with an increase in return periods from 100 years above
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84.7–100.6 mm, respectively, for 75th–97.5th percentile were found to be less credible. 
These imply that the extent of the credibility of quantitative estimates of extreme rains 
leading to flooding is not equal for each variability indicator across the north central 
region of Nigeria. Hence, to optimize informed decision-making regarding flood risk 
reduction by risk assessor, variability and uncertainty of design rainfall estimates should 
be assessed spatially to minimize erroneous deductions.

The median of the simulated statistics for all stations was within the 95% credible 
level implying that that quantitative estimates of extreme rains leading to flooding are 
reliable for the optimization of informed decision-making regarding flood risk reduc-
tion in north central Nigeria. However, these credibility intervals can be inferred as 
a degree of the precision of expected daily instantaneous peak rainfall in the study 
area. The extent of the credibility of quantitative estimates of extreme rains leading to 
flooding was found to vary for each variability indicator across the study area. Hence, 
flood risk managers are encouraged to not only estimate design storms but also assess 
their variability and uncertainty to minimize erroneous deductions. The framework 
proposed in the study could be adapted for any region of the world, and every stage 
could be implemented by integrating two packages of R computing environment (R 

Fig. 8   Estimation of design storm of different return period by bootstrap method at 95% confidence interval 
and by most suitable probability distributions for (a) Yelwa, (b) Abuja, (c) Jos and (d) Ilorin. The plots 
emphasized that uncertainty becomes larger with increase in return periods from 100 years above
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Core Team 2019) such as the “mc2d” and “fitdisrtplus” which are available at Compre-
hensive R Archive Network (CRAN, http://​cran.r-​proje​ct.​org) for free.

Furthermore, Figs. 11,12,13 demonstrate the spatial interpolation of design storms 
across north central Nigeria. The results presented in this study are useful for regional 
flood risk and water resources management of north central Nigeria. This research 
could also be useful by allowing researchers to better understand the hydrological phe-
nomenon of the region of study as well as for setting plans for future actions. The 
probabilistic analysis presented in this study may be useful to risk assessors and deci-
sion-makers by providing quantitative insights about the credibility of extreme rains 
and design storms when dealing with flood risk reduction concerns.

Table 6   Variability and uncertainty of regional extreme rains based on Monte Carlo simulation

a  Standard deviation (mm)
b  Minimum (mm)
c  2.5th to 97.5th percentiles of the distribution (mm)
d  Maximum (mm)
e  2.5% and 97.5% values (95% confidence interval) (mm)

Station Estimators Mean sda Minb P2.5
c P25

c P50
c P75

c P97.5
c Maxd

Lokoja Median 79.6 14.9 42.9 54.5 69.1 78.3 88.8 112.0 142.0
2.5%e 74.3 11.1 33.1 47.6 63.5 73.0 82.1 101.0 117.0
97.50%e 85.3 19.6 51.5 61.0 74.6 83.9 96.0 127.0 183.0

Bida Median 79.0 20.2 33.8 46.7 64.5 76.4 90.7 125.0 174.0
2.5%e 71.6 14.4 24.2 39.6 58.2 69.4 81.2 107.0 133.0
97.50%e 87.0 27.4 43.9 54.5 71.5 84.2 101.5 149.0 242.0

Makurdi Median 84.3 22.7 34.8 48.8 68.2 81.4 97.2 137.0 191.0
2.5%e 75.9 16.2 25.3 41.0 60.7 73.7 86.9 115.0 144.0
97.50%e 93.4 29.9 45.2 57.4 75.7 90.1 109.0 163.0 261.0

Minna Median 80.2 15.5 25.3 47.0 70.2 81.3 91.4 107.5 121.0
2.5%e 74.4 11.9 12.5 37.9 63.2 75.5 85.7 99.4 109.0
97.50%e 86.0 19.1 39.4 56.9 77.3 87.2 96.9 116.0 136.0

Yelwa Median 70.3 16.8 16.3 35.5 59.2 71.0 82.2 100.6 116.0
2.5%e 64.1 13.1 6.6 26.9 51.9 64.7 75.7 92.1 103.0
97.50%e 76.1 20.6 29.1 45.0 66.6 77.2 88.3 110.2 134.0

Abuja Median 93.4 34.9 27.1 43.2 68.4 87.4 111.8 177.0 283.0
2.5%e 81.3 24.6 17.1 34.1 59.4 76.5 95.9 141.0 199.0
97.50%e 107.2 48.8 39.2 53.7 79.1 99.5 128.7 223.0 440.0

Jos Median 66.2 13.9 33.1 43.3 56.3 64.8 74.5 97.2 127.0
2.5%e 61.3 10.2 25.2 37.5 51.6 59.9 68.3 84.8 102.0
97.50%e 71.5 18.4 40.7 48.9 61.8 70.0 81.4 111.3 165.0

Ilorin Median 87.4 23.1 37.0 51.0 71.1 84.7 100.6 140.0 194.0
2.5%e 79.4 16.8 26.0 43.5 63.4 76.4 90.6 120.0 152.0
97.50%e 96.3 30.0 47.0 59.7 78.9 93.0 112.4 165.0 264.0

http://cran.r-project.org
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4 � Conclusions

In many regions of the world, rainfall depths and patterns differ significantly, whether on 
a global, regional or local scale and significantly increase risks of extreme events such as 
floods and droughts. One of the major challenges of informed decision-making in flood 
risk management is the lack of adequate empirical data, which encourages the practice of 
fitting the empirical distributions of hydrologic frequencies with probability distributions. 
In order to solve these challenges, the present study has developed a simple five-stage 
methodological framework. The stages of the framework include preliminary assessment 
of annual maximum rainfall series, performance evaluation of selected theoretical distribu-
tions, credibility assessment of model parameters, credibility assessment of suitable model 
quantiles and propagation of variability and uncertainty of design rainfall estimates. In par-
ticular, different statistical tools for credibility assessment comprising of four probability 
models, the parametric bootstrap and the two-dimensional Monte Carlo (2D-MC) simula-
tion framework were integrated in the developed framework.

Fig. 9   Variability cumulative distribution plots with uncertainty indications based on Monte Carlo simula-
tions of extreme rains: (a) Lokoja, (b) Bida, (c) Makurdi and (d) Minna stations
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The facts that emerged from this research are that credibility assessment has been 
largely ignored in Nigeria; no single probability distribution is sufficient to fit the whole 
north central region of Nigeria; and estimated parameters of selected probability distri-
butions are reliable based on the bootstrap method. The reliability of design storms for 
hydraulic engineering constructions reduces from 100–1000 year return periods and that 
the quantitative estimates of extreme rains leading to flooding vary spatially across the 
region of study in terms of the credibility for all variability indicators.

The framework presented in this study is expected to encourage future researchers to 
assess the credibility of estimates generated from hydrologic frequency studies. Major-
ity of the hydrologic frequency investigations in Nigeria have disregarded uncertainty 
analysis of parameters and quantiles of suitable probabilistic models. There is relatively 
no study that extensively propagated the variability and uncertainty of design rainfall 
estimates separately across of large region.

Fig. 10   Variability cumulative distribution plots with uncertainty indications based on Monte Carlo simula-
tions of extreme rains: (a) Yelwa, (b) Abuja, (c) Jos and (d) Ilorin stations
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Fig. 11   Spatial prediction of heavy rains for different return periods within north central Nigeria for a 
2-year, b 5-year, c 10-year and d 20-year return periods. The southern region of the study area is more sus-
ceptible to flood risk from heavy rains
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Fig. 12   Spatial prediction of heavy rains for different return periods within north central Nigeria for a 
50-year, b 100-year, c 200-year and d 500-year return periods. The southern region of the study area is 
more susceptible to flood risk from heavy rains
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