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Abstract
Landslide hazard assessment is critical for preventing and mitigating landslide disasters. 
The tuning of hyperparameters is of great importance to achieve better accuracy in a land-
slide hazard assessment model. In this study, a novel approach is proposed for landslide 
hazard assessment with support vector machine (SVM) as the primary model and Bayesian 
optimization (BO) algorithm as the parameter tuning method. This study describes 1711 
historical landslide disaster points in Nanping City, and a total of 12 landslide conditioning 
factors including elevation, slope, aspect, curvature, lithology, soil type, soil erosion, rain-
fall, river, land use, highway, and railway were selected. The multicollinearity diagnosis 
was performed on the factors using the Spearman correlation coefficient. For model vali-
dation, 1711 landslides and 1711 non-landslides were collected as the dataset and divided 
into a training dataset (50 %) and a testing dataset (50 %). The performance of the model 
was evaluated by the confusion matrix and receiver operating characteristic (ROC) curve. 
The results of the confusion matrix accuracy and the area under the ROC curve showed 
that the BO-SVM model (89.53 %, 0.97) performed better than the SVM model (84.91 %, 
0.93). In addition, the landslide hazard maps generated by the BO-SVM model had better 
overall results than that by the SVM model.
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1  Introduction

Landslides are geological hazards that slide down rock or soil along a certain weak surface 
under the action of gravity (Fan et al. 2019; Hungr et al. 2013; Qiu et al. 2019). Every year, 
landslide disasters are responsible for a large number of casualties and economic losses 
worldwide (Kirschbaum et al. 2009; Froude et al. 2018). The aggravated change in climate 
has unequivocally affected the stability of natural and engineered slopes, posing greater 
risk of landslides (Gariano et al. 2016). Therefore, mitigating the serious threat of landslide 
disasters and preventing new landslide disasters have become an increasingly important 
issue to address (Intrieri et al. 2019).

Landslide hazard assessment is an effective measure to prevent landslide hazards. This 
method can provide key information for disaster prevention, disaster mitigation, and disas-
ter risk reduction (Westen et al. 2008; Xu et al. 2012).

In recent years, with the rapid development of geographic information systems and arti-
ficial intelligence (AI) technologies, a large number of landslide hazard assessment meth-
ods use a variety of advanced algorithms and models (logistic regression, support vector 
machines, Bayesian methods, decision tree methods, artificial neural networks, among oth-
ers) (Jafarian et al. 2019; Olen et al. 2018; Theron et al. 2018; Violante et al. 2018; Wu 
et al. 2018; ). Bourenane et al. (2016) used the frequency ratio and logistic regression to 
develop a landslide hazard map in Constantine city. Xie et al. (2021) developed a machine 
learning cluster containing multiple machine learning methods for landslide susceptibility 
mapping, and the results showed that the method is effective in assessing such landslide 
susceptibility. Besides, an increasing number of literature reports indicate that integrated 
machine learning methods can avoid the shortcomings of a single approach Chen et  al. 
2021a; Pal et al. 2019).

In general, GIS provides a platform for collecting, organizing, and analyzing landslide 
events and landslide conditioning factors. Machine learning (ML) techniques provide addi-
tional solutions for calculating the relationship between the landslide conditioning factors 
and landslide events (An et al. 2018; Chen et al. 2021; Moresi et al. 2020; Pal et al. 2019). 
Among the ML techniques, support vector machine (SVM) is one of the most used meth-
ods, and it has performed satisfactorily in several previous studies. Marjanovic et al. (2011) 
compared SVM, decision trees, and logistic regression in a specific area of the Fruska Gora 
Mountain (Serbia), indicating that the SVM classifier outperformed the other methods. 
Chen et al. (2017b) used the maximum entropy, SVM, and artificial neural network (ANN) 
to find the “Spatial contraindication” pattern by their ensembles. SVM is the most practical 
model with the highest spatial area in highly susceptible classes. Luo et al. (2019) applied 
ANN, SVM, and information value model to assess a mining landslide sensitivity analysis. 
The ANN model and SVM achieved high prediction capability, proving their advantage of 
solving nonlinear and complex problems. In addition, Wang et  al. (2019) reported good 
results obtained by the SVM method using support vector regression for short-term traffic 
flow prediction in the problems of classification and regression.

However, the hyperparameter selection of SVM is often confusing and affects the 
precision and generalization ability of the model (Dou et  al. 2020; Zhao et  al. 2020). 
For SVM, the kernel function type is the most important hyperparameter, and the pen-
alty factor (C) and Gamma also affect the performance of the model. Many studies 
used default hyperparameters in software or tools, resulting in less than optimal out-
comes (Abdollahi et  al. 2018; Chen et  al. 2017b). Some studies used random search, 
grid search, or genetic algorithms to optimize the hyperparameters (Luo et  al. 2019; 
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Tang et al. 2019). Nevertheless, these optimization methods have clear drawbacks that 
affect landslide hazard assessment. Both random search and grid search are blind, thus 
consuming a lot of time. Genetic algorithms tend to fall into local optimality, and the 
overall performance is compromised.

The hyperparameter selection of SVM was optimized by the Bayesian optimization 
(BO) method, and a new BO-SVM model also developed in this study. To evaluate the 
optimization effect of the BO-SVM method, this study compared the performance of 
this method with the common SVM and random search for landslides assessment in 
Nanping City of China.

2 � Study area and data

2.1 � Study area and landslide inventory

The study area is Nanping city, located in the northwestern part of Fujian province, 
China. The geographic coverage of the study area is 117°46′31″–118°17′9″N latitude and 
42°14′55″–42°48′30″E longitude, with an area of ∼26,300 km2 (Fig. 1). Nanping is admin-
istratively divided into 10 counties and districts including Jianyang, Yanping, Shunchang, 
Pucheng, Guangze, Songxi, Zhenghe, Shaowu, Wuyishan, and Jian’ou (Fig. 1).

The elevation ranges from 20 to 2150 m above the sea level, and the land above 1000 m 
accounts for 12 % of the total area. The low hills are widely distributed in this whole area, 
and high mountains are only in the northeast and southwest. Mountain basin valleys are 
distributed alternately along the river. Fault-block mountains are structurally dominated 
by faults with steep peaks. Surface topographical features in this study area are strongly 
affected by tectonic movement. This study area is geotectonically located along the south-
eastern edge of the Eurasian continental plate and bordering the Pacific plate, which is the 
most active area of Cenozoic tectonic-magmatic activity in the Pacific Rim. The geologi-
cal structure of this study area is complex with obvious tectonic and geomorphic features. 
The climate type of the study area is subtropical monsoon climate. The average annual 
rainfall ranges from approximately 1500 mm to 2200 mm, and it is concentrated in summer 
and tropical cyclones, usually causing considerable precipitation. The main rivers in the 
research area are the Minjiang River, the Jian River, and the Futun River.

Nanping is one of the most landslide-prone areas of southeastern China with numer-
ous historical landslide events (Zhang et  al. 2018). The typhoon rainstorms and the 
interaction of anthropic activities and engineering geological conditions are the main 
factors causing landslides in this study area (Yin et al. 2013). The landslide inventory 
in this study area was collected by a field geological survey, as shown in Fig. 1. In this 
study, the term “landslide” includes slide, fall, and flow. The classification comes from 
the updated Varnes landslide classification (Hungr et  al. 2013), and all landslides are 
represented by spatial points. There were 1008 cases of slides, 679 cases of falls, and 24 
cases of flows. In terms of trigger, most of the landslides were caused by rainfall (about 
80 %); Fig. 1d shows the landslide with obvious signs of rainfall. The remaining land-
slides are caused by human engineering activities and groundwater. 65 % of these land-
slides are shallow soil landslides, and the rest are rock collapses (Fig. 1e) with a small 
number of deep landslides. The surface of this study area is covered by a large amount 
of red and sandy soil, being the engineering properties of these soils very poor (Fig. 1f).
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2.2 � Landslide conditioning factors

According to the geographic environment configuration and data availability of the study 
area, 12 landslide conditioning factors: elevation, slope, aspect, curvature, lithology, soil 
type, soil erosion, precipitation, river, land cover, highway, and railway (Fig.  2) were 
selected. The 12 input thematic variables were classified into five clusters: (I) morpho-
logical (4 variables), (II) geological (3 variables), (III) hydrological (2 variables), (IV) land 
cover (1 variable), and (V) anthropological activities (2 variables) (Table 1). All the factors 
were discretized into categorical variables. For category factors, their original structure 
such as lithology, land use, soil type, and soil erosion was retained. The aspect factor was 
classified according to the direction, as shown in Fig. 2b. The remaining continuous factors 
were classified according to the natural break method.

Topography and landform play an important role in controlling the formation of land-
slides (Ambrosi et al. 2018). Digital elevation model (DEM) and slope degree were widely 
used factors and particularly effective in landslide predicting (Reichenbach et  al. 2018). 
The elevation (Fig.  1c) has a direct effect on human engineering activities and other 

Fig. 1   Location of the study area and landslide inventory. a The location of the study area in China; b The 
location of the study area in Fujian Province; c landslide inventory. The red dot refers to 1711 historical 
landslide studied in our case; d–f photographs of different types of landslide cases, with a landslide induced 
by rainfall d, a rock collapses e and a shallow landslide f 
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environmental factors, thereby affecting the stability of a slope. The gravitational potential 
energy of the slope is greater at higher elevations relative to lower ones. The elevation also 
determines the land cover, anthropogenic activities, and climate type (Chen et al. 2020). 
The slope degree (Fig. 2a) affects the stability and overall movement rate of the unstable 
rock and soil on the slope (Lo et al. 2018) and is mainly in the range 6–20° in the selected 
study area. Usually, the greater the slope degree, the worse the stability of the slope. The 
aspect determines the direction of solar radiation and water flow (Fig. 2b); the curvature 
(Fig.  2c) affects the acceleration and deceleration of flow, convergence, and dispersion 
(Youssef et al. 2015).

Geological structure and soil properties (Fig.  2d–f) would directly predict the occur-
rence of landslide and its mechanism (Zezere et al. 2017). In stratigraphic lithology, land-
slides often occur in soft structural planes and weak rock layers. Proterozoic sedimentary 
rocks occupy about half of the selected study area, followed by Granite and Mesozoic met-
amorphic rocks (Fig. 2d). Mesozoic metamorphic rocks, Paleozoic complex rocks, Paleo-
zoic sedimentary rocks, alkaline rocks, and mafic rocks are identified within the study area. 
The sedimentary rocks exposed in the study area are laminated and contain a large amount 
of debris, whereas those in some of the study areas contain a large amount of clay, with 
poor engineering properties, and a large number of landslides occur in these areas. For 
soil properties, looser soil and a greater degree of soil erosion are conducive to landslide 
breeding (Sorbino et al. 2009). Red and paddy soil are the main soil types in the study area. 
The degree of hydraulic erosion increases from L1 to L4, and Fig. 2f shows that most of 
the study area suffers from mild hydraulic erosion. The soil erosion classification referred 
to the People’s Republic of China industry standard SL190-96 “Soil erosion classification 
and classification standards”.

The hydrological conditioning factors and changes in the land cover (Fig. 2g, h) are pre-
disposing factors or direct factors of landslides (Phong et al. 2019). Dozens of landslides 
occur in the rainy season every year in this study area, indicating that hydrology has a great 
effect on landslides. Continuous rainfall can directly cause landslides and erode the slope 
leading to instability. For the land cover, bare slopes are more prone to instability than 
slopes with lush vegetation, and forests with luxuriant root systems are more stable than 

Table 1   Landslide conditioning factors

Cluster Factor Description Source

Morphological Elevation ASTER GDEM V2, 30 m resolution http://​www.​gsclo​ud.​cn/
Slope 30 m resolution Extracted by DEM
Aspect 30 m resolution Extracted by DEM
Curvature 30 m resolution Extracted by DEM

Geological Lithology Vector data http://​www.​geoda​ta.​cn
Soil type Reclassify to 30 m resolution http://​www.​resdc.​cn
Soil erosion Reclassify to 30 m resolution http://​www.​resdc.​cn

Hydrological Rainfall Average rainfall from 1980 to 2015, 
interpolated from rainfall site data

http://​data.​cma.​cn/

River Vector data http://​www.​geoda​ta.​cn
Land cover Land use 30 m resolution http://​www.​webmap.​cn
Anthropological activity Highway Vector data http://​www.​webmap.​cn

Railway Vector data http://​www.​webmap.​cn

http://www.gscloud.cn/
http://www.geodata.cn
http://www.resdc.cn
http://www.resdc.cn
http://data.cma.cn/
http://www.geodata.cn
http://www.webmap.cn
http://www.webmap.cn
http://www.webmap.cn


936	 Natural Hazards (2021) 109:931–948

1 3

Fig. 2   Landslide conditioning factors: a slope; b aspect; c curvature; d lithology; e soil type; f soil erosion; 
g rainfall; h land use; i railway, river, and highway
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grasslands. The forest coverage rate in the study area is 74.75 %, and the remaining lands 
are mainly cultivated lands and grasslands.

The direct effects of anthropological activities on slopes are increasing with the devel-
opment of economic engineering. A large number of infrastructures and road constructions 
have destroyed the original structure of hillsides, aggravating the slope instability. The 
construction of railways (Fig. 2i) and highways (Fig. 2i) in the mountainous areas usually 
involves the excavation of tunnels and manual cutting of slopes. Therefore, the areas along 
highways and railways are the worst-hit areas of landslides and the key areas for disaster 
reduction and prevention (Eeckhaut et al. 2010).

3 � Methods

3.1 � Mapping units and dataset division

In most current studies, the mapping units commonly used in landslide susceptibility map-
ping and landslide hazard assessment are grid units, geomorphic units, administrative 
units, unique condition units, and slope units (Reichenbach et  al. 2018). Compared with 
other units, grid units usually perform better for complex calculations and simulation pro-
cesses (Yang et al. 2019a). Therefore, in this study, the grid units were selected as the basic 
mapping units. In consideration of the total study area and the computational complexity, a 
300 m × 300 m grid was selected, resulting in a total number of 374,666 units. The number 
of landslide points falling into each unit was calculated separately. The unit with several 0 
was recorded as 0, while the unit with a number rather than 0 was recorded as 1 to form 
a binary distribution. They are the dependent variables of the hazard assessment model. 
Then, the attribute values of the landslide factors of each grid cell were spatially over-
lapped as the independent variables of the model.

In this study, 1711 landslide disaster points fell into 1,653 units and were used as posi-
tive samples in the data set. An equal number of non-landslides were chosen as negative 
samples in an area 300 m away from the landslide points. Therefore, a total of 3306 sam-
ples were used for model training (50 %) and testing (50 %).

3.2 � Multicollinearity diagnosis

Feature selection is a necessary step in the process of machine learning modeling and is 
used to eliminate redundant factors and retain useful factors. Multicollinearity is usually 
used as an indicator of feature selection, indicating that might be correlations between 
multiple conditioning factors (Lee et  al. 2018). The existence of multicollinearity would 
make it difficult to capture useful information from the model, thereby affecting the evalu-
ation results (Yanar et al. 2020). Multicollinearity diagnosis of factors and elimination of 
redundant factors have a positive effect on the evaluation model. In this study, Spearman 
correlation analysis was used to analyze each factor in the study area, and the multicol-
linearity of factors was measured through the correlation coefficient, R. The R value range 
is [−1, 1] (when R > 0, the factors are positively correlated, |R| closer to 1, the higher the 
correlation; when R < 0, the factors are negatively correlated; when R = 0, there is no linear 
correlation).
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3.3 � Landslide hazard assessment model

SVM is a machine learning method based on statistical theory, and it integrates multiple 
techniques such as relaxation variables, maximum interval hyperplane, and kernel func-
tion. It is suitable to solve the classification problems of small samples, nonlinearity, and 
high dimensionality (Cortes et al. 1995). With the development of multidisciplinary inte-
gration, SVM was gradually applied to the field of natural disasters. The basic principle is 
to map the samples of the input space to a high-dimensional characteristic space through 
nonlinear transformation, followed by determining the optimal classification plane that 
linearly separates the samples in the characteristic space (Chang et al. 2011; Smola et al. 
2004). In the studies of landslide susceptibility assessment and risk assessment, the occur-
rence of landslides fits well with the characteristics of the algorithm of solving binary clas-
sification problems (Ballabio et al. 2012; Tien Bui et al. 2018; Xie et al. 2021).

The schematic diagram of SVM’s principle is shown in Fig. 3. The distance between the 
hyperplane and the nearest sample point is called the margin. The larger the margin, the 
higher the generalization ability of the classifier. Therefore, the purpose of SVM is to find 
the hyperplane that maximizes the margin, i.e., the optimal hyperplane. All the points on 
the hyperplane on both sides of the margin are called support vectors, and the classification 
boundary is determined only by the support vectors not by other data and the amount of 
data. Therefore, the adjustment of hyperparameters is extremely critical to the performance 
of SVM. The main hyperparameters involved in SVM are kernel type, C, and gamma. As 
mentioned above, the kernel maps the observations into some feature space. Hyperparam-
eter C controls the trade-off between the decision boundary and accuracy by adding a pen-
alty for each misclassified data point. Gamma is a parameter related to C in some kernel 
types. If gamma is large, the effect of C becomes negligible. If gamma is small, C affects 
the model in a similar way as it affects a linear model. In this study, the scikit-learn pack-
age based on Python for SVM implementation was used (Pedregosa et al. 2011).

3.4 � Bayesian optimization algorithm

The process of implementing machine learning algorithms usually needs to consider 
the tuning of learning parameters and model hyperparameters (Snoek et  al. 2012). The 

Fig. 3   Principle of support vector 
machine (SVM)
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hyperparameters define the attributes of the model or the training process, which have a 
significant effect on the final effect of the model (Greenhill et  al. 2020). BO is a hyper-
parameter optimization (selection) method from general machine learning algorithms. BO 
algorithm is widely utilized in the field of cutting-edge artificial intelligence with obvious 
advantages over genetic algorithm, particle swarm optimization algorithm, or other algo-
rithms (Greenhill et al. 2020; Kobliha et al. 2006). It is a parameter optimization method 
based on Gaussian process and Bayesian theorem and builds a surrogate for the objec-
tive and quantifies the uncertainty in that surrogate using a Bayesian machine learning 
technique and Gaussian process regression, and followed by using an acquisition function 
defined from this surrogate to decide the sample location (Frazier 2018). Generally, the 
problem scenarios that BO algorithm mainly faces are:

 where S is the candidate set of x. The goal is to choose x from S such that the value of f(x) 
is the smallest or largest.

As a sequence optimization problem, BO needs to select an optimal observation value at 
each iteration. This key problem is perfectly solved by the abovementioned Gaussian pro-
cess. as expressed by the following formula:

 where u(x) is the mean function, and k(x, x*) is the kernel function. The form of the Gauss-
ian kernel function is as follows:

The hyperparameter value obtained by the BO algorithm replaces the original value. 
Then, a new hybrid model (BO-SVM) was constructed. Package hyperopt on the Python 
platform was used to implement BO algorithm in this study.

3.5 � Model evaluation and verification

3.5.1 � Confusion matrix

The confusion matrix measures the accuracy of a classifier classification and is also known 
as the error matrix. It is often used to evaluate the results of binary regression models such 
as logistic regression and SVM and method can quantitatively express the correct rate of 
0-value prediction, the correct rate of 1-value prediction, and the overall prediction rate in 
the model results (Yang et al. 2019a).

3.5.2 � ROC curve

The receiver operating characteristic (ROC) curve is a comprehensive indicator of response 
sensitivity and specific variables (Chen et al. 2021b; Tehrany et al. 2015). In the landslide 
risk assessment, the X-axis of the ROC curve specificity indicates the probability of mis-
prediction of the non-disaster points. The Y-axis is the sensitivity, representing the predic-
tion success rate of the disaster point. The prediction accuracy of the model is expressed by 
the size of the area enclosed by the curve and the abscissa (Chen et al. 2021c). The closer 

(1)X∗ = argx∈S max f (x)

(2)f (x) ∼ GP(�(x), k(x, x∗))

(3)k(x, x∗) = exp
�
−
1

2
‖x − x∗‖2

�
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the curve is to the upper left corner, the higher the accuracy of the model. The area under 
the curve is called AUC, and the range of AUC values is [0, 1]. The value of AUC closer to 
1 indicates the higher accuracy of the model.

4 � Results

4.1 � Multicollinearity of factors

Generally, factors with high multicollinearity values should be removed or detected itera-
tively to ensure the reliability of the model. The multicollinearity diagnosis results among 
the 12 conditioning factors are presented in Fig.  4. The correlation coefficient between 
each implemented factor is less than 0.5, indicating low multicollinearity between factors. 
Consequently, in this study, all 12 conditioning factors were retained. The value of collin-
earity among most factors is around 0, indicating extremely low correlation between them. 

Fig. 4   Correlation coefficient of 12 conditioning factors. * indicates at the significant level α = 5 %, the cor-
relation is statistically significant, **means at the significant level α = 1 %, the correlation is statistically 
significant
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Moreover, the multicollinearity between land use factors and human activities factors has a 
higher value.

4.2 � Verification and comparison of models

The hyperparameters corresponding to the most optimal evaluation value of BO proceed-
ing were the radial basis function (RBF), which was used as the kernel; the penalty factor 
C, which was 1⋅108.475, and the RBF gamma value, which was 2.895⋅10− 7. These values 
would be set as the hyperparameter values for BO-SVM before modeling, while the SVM 
used the default hyperparameters. The performance of the SVM and BO-SVM models 
was verified and compared using the confusion matrix and ROC curve, respectively. ROC 
curve presses the predictive capabilities of the models, and the confusion matrix represents 
the details of the predictive ability of the model.

The results of the confusion matrix are as shown in Table 2, indicating the accuracy 
of BO-SVM as 89.63 %, which is approximately 5 % higher than the SVM with 84.91 %. 
Compared with SVM, BO-SVM has higher prediction accuracy for landslides events. The 
prediction accuracy of SVM for landslides events are 88.64 and 81.18 %, respectively, 
indicating that the prediction accuracy of BO-SVM for negative and positive is relatively 
robust.

The ROC curve and the area under the ROC curve (AUC) are illustrated in Fig. 5. Fig-
ure 5a shows the distribution of the AUC values of the two models with progression of the 
iterative process. Figure 5b shows the ROC curves and AUC values of the two models on 
the testing dataset. Generally, the AUC values greater than 0.9 are considered excellent 
(Merghadi et al. 2020). In this case, both models have high AUC values of more than 0.9, 
and BO-SVM with 0.97 is 4 % higher than SVM with 0.93. From the iterative process, the 
BO-SVM has a better distribution of AUC values and most of them are concentrated at the 
top of the graph. In contrast, the values of SVM are evenly dispersed in the middle and at 
the top. The iterative trend shows that the BO-SVM is in a state of continuous increment, 
while SVM has almost no trend of change. The confusion matrix and ROC curve results 
indicate better performance of the BO-SVM performance than that of the SVM.

4.3 � Landslide hazard map

According to the results of the landslide hazard model, the landslide hazard index in the 
study area was obtained by carrying out the spatial overlay analysis of each conditioning 
factor. The results ranged from 0 to 1 and were divided into four zones with an interval of 
0.25, namely low, moderate, high, and very high (Fig. 6). The two maps show a similar 

Table 2   The confusion matrix of the SVM and BO-SVM

Method Landslide 
occurred(Actual)

Prediction Percent (%) Accuracy (%)

Yes No

SVM Yes 1466 187 88.64  84.91 
No 311 1342 81.18 

BO-SVM Yes 1523 130 92.14  89.53 
No 216 1437 86.93 
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spatial distribution to some extent: the very high hazardous areas are clustered at the top 
and bottom of the map, and the other areas are relatively low risk hazard. The statistic 
results of the map units and landslides in each hazard zone are as listed in Table 3. In the 
BO-SVM results, the low hazard zone area accounted for 54.98 % of the study area, and the 
number of historical landslides only accounted for 5.96 % of the total landslides. The very 
high and high hazard zone area accounted for 14.83 % of the total area, and the number of 
historical landslides accounted for 64.87 % of the total landslides. In contrast, the SVM 
shows less accurate results, where the low zone and high zone risk areas are similar to that 
obtained by BO-SVM, while the very high zone risk area only includes 15.14 % landslides. 
Besides, there are 39.45 % landslides in the moderate zone, demonstrating low confidence 
for the SVM model.

5 � Discussion

Numerous studies indicate that there is still no pipeline applicable to all situations in land-
slide susceptibility and hazard assessment (Chen et al. 2020; Suárez et al. 2020; Xie et al. 
2021). In general, the improvement of the reliability and accuracy of the landslide haz-
ard assessment results can be concentrated in two parts: better data and stronger model. 
As the data improvement is limited by the availability of data and the actual situation of 
the selected area, the improvement of assessment models becomes particularly crucial. In 
many studies, many algorithms are considered to compare their performance, while ignor-
ing the improvement of a single model itself (Akgun 2011; Tien Bui et al. 2012; Erener 
et  al. 2016) compared the GIS-based multi-criteria decision analysis, logistic regression 
(LR), and association rule mining, and the results showed that LR methods were better 
than other methods. Such a comparison strategy is certainly useful; however, it ignores the 
optimization of the model. The enhancement of hyperparameters is crucial for the optimi-
zation of the model. The performance of one machine learning model without the optimal 
hyperparameters significantly reduces compared to the model with the best hyperparam-
eters. However, in the field of machine learning, according to the No Free Lunch principle, 
no perfect set of hyperparameters fits all the models (Snoek et al. 2012; Wang et al. 2019), 
Therefore, the tuning of hyperparameters is extremely important for the machine learning-
based landslide hazard assessment.

For this purpose, in this study, a new model named BO-SVM based on the BO algorithm 
was proposed. In theory, replacing the empirical risk minimization principle in the tradi-
tional methods with the structural risk minimization principle, the BO algorithm obtains 
the overall optimal hyperparameters of the model through the Gaussian process to improve 
the performance of the model. In practice, in the case of the same input dataset, optimi-
zation of the hyperparameters of the model through the BO algorithm showed improved 
landslide hazard assessment result. The prediction effect of the BO-SVM model is higher 
than that of the SVM model, and the prediction accuracy and AUC value increased by 5 
and 4 %, respectively.

In this study, the key step to run BO was to realize the Gaussian process regression 
algorithm and optimize the computational process through the kernel trick of SVM. In 
general, common optimization algorithms cannot make full use of all the known results, 
and the potential relationships between the known results may be ignored as well (Nhu 
et al. 2020). Figure 5 shows that the AUC value obtained by the BO is generally show a 
broader distribution compared to random search in the iterative process. At the beginning 
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of the iteration, the distribution of the AUC values for both the algorithms showed a ran-
dom state. However, as the iterative process proceeds, the trend of BO gradually increases, 
while the random search gradually decreases. Eventually, the BO significantly outperforms 
random search, as it is a global optimization method that can be adjusted for the next opti-
mization with the help of a Gaussian function, while random search does not have such an 
adjustment.

In the entire study area, the hazard zones’ spatial distribution of the two models is 
roughly similar (Fig.  6), because the difference between the models is not large fun-
damentally based on dualistic statistics. The very high hazard zone areas are distrib-
uted in the southwest and northeast of the study area (Yanping District and Pucheng 
County) and have suffered the most landslide disasters in history. The low hazard zones 
and moderate hazard zones are most widely distributed in the study area, reporting a 
few landslide disasters in these areas, but the results of the two models showed that they 
are far from reaching a high risk. On a local scale, the results of the two models have 
some noticeable differences. The moderate zones area of the SVM model is significantly 

Fig. 5   a The AUC value of BO and random search in iteration; b ROC curves of SVM and BO-SVM, AUC 
is the acronym of area under the ROC curve

Table 3   Statistic result of two landslide hazard models

Hazard zone Model Grid number Area proportion 
(%)

Landslide 
number

Landslide 
proportion 
(%)

Low SVM 548,968 15.96  79 4.62 
BO-SVM 1,891,009 54.98  102 5.96 

Moderate SVM 2,193,576 63.78  675 39.45 
BO-SVM 1,038,155 30.19  499 29.16 

High SVM 602,680 17.52  698 40.79 
BO-SVM 410,526 11.94  702 41.03 

Very high SVM 93,946 2.73  259 15.14 
BO-SVM 99,480 2.89  408 23.85 
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larger than that of the BO-SVM and are usually called the uncertainty interval, indi-
cating that the model has a low degree of confidence in the occurrence of the land-
slide (Sun et al. 2020). The result of SVM showed many central parts of the study area 
including most parts of Wuyishan County, Jianyang District, and Jianou County. How-
ever, there are some scars of high zone along the railways, with few landslides reported 
in these areas. The BO-SVM produced less uncertain intervals and maintained a high 
accuracy in the areas along the railways. The above results show that the BO-SVM out-
performs the SVM, indicating improvement over the BO model. In this study, the land-
slide hazard maps obtained by the two models differed significantly at the local scale, 
and these differences occurred where BO enhanced the machine learning model. Cur-
rently, a few studies have reached similar conclusions. Yang et al. (2019b) proposed a 
hybrid model based on the Bayesian theory, exhibiting that this hybrid model performed 
better than the traditional models at local scales.

The optimization results of the approach used in this study are theoretically and 
practically superior, and similar findings have been made in other studies. Chen et  al. 
(2017a) proposed a method to optimize landslide spatial modeling with genetic algo-
rithm (GA), differential evolution (DE), and particle swarm optimization (PSO), indi-
cating that the optimized models show some improvement relative to the original mod-
els. This further proves the feasibility and superiority of the approach used in this study. 
However, different optimization algorithms have different effects on different machine 
learning models. In theory, BO as a global optimization model is more effective than 
local optimization models such as PSO.

To some extent, this study still had some limitations. The entire model has a certain 
black-box nature, and the optimization process relies on the “trial and error” of the com-
puter, rather than calculating towards a visible goal. As mentioned above, the hyperparam-
eters are important aspect of the model, and optimization algorithms can solve for optimal 
hyperparameters. By analogy, the optimization algorithm itself also has hyperparameters, 
which might be called “hyper-hyperparameters”. The presence of these “hyper-hyper-
parameters” also affects the optimization algorithm and the target model. However, there 
is no additional way to compute these parameters. Perhaps reducing this laborious opti-
mization process is worthy of attention. On the other hand, the research only uses random 

Fig. 6   The landslide hazard map of the two models
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search as a comparison of the BO algorithm, while ignoring methods such as grid search. 
The future study will focus on overcoming the deficiencies of this model.

6 � Conclusions

In conclusion, an advanced approach based on the BO algorithm and SVM for landslide 
hazard assessment was successfully developed, aiming to use a hyperparameter optimi-
zation method (BO algorithm) to solve the problem of machine learning hyperparameter 
selection in the landslide hazard assessment. An investigation into BO-SVM and SVM 
as the assessment model for landslides hazards assessment of Nanping city indicated 
better performance of BO-SVM model than those of SVM. For the BO-SVM model, 
the accuracy of the confusion matrix and the AUC value of the ROC curve was 89.53 % 
and 0.97, respectively. In the landslide hazard zoning map generated by the two models, 
the BO-SVM was also found more reliable; 65 % of the historical landslides are in very 
high and high hazard areas, which together cover less than 15 % of the study area. The 
BO-SVM significantly performed better than the SVM in the classification of landslide 
hazard at the local scale, proving that the BO algorithm has a significant optimization 
effect on the model. The findings of this study could provide a rational perspective for 
improving the landslide hazard assessment and is of certain significance to other land-
slide studies using machine learning methods. In addition, the results of this method 
could be helpful for risk assessment and management of other natural disasters.

Acknowledgements  We are grateful to the anonymous reviewers and the Editor for their constructive com-
ments that helped us improve the quality of the paper. We sincerely acknowledge the data support from 
the “National Earth System Science Data Center, National Science & Technology Infrastructure of China. 
(http://​www.​geoda​ta.​cn)”, International Scientific & Technical Data Mirror Site, Computer Network Infor-
mation Center, Chinese Academy of Sciences. (http://​www.​gsclo​ud.​cn).

Funding  The work was supported by the National Natural Science Foundation of China (No. 41861134011) 
and (No. 51874268).

Data availability  All the data and material in this paper are available from the Internet and the URL where 
the data were obtained has been shown in the text.

Code availability  Code Non-Public.

Declarations 

Conflict of interest  The authors declare no competing financial interests.

References

Abdollahi S, Pourghasemi HR, Ghanbarian GA et  al (2018) Prioritization of effective factors in the 
occurrence of land subsidence and its susceptibility mapping using an SVM model and their differ-
ent kernel functions[J]. Bull Eng Geol Environ 78(6):4017–4034

Akgun A (2011) A comparison of landslide susceptibility maps produced by logistic regression, 
multi-criteria decision, and likelihood ratio methods: a case study at İzmir. Turkey[J] Landslides 
9(1):93–106

http://www.geodata.cn
http://www.gscloud.cn


946	 Natural Hazards (2021) 109:931–948

1 3

Ambrosi C, Strozzi T, Scapozza C et  al (2018) Landslide hazard assessment in the Himalayas (Nepal 
and Bhutan) based on Earth-Observation data[J]. Eng Geol 237(1):217–228

An K, Kim S, Chae T et al (2018) Developing an accessible landslide susceptibility model using open-
source resources[J]. Sustainability 10(2):293

Ballabio C, Sterlacchini S (2012) Support Vector Machines for Landslide Susceptibility Mapping: The 
Staffora River Basin Case Study, Italy[J]. Math Geosci 44(1):47–70

Bourenane H, Guettouche MS, Bouhadad Y et al (2016) Landslide hazard mapping in the Constantine 
city, Northeast Algeria using frequency ratio, weighting factor, logistic regression, weights of evi-
dence, and analytical hierarchy process methods[J]. Arab J Geosci 9(2):24

Chang CC, Lin CJ (2011) LIBSVM: A Library for Support Vector Machines[J]. ACM Trans Intell Syst 
Technol 2(3):1–27

Chen W, Chen X, Peng JB et al (2021a) Landslide susceptibility modeling based on ANFIS with teaching-
learning-based optimization and Satin bowerbird optimizer[J]. Geosci Front 12(1):93–107

Chen W, Chen YZ, Tsangaratos P et al (2020) Combining evolutionary algorithms and machine learning 
models in landslide susceptibility assessments[J]. Remote Sens 12(23):3854

Chen W, Lei X, Chakrabortty R et al (2021b) Evaluation of different boosting ensemble machine learning 
models and novel deep learning and boosting framework for head-cut gully erosion susceptibility[J]. J 
Environ Manage 284:112015

Chen W, Li Y (2020) GIS-based evaluation of landslide susceptibility using hybrid computational intelli-
gence models[J]. Catena 195:104777

Chen W, Panahi M, Pourghasemi HR (2017a) Performance evaluation of GIS-based new ensemble data 
mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), 
differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling[J]. 
Catena 157:310–324

Chen W, Pourghasemi HR, Kornejady A et al (2017b) Landslide spatial modeling: Introducing new ensem-
bles of ANN, MaxEnt, and SVM machine learning techniques[J]. Geoderma 305:314–327

Chen YZ, Chen W, Janizadeh S et  al (2021c) Deep learning and boosting framework for piping erosion 
susceptibility modeling: spatial evaluation of agricultural areas in the semi-arid region[J]. Geocarto 
Int: 1–27

Cortes C, Vapnik V (1995) Support-Vector Networks[J]. Mach Learn 20(3):273–297
Den Eeckhaut MV, Marre A, Poesen J (2010) Comparison of two landslide susceptibility assessments in the 

Champagne–Ardenne region (France)[J]. Geomorphology 115(1–2):141–155
Dou J, Yunus AP, Bui DT et al (2020) Improved landslide assessment using support vector machine with 

bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed. 
Japan[J] Landslides 17(3):641–658

Erener A, Mutlu A, Duzgun HS (2016) A comparative study for landslide susceptibility mapping using GIS-
based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining 
(ARM)[J]. Eng Geol 203:45–55

Fan XM, Scaringi G, Korup O et  al (2019) Earthquake-Induced Chains of Geologic Hazards: Patterns, 
Mechanisms, and Impacts[J]. Rev Geophys 57(2):421–503

Frazier PI (2018) A tutorial on bayesian optimization[J]. arXiv preprint arXiv:180702811
Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016[J]. Nat Hazards Earth 

Syst Sci 18(8):2161–2181
Gariano SL, Guzzetti F (2016) Landslides in a changing climate[J]. Earth-Sci Rev 162:227–252
Greenhill S, Rana S, Gupta S et  al (2020) Bayesian Optimization for Adaptive Experimental Design: A 

Review[J]. IEEE Access 8:13937–13948
He J, Qiu H, Qu F et al (2021) Prediction of spatiotemporal stability and rainfall threshold of shallow land-

slides using the TRIGRS and Scoops3D models[J]. Catena 197:104999
Hungr O, Leroueil S, Picarelli L (2013) The Varnes classification of landslide types, an update[J]. Land-

slides 11(2):167–194
Intrieri E, Carla T, Gigli G (2019) Forecasting the time of failure of landslides at slope-scale: A literature 

review[J]. Earth-Sci Rev 193:333–349
Jafarian Y, Lashgari A, Haddad A (2019) Predictive Model and Probabilistic Assessment of Sliding Dis-

placement for Regional Scale Seismic Landslide Hazard Estimation in Iran[J]. Bull Seismol Soc Amer 
109(5):1581–1593

Kirschbaum DB, Adler R, Hong Y et al (2009) A global landslide catalog for hazard applications: method, 
results, and limitations[J]. Nat Hazards 52(3):561–575

Kobliha M, Schwarz J, Ocenasek J (2006) Bayesian optimization algorithms for dynamic problems. In: 
Rothlauf F (ed) Applications of Evolutionary Computing, Proceedings, vol  3907. Lecture Notes in 
Computer Science. 800–804



947Natural Hazards (2021) 109:931–948	

1 3

Lee JH, Sameen MI, Pradhan B et al (2018) Modeling landslide susceptibility in data-scarce environments 
using optimized data mining and statistical methods[J]. Geomorphology 303:284–298

Lo CM, Feng ZY, Chang KT (2018) Landslide hazard zoning based on numerical simulation and hazard 
assessment[J]. Geomat Nat Hazards Risk 9(1):368–388

Luo X, Lin F, Zhu S et al (2019) Mine landslide susceptibility assessment using IVM, ANN and SVM mod-
els considering the contribution of affecting factors[J]. PLoS One 14(4):e0215134

Marjanović M, Kovačević M, Bajat B et  al (2011) Landslide susceptibility assessment using SVM 
machine learning algorithm[J]. Eng Geol 123(3):225–234

Merghadi A, Yunus AP, Dou J et al (2020) Machine learning methods for landslide susceptibility stud-
ies: A comparative overview of algorithm performance[J]. Earth-Sci Rev 2020:103225

Moresi FV, Maesano M, Collalti A et  al (2020) Mapping Landslide Prediction through a GIS-Based 
Model: A Case Study in a Catchment in Southern Italy[J]. Geosciences 10(8):309

Nhu VH, Hoang ND, Nguyen H et  al (2020) Effectiveness assessment of Keras based deep learning 
with different robust optimization algorithms for shallow landslide susceptibility mapping at tropi-
cal area[J]. Catena 188:104458

Olen S, Bookhagen B (2018) Mapping Damage-Affected Areas after Natural Hazard Events Using Senti-
nel-1 Coherence Time Series[J]. Remote Sens 10(8):19

Pal SC, Chowdhuri I (2019) GIS-based spatial prediction of landslide susceptibility using frequency 
ratio model of Lachung River basin, North Sikkim, India[J]. SN Applied Sciences 1(5):416

Pedregosa F, Varoquaux G, Gramfort A et  al (2011) Scikit-learn: Machine Learning in Python[J]. J 
Machine Learn Res 12:2825–2830

Phong TV, Phan TT, Prakash I et al (2019) Landslide susceptibility modeling using different artificial 
intelligence methods: a case study at Muong Lay district, Vietnam[J]. Geocarto Int: 1–24

Qiu HJ, Cui YF, Yang DD et al (2019) Spatiotemporal Distribution of Nonseismic Landslides during the 
Last 22 Years in Shaanxi Province, China[J]. ISPRS Int Geo-Inf 8(11):20

Reichenbach P, Rossi M, Malamud BD et al (2018) A review of statistically-based landslide susceptibil-
ity models[J]. Earth-Sci Rev 180:60–91

Smola AJ, Scholkopf B (2004) A tutorial on support vector regression[J]. Stat Comput 14(3):199–222
Snoek J, Larochelle H, Adams RP (2012) Practical bayesian optimization of machine learning algo-

rithms. In: Adv neural Inf Process Syst. 2951–2959
Sorbino G, Sica C, Cascini L (2009) Susceptibility analysis of shallow landslides source areas using 

physically based models[J]. Nat Hazards 53(2):313–332
Suárez G, Domínguez-Cuesta MJ (2020) Improving landslide susceptibility predictive power through 

colluvium mapping in Tegucigalpa, Honduras[J]. Nat Hazards 105(1):47–66
Sun DL, Wen HJ, Wang DZ et al (2020) A random forest model of landslide susceptibility mapping based 

on hyperparameter optimization using Bayes algorithm[J]. Geomorphology 362(2020):107201
Tang XZ, Hong HY, Shu YQ et  al (2019) Urban waterlogging susceptibility assessment based on a 

PSO-SVM method using a novel repeatedly random sampling idea to select negative samples[J]. J 
Hydrol 576:583–595

Tehrany MS, Pradhan B, Mansor S et al (2015) Flood susceptibility assessment using GIS-based support 
vector machine model with different kernel types[J]. Catena 125:91–101

Theron A, Engelbrecht J (2018) The Role of Earth Observation, with a Focus on SAR Interferometry, for 
Sinkhole Hazard Assessment[J]. Remote Sens 10(10):30

Tien Bui D, Pradhan B, Lofman O et  al (2012) Landslide susceptibility assessment in the Hoa Binh 
province of Vietnam: A comparison of the Levenberg–Marquardt and Bayesian regularized neural 
networks[J]. Geomorphology 171:12–29

Tien Bui D, Shahabi H, Shirzadi A et al (2018) Landslide Detection and Susceptibility Mapping by AIR-
SAR Data Using Support Vector Machine and Index of Entropy Models in Cameron Highlands, 
Malaysia[J]. Remote Sens 10(10):32

van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and 
vulnerability assessment: An overview[J]. Eng Geol 102(3–4):112–131

Violante RA, Bozzano G, Rovere EI (2018) The Marine Environment: Hazards, Resources and the 
Application of Geoethics Principles[J]. Ann Geophys 60:1–10

Wang D, Wang CC, Xiao JH et al (2019) Bayesian optimization of support vector machine for regression 
prediction of short-term traffic flow[J]. Intell Data Analy 23(2):481–497

Wu D, Huang MX, Zhang Y et  al (2018) Strategy for assessment of disaster risk using typhoon haz-
ards modeling based on chlorophyll-a content of seawater[J]. EURASIP J Wirel Commun Netw 
2018(1):12



948	 Natural Hazards (2021) 109:931–948

1 3

Xie W, Li XS, Jian WB et  al (2021) A Novel Hybrid Method for Landslide Susceptibility Mapping-
Based GeoDetector and Machine Learning Cluster: A Case of Xiaojin County, China[J]. ISPRS Int 
Geo-Inf 10(2):93

Xu C, Xu XW, Lee YH et  al (2012) The 2010 Yushu earthquake triggered landslide hazard mapping 
using GIS and weight of evidence modeling[J]. Environ Earth Sci 66(6):1603–1616

Yanar T, Kocaman S, Gokceoglu C (2020) Use of Mamdani Fuzzy Algorithm for Multi-Hazard Sus-
ceptibility Assessment in a Developing Urban Settlement (Mamak, Ankara, Turkey)[J]. ISPRS Int 
Geo-Inf 9(2):114–139

Yang JT, Song C, Yang Y et  al (2019a) New method for landslide susceptibility mapping supported by 
spatial logistic regression and GeoDetector: A case study of Duwen Highway Basin, Sichuan Province, 
China[J]. Geomorphology 324:62–71

Yang Y, Yang JT, Xu CD et al (2019b) Local-scale landslide susceptibility mapping using the B-GeoSVC 
model[J]. Landslides 16(7):1301–1312

Yin J, Yin Z, Xu SY (2013) Composite risk assessment of typhoon-induced disaster for China’s coastal 
area[J]. Nat Hazards 69(3):1423–1434

Youssef AM, Pourghasemi HR, Pourtaghi ZS et  al (2015) Landslide susceptibility mapping using ran-
dom forest, boosted regression tree, classification and regression tree, and general linear models and 
comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia[J]. Landslides 
13(5):839–856

Zezere JL, Pereira S, Melo R et al (2017) Mapping landslide susceptibility using data-driven methods[J]. 
Sci Total Environ 589:250–267

Zhang FY, Huang XW (2018) Trend and spatiotemporal distribution of fatal landslides triggered by non-
seismic effects in China[J]. Landslides 15(8):1663–1674

Zhao X, Chen W (2020) Optimization of Computational Intelligence Models for Landslide Susceptibility 
Evaluation[J]. Remote Sens 12(14):2180

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Landslide hazard assessment based on Bayesian optimization–support vector machine in Nanping City, China
	Abstract
	1 Introduction
	2 Study area and data
	2.1 Study area and landslide inventory
	2.2 Landslide conditioning factors

	3 Methods
	3.1 Mapping units and dataset division
	3.2 Multicollinearity diagnosis
	3.3 Landslide hazard assessment model
	3.4 Bayesian optimization algorithm
	3.5 Model evaluation and verification
	3.5.1 Confusion matrix
	3.5.2 ROC curve


	4 Results
	4.1 Multicollinearity of factors
	4.2 Verification and comparison of models
	4.3 Landslide hazard map

	5 Discussion
	6 Conclusions
	Acknowledgements 
	References




