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Abstract
Urban flood inundation is worsening as the number of short-duration rainstorms increases, 
and it is difficult to accurately predict urban flood inundation over a long lead time; how-
ever, the traditional hydrodynamic-based urban flood models still have difficulty realizing 
real-time prediction. This study establishes a rapid forecasting model of urban flood inun-
dation based on machine learning (ML) algorithms and a hydrodynamic-based urban flood 
model. The ML model is obtained by training the simulation results of the hydrodynamic 
model and rainfall characteristic parameters. Part of Fengxi New Town, China, was used to 
validate the forecasting model. A comparison of ML predictions and hydrodynamic model 
simulations shows that when using one ML algorithm (random forest (RF) or K-nearest 
neighbor (KNN)) for inundation prediction, the accuracy of the inundation water volume 
and area is insufficient, with a maximum error of 28.56%. Combining the RF and KNN 
models can effectively improve the prediction accuracy and overall stability, the mean rela-
tive errors of the inundation area and depth are less than 5%, and the mean relative errors 
of the inundation volume can control within 10%. The simulated time of a single rainfall 
event can be controlled within 20 s, which can provide sufficient lead time for emergency 
decision-making, thereby helping decision-makers to take more appropriate measures 
against inundation.

Keywords  Urban inundation · Rapid forecasting · Machine learning · Random forest 
model · K-nearest neighbor model

1  Introduction

Flood disasters, one of the most frequent natural disasters, have a great impact on 
agriculture, transportation, and people’s lives and property (Smith et  al. 2014; Guha-
Sapir et  al. 2016). As the urban heat island effect worsens due to the acceleration of 
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urbanization and the increasing incidence of extreme weather events resulting from cli-
mate change, urban flood inundation disasters show an increasing tendency and cannot 
be effectively predicted in a short period of time (Xie et al. 2017; Wu et al. 2020).

Accurate forecasting models can effectively simulate the situation of urban flood 
inundation, which has great significance both for guiding timely warnings to alleviate 
the loss of lives and properties and assisting urban construction by setting up optimiza-
tion plans (Xie et al. 2017). Therefore, it is necessary to establish urban flood inunda-
tion forecasting models. However, urban flood inundation simulation is a complicated 
process, and the influence of various factors, such as rainfall, soil moisture, river con-
ditions, and landform features, needs to be considered. In addition, iteratively solving 
complex equations multiple times will take considerable time, so in general, such mod-
els cannot provide an effective decision basis for decision-makers when facing emer-
gency cases.

Several studies have been devoted to developing simulation models for providing 
rapid prediction. such as using discrete Boltzmann equation (DBE) to bypass the com-
plexity of the usual shallow water models (Rocca et al. 2020), accelerating parallel com-
puting through graphics processing unit (Hu et  al. 2018; Liang et  al. 2016), optimizing 
the iterative format to reduce the computation time (Chew et al. 2020; Hou et al. 2015), 
or using unstructured grids to reduce the number of computing grids (Wu et  al. 2018). 
However, these traditional studies mostly focused on algorithm optimization, though have 
certain benefits but cannot achieve breakthroughs because regardless of how the model 
is optimized, complex equations are still required due to the complexity of the physical 
mechanism.

In the last two decades, artificial intelligence algorithms have been effectively devel-
oped, of which machine learning (ML) is widely used in most aspects of social produc-
tion. ML methods can summarize the rules between input parameters and output results 
with lower computational cost. The solution structure is simpler and more efficient than the 
physical model (Mekanik et al. 2013). Several methods are also being increasingly com-
bined with ML: artificial neural networks (ANNs) for multi-step-ahead flood inundation 
forecasting (Chang et al. 2018), physical hybrid neural network models to forecast typhoon 
floods (Jhong et  al. 2018), monthly runoff forecasting based on hybrid long short-term 
memory neural network and ant lion optimizer (LSTM-ALO) model (Yuan et  al. 2018), 
support vector regression (SVR), multivariate adaptive regression spline (MARS) and M5 
model tree (M5Tree) for river flow data forecasting in semiarid mountainous catchments 
(Yin et al. 2018), hybrid extreme learning machine-particle swarm optimization algorithms 
for flood forecasting (Anupam and Pani 2020), support vector machine (SVM)-based ML 
methods to predict water levels in rainwater pipe networks (Wang and Song 2020), LSTM 
network for the probabilistic daily streamflow forecasting (Zhu et al. 2020), hybrid decision 
tree-based ML models for short-term water quality prediction (Lu and Ma 2020), etc. The 
corresponding studies show that ML has great prospects in flood prediction.

However, these studies almost focus on large-scale river basins and carry out large-scale 
low-precision simulations. ML methods require a large amount of training data for learn-
ing. Since urban flood inundation is usually caused by short-duration rainstorms, it is dif-
ficult to effectively obtain enough historical inundation data, so ML technology is rarely 
applied to urban flood inundation research. With the continuous development of hydro-
dynamic models in recent years, the precise simulation of urban flooding process can be 
realized based on high-precision terrain and rainfall information, which provides the pos-
sibility for the application of machine learning technology in urban flooding prediction as 
explained in the following.
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The purpose of this study is to realize the real-time prediction of urban flood inunda-
tion to meet the reference needs of emergency decision-making. We propose a rapid fore-
casting model combining a hydrodynamic model with ML algorithms, the hydrodynamic 
model calibrated by measured data is used to simulate sufficient urban flood inundation 
data under various rainfall conditions, and the inundation data are used as training data 
to generate a rapid forecasting model using machine learning algorithms. The established 
model can generate the corresponding inundation map within 20 s, thus helping decision-
makers to take necessary measures to reduce losses.

The organizational structure of this paper is as follows. In Sect.  2, we first introduce 
the main workflow, as well as the hydrodynamic model and ML algorithms we used. In 
Sect. 3, we present the study area and rainfall data. We establish the rapid prediction model 
and analyze the forecasting ability in Sect. 4 and the conclusion is summarized in Sect. 5.

2 � Methodology of rapid forecasting model for urban flood inundation

Based on the hydrodynamic urban flood model and ML algorithm, a rapid prediction 
model of urban flood inundation is established in this study. The coupling model mainly 
includes the following processes: (1) obtain the digital elevation model (DEM) of the study 
area and collect enough rainfall data of each type to enable it to represent the various con-
ditions of urban heavy rain; (2) use the hydrodynamic model to obtain the inundation area 
and volume data caused by rainstorms; (3) extract the characteristic parameters of rainfall 
and reduce the number of unnecessary parameters through correlation analysis to improve 
the model performance and reduce the amount of time wasted in model training; (4) use 
ML algorithms to fit the input parameters and output data; and (5) save the trained model 
and use the test sets to verify the reliability of the model (Fig. 1).

2.1 � Hydrodynamic‑based urban flood model

The hydrodynamic-based urban flood model takes the 2D SWE (shallow water equation) 
as the governing equation, its conservation scheme can be expressed in vector form as 
Eqs. (1–3):

where t represents the time; x and y are the Cartesian coordinates; q denotes the vector 
of conserved flow variables consisting of h and uh and vh, which are the water depth and 
unit-width discharges in the x and y-directions; F and G are the flux vectors in the x- and 
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y-directions, respectively; g is gravity; S is the source vector that may be further subdivided 
into net rain source terms i, slope source terms Sb and friction source terms Sf; Z repre-
sents the bed elevation; Cf depends on the Manning coefficient and can be expressed as 
Cf = gn2/h1/3, where n is the Manning coefficient.
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Fig. 1   Framework for the multiple machine learning model
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The model adopts the dynamic wave method, which comprehensively considers the 
combined effects of inertia, pressure, gravity, and friction terms on water flow, and can 
most effectively simulate the evolution of water flow under complex boundary conditions. 
It discretely solves the 2D SWE by the Godunov’s finite volume method, which focuses 
on constructing discrete equations from a physical point of view. Each discrete equation is 
an expression of the conservation of a certain physical quantity on a finite volume, which 
can ensure that the discrete equation has conservation characteristics. Through the second-
order explicit Runge–Kutta (Hubbard 1999) method, we constructed a monotonic upwind 
scheme for conservation laws (MUSCL) with second-order space–time accuracy to ensure 
the conservation of mass and effectively solve the discontinuity problem (Hou et al. 2015). 
To solve complex problems such as abrupt flow and discontinuity, the model uses the 
HLLC (Haren-Lax-van Leer contact) approximate Riemann solver to calculate the mass 
and momentum flux on the unit interface. The static water reconstruction method (Siva-
kumar et al. 2009) is used to address the problem of negative water depth at the boundary 
between wet and dry cells, and the flow rate is used to replace the single width flow rate as 
the calculation variable to effectively convert the second-order formula prone to instability 
into a stable first-order formula when the water depth is lower than a certain value or the 
flow rate is higher than a certain value. On the premise of ensuring the calculation accu-
racy, the slope surface source term in the calculation cell is converted to the flux on the 
boundary of the cell to ensure it also meets the full stability condition in complex terrain 
calculations. The friction source term uses the implicit splitting point method optimized by 
Liang and Marche (Hou et al. 2013) to maintain the stability of the calculation results. At 
the same time, GPU parallel technology is used to accelerate the simulation process and 
ensure the model’s computational efficiency.

2.2 � Machine learning models for urban flood inundation

ML, the core of artificial intelligence, includes many kinds of algorithms and has been 
widely used in many fields. Based on the random forest (RF) and K-nearest neighbor 
(KNN) algorithms, this study aims to investigate and build a rapid forecasting model for 
urban flood inundation.

2.2.1 � Random forest model

The decision tree (Quinlan 1986, 2014; Breiman 1984) algorithm is a nonparametric super-
vised learning method that can summarize decision rules from a series of unordered and 
irregular features, and present these rules as a tree graph to solve classification and regres-
sion problems. It can effectively process a large amount of data, but the single decision 
mechanism of decision tree will be greatly affected by the characteristic parameters. As it 
is easy to overfit based on the training sets, the classifier will achieve a perfect performance 
on the training sets, but show poor performance on the testing sets, so a single decision tree 
will have difficulty obtaining an acceptable result (Breiman 2001).

The RF algorithm was proposed by Leo Breiman in 2001 by combining bagging inte-
grated learning theory with the random subspace method (Breiman 2001; Kwok et al. 
1990; Ho 1998). And RF uses the decision tree as the base classifier, as shown in Fig. 2. 
It contains multiple decision trees trained by the bagging algorithm and combines the 
results of multiple decision trees. When new samples need to be predicted, the sim-
ulation results of multiple evaluators will be considered to obtain the comprehensive 
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results to overcome the instability of a single model and achieve a better regression and 
classification performance.

The improvement in RF algorithm is mainly manifested in the randomness of the 
training sets and characteristic parameters. First, the training data are generated by sam-
pling with replacement, and N sub-datasets are constructed randomly by the bagging 
method. In each sub-dataset, the elements are allowed to repeat, as shown in Fig. 3. Sec-
ond, like the sub-dataset, characteristic parameters of different decision trees are also 
randomly chosen from the proposed features, then the optimal feature is selected as a 
root node to generate decision trees according to the impurity. The third step is estab-
lishing a voting mechanism. When predicting the results of a new sample, each decision 
tree will give its own results, and the final output results will be determined by voting 
on these trees. This method can effectively prevent the overfitting of the decision tree 
and make the model generalizable and achieve a better performance on the new data.

Fig. 2   Schematic diagram of the principle of RF algorithm
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2.2.2 � K‑nearest neighbor model

The KNN model was proposed by Cover and Hart in 1968 based on the vector space 
model (Keller et al. 1985). In the KNN algorithm, each sample is regarded as a point or 
vector in Rn space. The basic idea of the KNN regression algorithm is to use the neigh-
borhood algorithm to find K samples that are closest to the target sample in the train-
ing sets, and use these K samples for estimation. This algorithm has the advantages of 
maturity, simplicity, and good robustness to noise in training sets and has been widely 
applied in many fields (Vialetto and Noro 2019; Huang et al. 2017; Liu et al. 2016). Its 
main steps are as follows:

(1)	 The existing samples are instantiated, that is, converted into the form (x, f(x)), where 
x is the characteristic parameter of the sample, x is represented by (x1, x2,…, xn), and 
xn is the nth property of the sample; that is, the number of feature parameters is equal 
to the dimension composed of vectors. After instantiation, all the samples constitute 
the training sets and test sets.

(2)	 Given a new test sample xi, a distance formula is used to calculate the distance between 
xi and each original sample in the training sets, and K samples closest to xi are screened 
out. The distance formulas mainly include the Euclidean distance and Manhattan dis-
tance. In this paper, the Euclidean distance formula with good performance in both 
the training sets and the test sets is selected through the comprehensive comparison of 
the fitting effect. The formula is shown in Eq. (4).

where xi and xj are two samples and xi
(l) and xj

(l) are the l eigenvalues of xi and xj, 
respectively. L(xi, xj) is the Euclidean distance between xi and xj.

(3)	 According to the proximity between the selected K samples and the unknown sample, 
the predicted results of the K samples are assigned to the new test samples as the fore-
cast value according to their weight (Fig. 4).
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2.3 � Parameter correlation analysis

Redundant parameters not only cannot improve the predicted accuracy, but also may 
cause more errors (Hu et  al. 2020) while increasing the complexity of the model. 
Therefore, a correlation analysis between the characteristic parameters of rainfall and 
the inundation situation is carried out. Due to the complex terrain, it is unrealistic to 
independently verify the data in each grid. The rationality of the parameter selection 
was verified by calculating the correlation parameters between the rainfall characteristic 
parameters and the accumulated inundation area and volume of the region.

This study mainly uses the Pearson correlation coefficient (Sedgwick 2012) for the 
correlation analysis, and the correlation calculation formula is shown in Eqs. (5–7). The 
correlation criterion is shown in Table 1.

where ρxy is the Pearson correlation coefficient and E(x), E(y) and E(xy) are the mathemati-
cal expectation of x, y and xy, respectively; cov (x, y) is the covariance between x and y; σx 
and σy are the variances of x and y.

2.4 � Parameters optimization of forecasting model

The fitting degree of the ML algorithm to the training data is mainly determined by the 
algorithm and its parameters, such as the number of decision trees, maximum depth, 
maximum number of features in the random forest algorithm and the neighbors K, dis-
tance formula, and algorithm selection in KNN will directly affect the reliability of the 
model. In order to improve the performance of the ML algorithm, based on the Scikit-
learn framework (Varoquaux et al. 2015), the grid search algorithm is used to optimize 
the parameters of the learning algorithm. Grid search is an exhaustive algorithm that 
can automatically simulate the combination of different parameters and compare errors 
through cross-validation methods to determine the most suitable model parameters for 
the current training data to improve the accuracy of the model (Liu et al. 2014).
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Table 1   Value ranges of the 
Pearson correlation coefficient 
and their corresponding 
correlations

The absolute value of the Pearson 
correlation coefficient

Correlation

0–0.2 Very weak or no correlation
0.2–0.4 Weak correlation
0.4–0.6 Moderate intensity correlation
0.6–0.8 Strong correlation
0.8–1 Very strong correlation
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In this study, the cross-validation coefficient is finally selected sixfold cross-validation, and 
the optimal parameters of the algorithm are finally determined by the grid search algorithm as 
shown in Table 2.

2.5 � Error correction matrix

In order to reduce the accumulated error caused by the hydrodynamic and the machine learn-
ing model, the study generated an error matrix through the simulation results of the hydro-
dynamic model and the prediction results of the machine learning algorithm. Based on ML 
algorithm, the rainfall characteristic parameters were used as input values and the error matrix 
as the target values to construct the error modified model, so the prediction result of the ML 
model is generated by superimposing the initial prediction result and the error correction 
matrix (Fig. 5).

2.6 � Multi‑model for urban flood inundation

Due to the characteristics of single machine learning algorithm, no matter how to optimize the 
parameters, there may still be large errors in individual rainfall forecasts. In order to improve 
the overall reliability of the rapid forecasting model in urban flood inundation, the research 
carried out weighted redistribution of the simulation results of RF and KNN algorithm to 
obtain the comprehensive results of multiple models. The formula is shown in Eq. (8).

R is the final result of the multi-model, SRF and SKNN represent the R2 values of the RF and 
KNN models, respectively, and RRF and RKNN represents the predicted values of the RF and 
KNN models in the grid.

In this study, R2, mean absolute error (MAE), root mean square error (RMSE), and mean 
relative error (MRE) are mainly used to verify the reliability of the model. The calculation 
method is shown in Eq. (9–12):
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where yi is the true value on the test set, yi is the average of the true values on the test set, ŷi 
is the predicted value, and m is the number of values.

3 � Study area and rainfall data

3.1 � Study area

The Xixian New Area, located in Shaanxi Province, China, has a temperate continental 
climate. The average annual rainfall is approximately 500 mm, but more than 50% of 
the annual rainfall events are concentrated from July to September, and the rainfall is 
often heavy rainstorms with short durations. The terrain in this area is complex, and 
there are many low-lying sections, which are prone to landslides, urban flood inunda-
tion, and other meteorological disasters during the rainy season. Therefore, we select a 
part of the Xixian New Area with an area of 2.432 km2 as the study area.

Since the width of a road is generally approximately 15 m, a coarse grid will not be 
able to represent the characteristics of the roads, and over precise terrain can improve 
the accuracy to some extent, but the calculation time will increase considerably. There-
fore, the horizontal resolution of the terrain data used in the study is 2 m, composed 
of 640 × 950 cells, and the digital elevation map is shown in Fig. 6. Based on the max-
imum likelihood classification method, the study area was divided into five classes: 
roads, houses, bare land, grassland, and forest. The area of each type of land is shown 
in Table 3. According to the Xi’an rainstorm intensity formula adopted in the design 
scheme, the design return period of the drainage pipe of the study area is once a year, 
which can cope with the rainstorm intensity of 10.74 mm/h. Therefore, the designed 
drainage capacity of the pipe network in the study area was equivalent to the infil-
tration rate of 10.74 mm/h, according to the equivalent drainage method. (Hou et  al. 
2017; Li et  al. 2020). The Manning coefficient and infiltration of different land use 
types are determined with reference to urban drainage standards and literature (Gao 
2014; Li 2017) (Fig. 7).

Error matrix

ML algorithm
Error 

correction 
matrix

Hydrodynamic 
numerical

model results

ML algorithm
results

Rainfall data
Final 

forecast 
result

Fig. 5   Schematic diagram of error correction matrix construction
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3.2 � Rainfall data

At present, because most of the high-precision public meteorological rainfall forecast data 
have a temporal resolution of 1 h, the rainfall temporal resolution adopted in this work is 
1  h. Because the measured rainfall data in the study area are limited, historical rainfall 
data cannot cover all possible types of rainstorms. Therefore, in the process of model train-
ing and verification, both the design rainfall and measured rainfall comprising 180 fields 
are added in this study. The historical rainfall data were obtained from the Fengxi sponge 
city control platform. Bi Xu et al. (2015) pointed out that the rainfall in Xi’an urban area 
presents mostly short-duration torrential rains, and most of them are single-peak rainfall, 
its rainfall characteristics are highly similar to the Chicago rainfall pattern. Therefore, the 
design rainfall data were generated by the Chicago rain pattern generator according to the 
formula of rainstorms in this area.

Fig. 6   DEM of the study area

Table 3   Information related to 
land use

Land used Area (m2) Infiltration 
(mm/h)

Manning 
coefficient

Grass 234,689 28.39 0.060
Bare land 29,956 19.43 0.030
Forest 105,442 37.55 0.200
Road 184,942 0 0.014
House 49,893 0 0.015
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The formula of rainstorms in the study area (Hou et al. 2019) is as follows:

where i is the rainstorm intensity (mm/h); p is for the rainstorm recurrence period (a); and t 
is the rainfall duration (minutes).

4 � Results and discussion

In this section, the reliability of the hydrodynamic model is verified, and since decision-
makers tend to be most concerned about the maximum loss caused by rainfall, we mainly 
constructed the relationship between rainfall and the most serious inundation situation. 
We chose the R2, MAE and RMSE to judge the overall stability and accuracy of the con-
structed ML model. Then, to avoid and overestimation of the reliability of the learning 
model caused by the areas with few inundation, four regions of A-D in Fig. 9 with severe 
inundation were selected for further analysis. The learning performance of the model was 
verified by comparing the relative error of rainstorm-inundation situations between the 
hydrodynamic model and the ML methods in the main inundation area. Finally, to further 
improve the forecasting, the results of the two algorithms are merged to obtain the final 
forecast results.

4.1 � Verification of hydrodynamic bases urban flood model

The rainstorm-induced inundation data were generated by the hydrodynamic model sim-
ulation. Therefore, the hydrodynamic model simulation performance was first verified 
in this paper. The rainfall data used for model verification are the measured rainfall data 

(13)i =
446.3676 × (1 + 1.971 lg p)

(t + 7.4246)0.8124

Fig. 7   Land used distribution in 
the study area



2348	 Natural Hazards (2021) 108:2335–2356

1 3

collected by the automatic network weather station in the Xixian New Area on August 
25, 2016. The rainfall event lasted from 0:30 to 13:30 on August 25, the cumulative 
amount of rainfall was 97.40 mm, and the maximum rainfall of 3 h was 72.4 mm. The 
specific rainfall process is shown in Fig. 8.

The rainstorm caused multiple inundations in the study area. The measured data 
showed that the depth of inundation on many roads reached 30 cm, and in some areas 
reached 50 cm, resulting in traffic paralysis on many roads. The simulation results of the 
hydrodynamic model and the partial enlargement comparison with the actual measure-
ment results are shown in Fig. 9. It can be seen from the figure that the model can accu-
rately reflect the location of water, and the inundation area and depth are basically con-
sistent with the measured data. The results show that the model can accurately simulate 
the inundation caused by rainstorms. However, with a GeForce RTX 2070 Super graph-
ics card and GPU acceleration technology, the calculation still takes approximately 1 h.

Fig. 8   Measured rainfall process 
on August 25, 2016
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Fig. 9   Simulation results and comparison with measured data
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4.2 � Effective parameters selected for rapid forecasting model

The results of the correlation analysis of the characteristic parameters are shown in Table 4, 
in which the Pearson correlation coefficient between the rainfall duration and the accumu-
lated inundation area is 0.451, and the Pearson correlation coefficient between the cumula-
tive rainfall before the peak and the accumulated inundation area is 0.449, within the range 
of 0.4–0.6, indicating a moderate correlation, and the correlation with the inundation vol-
ume is similar. The other parameters are correlated more with the accumulated inundation 
area and volume, with correlation coefficients exceeding 0.8, showing that accumulated 
inundation area and volume have a very strong correlation between them. In general, the 
selected parameters are reasonable.

4.3 � Forecasted results for study area

In total, 180 rainfall events were selected for fitting: 150 events for the training sets and 30 
events for the test sets. Model training was conducted at the time when the inundation was 
the most serious. Each rain simulation result was composed of 608,000 grid simulation 
data points. Through model parameter optimization, the final scores of the RF and KNN 
models are shown in Table 5.

In the training sets, the RF model reveals a better fitting performance; the R2 value is 
0.991, while in the test sets it is 0.985, which means that the RF model can effectively fit 
the data, and the overall performance is good. Compared with the RF model, the KNN 

Table 4   Correlation analysis of characteristic parameters

Person correlation coefficient

Cumu-
lative 
rainfall

Rainfall 
recurrence 
period

Rainfall 
duration

Rainfall 
peak

Maximum 
rainfall of 
2 h

Maximum 
rainfall of 
3 h

Cumula-
tive rainfall 
before peak

Accumu-
lated 
inunda-
tion area

0.986 0.888 0.451 0.984 0.971 0.979 0.449

Accumu-
lated 
inunda-
tion 
volume

0.981 0.848 0.427 0.976 0.971 0.978 0.434

Table 5   Scores of ML model Score Random forest KNN

Training data Testing data Training data Testing data

R2 0.991 0.985 0.986 0.987
MAE(m) 0.002 0.002 0.002 0.002
RMSE(m) 0.008 0.010 0.010 0.010
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model also gets an acceptable score, with an R2 value of 0.986 in the test sets, and with a 
R2 score of 0.987 in the test sets, indicating that the KNN model is also suitable for this 
type of data learning and can reflect the overall situation. We also found that the RMSE 
and MAE of both the RF and KNN models are very small, which may be because there 
are some high-lying areas such as buildings in this region. In this type of area, rainwater 
will quickly be drained to low-lying areas, so during the simulation, the depth and volume 
of water are very small under all types of rainfall conditions. Therefore, when the rainfall 
and inundation results are fitted by ML algorithms, the results will achieve a nearly per-
fect performance, which in turn causes an overestimation of the effectiveness of the overall 
regional forecast.

Fig. 10   Comparison of inundation results between hydrodynamic and ML model
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Figure 10 shows a comparison diagram of the inundation results obtained by the hydro-
dynamic model and the ML algorithms. Figure  10a shows the simulation result of the 
hydrodynamic model. Due to the large infiltration capacity of woodland and grassland 
areas, the water depth and volume in these areas are relatively shallow, and the topography 
of the housing area is high, rainwater is quickly discharged to the surrounding roads and 
toward low-lying sections forming a large area of inundation including low-lying sections. 
Figure 10b, c shows the ML results. Through comparison, it can be seen that the learning 
results of the two ML algorithms are very similar to the hydrodynamic model simulation 
results, and the overall difference is very small. The location and depth of the inundation 
are basically the same, which is consistent with the above conclusion that the overall per-
formance of the model is reliable.

4.4 � Forecasted results for inundation spots

In this part, to prevent the overestimation of the model caused by the areas with few inun-
dation, we selected four main inundation spots (A-D in Fig. 9) as validation areas. Because 
the terrain may have a small number of noisy points in the region, which will seriously 
affect the maximum water depth, inundation area and volume are chosen to verify the reli-
ability of the model. The water mean depth, obtained by dividing the water volume by the 
inundation area, was used to approximate auxiliary verification. The specific relative error 
of the inundation area, inundation volume, and average water depth of the selected inunda-
tion regions are shown in Fig. 11.

From Fig. 11, it can be seen that in the 30 test rainfall events, more than 75% of the 
forecast relative error of the rainfall events is less than 10%, and the MRE can also be con-
trolled within 10%. The MREs of inundation area and depth are 3.93% and 3.18%, respec-
tively. The RF model has the best prediction performance for water depth, and more than 
75% of the relative error of rainfall events can be controlled within 5%, and the prediction 
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performance of inundation volume is slightly worse, with an MRE of 6.76%. This is 
because the inundation volume is calculated by the inundation depth and the size of each 
grid, and there is an error accumulation phenomenon in this process. Although the overall 
performance of the RF model is good, there may still be a large error in a single rainfall. 
For example, the maximum error of the inundation volume in the spot D is 28.56%.

The forecasted result of the KNN model is shown in Fig. 12. The KNN model obtains 
similar scores as the RF model in general, but the performance in selected regions is bet-
ter, the MRE of inundation volume is 6.21%, and the maximum error is 20.16% appearing 
in spot D, 8.40% less than that of the RF model. Similar to the RF model, the KNN model 
performs better in the prediction of the inundation area and average water depth, with rela-
tive mean errors of 3.37% and 3.15%, respectively. And the KNN algorithm did not show a 
large abnormal deviation in the prediction of the inundation area and depth, with maximum 
errors of 13.40% and 17.94%, respectively, which were more stable than the RF model.

4.5 � Forecasted results by applying multi‑model

Section 4.4 shows that although the same training sets are used, there are still some differ-
ences between the RF model and KNN model in prediction performance, at the same time, 
both types of models can control the MRE within 10%. Therefore, to further improve fore-
casting performance, we combine the RF and KNN models, redistributing the predicted 
results according to their different weights and the results are shown in Fig. 13.

Figure  13 shows that the combination of the two algorithms can further reduce the 
forecast error to a certain extent. The MRE of inundation area and inundation depth are 
reduced to 3.27% and 3.16%, respectively, and the MRE of the inundation volume is also 
reduced to 5.72%. It can be noticed that the maximum errors of the inundation depth and 
inundation volume at spot B of the multi-model results have both increased compared with 
the KNN model. This is because KNN model is significantly better than the RF model in 
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the maximum error control of spot B, but the maximum errors in spots A, C, and D have 
been greatly improved. The maximum error of the inundation volume in the spot A has 
been reduced to 12.48%, the spot C has been reduced to 14.07%, and the inundation vol-
ume error in the spot D has also been reduced to 20.06%. From a point of view, it makes 
the forecasting performance more stable.

From the overall point of view, the multi-model can effectively integrate the prediction 
results of the two types of models, reduce the abnormal error caused by the uncertainty of 
a single model, and control the MRE of the inundation area and average depth within 5%. 
The MRE of inundation volume is also controlled within 10%, and the reliability of the 
forecast can meet the demand of emergency decision-making on the accuracy of prediction.

4.6 � Simulation time

The hardware configuration of this research is based on NIVIDA Geforce GTX 2070 
super graphics card, CPU is Core I7-8700, and the comparison of model simulation time 
is shown in Table 6, the hydrodynamic model needs to be iteratively calculated from time 
0, and it takes about 3435.13  s to simulate the inundation evolution process of a single 
rainfall for 10  h. Based on the RF model, the cumulative simulation time of 30 rainfall 
data at the most severe time of inundation is 310.25 s, and the average simulation time of a 
single rainfall is 10.34 s. The KNN algorithm takes a little shorter, and the average rainfall 
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Table 6   Comparison of simulation time

Model Hydrodynamic model KNN model RF model Multi-model

Cumulative time (s) 103,053.90 305.90 310.25 329.43
Average time (s) 3435.13 10.20 10.34 10.98
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simulation time is 10.20 s. Since multi-model needs to integrate the simulation results of 
the RF and KNN models, so it takes a bit longer, and the average simulation time of a 
single rainfall is 10.98 s. The results show that the ML model can provide certain decision 
support for emergency decision-making and meet the requirements of rapid forecasting of 
urban flood inundation.

5 � Conclusion

This research aims to explore the construction of a rapid forecasting model of urban flood 
inundation based on high-precision hydrodynamic model and ML algorithms. We obtain 
the urban flood inundation conditions under various types of local rainfall through a hydro-
dynamic model. Then, the RF and KNN algorithms are combined to establish the relation-
ship between the rainfall characteristic parameters and the results of inundation, avoiding 
the iterative calculation of complex equations, and realizing the rapid prediction of urban 
flood inundation. Taking Fengxi New City, China, as the research area, the simulation 
effect of the rapid forecasting model is comprehensively verified. The main results are 
summarized as follows:

To reduce the number of redundant parameters and optimize the learning and forecast-
ing speeds, the Pearson correlation coefficient was used to analyze the correlation of the 
selected parameters. The results showed that the correlation coefficients of the selected 
rainfall characteristic parameters, inundation area, and inundation volume were all greater 
than 0.4, indicating moderate correlation at a minimum, and the selected parameters were 
reasonable. Only using the KNN or RF model can get a rough inundation situation in a 
short time, but there may still be large errors in certain rainfall events. For example, the RF 
model has a maximum water volume error of 28.56% in spot B. In order to further reduce 
the error, the study constructs multiple models by combining the two algorithms in the 
form of weight distribution. The error analysis results show that the combination of the two 
models makes the forecast effect more stable. The MRE of inundation area and depth are 
less than 5%, and the MRE of inundation volume is 5.72%, which can also be controlled 
within 10%. It shows that the model can accurately predict the urban flood inundation 
caused by rainstorm. In terms of efficiency, the built model can output the forecast results 
within 1 min and generate a distribution map of urban flood inundation, which can provide 
sufficient lead time for emergency decision-making, helping decision-makers to take more 
appropriate measures against inundation.

In conclusion, the accuracy and efficiency of the proposed method could meet the 
requirements of rapid forecasting for urban flood inundation. Future work is planned to 
reflect the inundation process instead of the maximum inundation time by improving the 
model.
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