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Abstract
In this study, we collected the data of 172 typhoon storm surge disasters that occurred 
in China during 1983–2018 to show the temporal and spatial distribution of their fre-
quency and damage. Our results indicated that: (1) there was an increase in the frequency 
of typhoons storm surge disasters during 1983–2018, and 98% of these disasters occurred 
from June to October; (2) the damage decreased over time, especially after 1997; (3) the 
frequency and damage caused by typhoon storm surge disasters were higher in the south-
ern and eastern regions than in the northern regions; (4) Guangdong, Fujian, and Zhejiang 
experienced the highest disaster  occurreneces and damages, and the number of disaster 
occurrences and damages in these three regions accounted for approximately 57% and 
80% of the total disaster occurrences and damages, respectively. Furthermore, we mainly 
analyzed the spatiotemporal characteristics of typhoon storm surge disasters from three 
aspects: contributors and damage records of extreme typhoon storm surge disasters, miti-
gation measures, and tropical cyclone tracks. These findings and analyses can help disas-
ter managers improve their understanding of typhoon storm surge disasters and strengthen 
protection in disaster hotspots and sensitive months.
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1  Introduction

A storm surge is an abnormal water rise caused by cyclones having low pressures and 
strong winds (Muis et al. 2016; Helderop and Grubesic 2019a). Given the cyclone types, 
i.e., tropical cyclones (e.g., typhoons and hurricanes) and extratropical cyclones, storm 
surges are divided into tropical storm surges (also known as hurricane surges or typhoon 
storm surges) and extratropical storms surges (Grinsted et al. 2013; Needham et al. 2013; 
Suh et al. 2015; Tadesse et al. 2020). Tropical cyclones having lower pressures and higher 
wind speeds can typically induce higher surges than extratropical cyclones (Resio and 
Westerink 2008). In China, storm surges induced by tropical cyclones are officially called 
typhoon storm surges. A combination of typhoon storm surges, astronomical tides, and (or) 
ocean waves can lead to typhoon storm surge disasters (TSSDs), leading to the damage 
caused by coastal flooding, destruction of engineering structures in coastal regions, and 
disruption of fisheries (Yang et al. 2016; Wang et al. 2018).

As social, climatic, and geomorphic factors change, coastal areas globally face signifi-
cant challenges in dealing with TSSDs (Helderop and Grubesic 2019b). In 2017, 37% of 
the global population lived in coastal communities (UN-DESA Ocean Conference 2017), 
and this percentage is still growing (He et al. 2014; Neumann et al. 2015; Meng et al. 2017; 
Gao and Wang 2020). Meanwhile, the ocean economy is continually growing (Winther 
et al. 2020). In general, currently, more population and assets are in the potential zones of 
TSSDs than before. Climate change can impact TSSDs with respect to two main aspects: 
sea level and tropical cyclones (Helderop and Grubesic 2019b). Under the influence of cli-
mate change, ice melting and thermal expansion are responsible for sea level rise (Over-
peck et al. 2006; Rahmstorf 2007; Lin et al. 2012; Haigh et al. 2016), which increases the 
total water level during a TSSD (Fang et al. 2016b), leading to increased coastline expo-
sure (with respect to coastal flooding) and higher coastal flooding risk (Hallegatte et  al. 
2013; Lloyd et  al. 2016). Hallegatte et  al. (2011) estimated the economic loss of future 
100 year coastal flooding in the absence of protection, suggesting that it would increase 
by 33% under 25 cm of the mean sea rise in Copenhagen. As for the changes in tropical 
cyclones’ frequencies and intensities under the influence of climate change, there has been 
uncertainty (Moon et  al. 2019). However, broad studies consistently show a decreasing 
trend in the frequency and an increasing trend in the intensity (Knutson et al. 2008, 2010). 
These tropical cyclone changes are likely to increase typhoon storm surges in the future 
(Dasgupta et al. 2009). Additionally, land subsidence is expected to lower the ground level 
and reduce seawall protection ability, which is likely to worsen TSSDs in the future (Wang 
et al. 2012).

In China, TSSDs, as the most destructive marine disasters, impact all 14 province-
level administrative coastal regions and cause far more losses than any other marine dis-
aster (Gao et  al. 2014). According to the Bulletin of China Marine Disaster (BCMD) 
(2014–2018) (State Oceanic Administration of China 1989–2018), TSSDs caused a direct 
economic loss of 4.32 billion RMB in 2018. The direct economic loss ratio of TSSDs to 
marine disasters reached 99% in 2005; the average loss ratio in the 2014–2018 period was 
89%. Such huge damages highlight the need to manage TSSDs. One of the critical aspects 
for reducing impacts is to understand their temporal and spatial evolution.

Many studies have investigated the spatiotemporal distribution of TSSDs on a regional 
scale, paid more attention to typhoon storm surges or storm surge disaster patterns at the 
national level, and mainly analyzed spatiotemporal distribution patterns from the mitiga-
tion measures across China.
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Most studies have focused on the distribution of one or several coastal regions, and few 
have discussed the distribution at a national level in China. For example, Sun et al. (2013) 
analyzed the spatiotemporal patterns of TSSDs in Guangxi, and Gan et al. (2012) showed 
patterns along the south China coastal regions. Such studies related to a small spatial scale 
failed to show changes over large coastal regions and gave little advice for disaster pre-
vention at the national level. Some studies have focused on the frequency and intensity 
of typhoon storm surges. For example, Shi et  al. (2020) mapped different risk levels of 
storm surge zones in China by assessing the intensities of storm surges. Feng et al. (2018) 
used hourly sea level data from four tide gauges to show the spatiotemporal patterns of 
storm surges in the Bohai Sea. Fang et al. (2016a) illustrated the interannual variability of 
typhoon storm surges during 1951–2012 and monthly variability during 1949–1997. These 
studies aimed at typhoon storm surges and were not responsible for showing the spatiotem-
poral distribution of TSSDs.

Additionally, some studies have partially shown the spatiotemporal distribution of 
TSSDs at the national level. For example, Hou et al. (2011) showed the temporal frequency 
of intense TSSDs (wherein the total water level of a tide gauge station exceeds the local 
warning tide level by more than 80 cm during a typhoon storm surge) between 1949 and 
2009 across China. Shi et al. (2015) and Fang et al. (2017) showed the nationally interan-
nual frequency of TSSDs over the past 60 years. Xie and Zhang (2010) showed the interan-
nual and monthly frequency of TSSDs that occurred between 1989 and 2008 over China. 
These studies mainly provided a spatiotemporal frequency of TSSDs and overlooked the 
distribution of TSSD damages. Wang et al. (2021) showed the spatiotemporal distribution 
of the frequency and damage of storm surge disasters during 2000–2019 in China, but they 
lacked to show a separate spatiotemporal distribution of TSSDs. Furthermore, previous 
studies mainly analyzed the spatiotemporal distribution from the implemented mitigation 
measures (e.g., Fang et al. 2017), but more related factors should be explored.

This study aimed to show a complete spatiotemporal distribution of the frequency and 
damages of TSSDs in China and analyze characteristics of the frequency and damage dis-
tributions. TSSDs are caused by complex interactions between typhoon storm surges and 
coastal region vulnerabilities, along with the prevention and mitigation abilities applicable 
for these regions. Possible factors for spatiotemporal patterns are multiple and complicated. 
Considering the scope limitations of this study, we analyzed the spatiotemporal charac-
teristics mainly from three aspects: contributors and damage records of extreme TSSDs, 
mitigation measures, and tropical cyclone tracks. The remainder of this paper is organized 
as follows. Section 2 describes the study area, data sources, and methods used. Section 3 
presents the study results for China’s coastal regions (1983–2018). The discussion and con-
clusions are presented in Sects. 4 and 5, respectively.

2 � Data and methods

2.1 � Study area

There are 14 province-level administrative regions in the coastal area of China, which 
stretch tropical, subtropical, and temperate climate zones (Su et al. 2015). There is an 
area of 194,045  km2 that has an elevation of less than 10  m in China’s coastal area, 
accounting for 14.6% of the land area in the 14 coastal regions (Liu et al. 2015). Because 
there were no disaster records in Hong Kong, Macao, and Taiwan in our data sources, 
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Fig. 1   11 coastal regions of the coastal area in China

we selected the remaining 11 coastal regions as our study area (Fig. 1). In this study, 
to describe the spatial patterns easily, the 11 coastal regions are divided into northern 
regions (Liaoning, Hebei, Tianjin, and Shandong), eastern regions (Jiangsu, Shanghai, 
Zhejiang, and Fujian), and southern regions (Guangdong, Guangxi, and Hainan).

These 11 coastal regions are densely populated and economically developed in China. 
In these 11 coastal regions of mainland China, the coastal population increased by 17%, 
and the overall population increased by 10% from 2000 to 2018 (National Bureau of 
Statistics of China 2019). In 2018, the proportions of the population and the gross 
regional product of these 11 regions were approximately 45% and 50% in mainland 
China (National Bureau of Statistics of China 2019). Topography is an essential factor 
that impacts typhoon storm surges (National Oceanic and Atmospheric Administration 
2021). Discussing how topographic factors impact TSSDs in detail is beyond the scope 
of this study. However, some examples are provided to briefly describe the local features 
of coastal regions for TSSDs. Bays with lambdoid shapes are liable to gather seawa-
ter, thereby enhancing the surge (Zhao et al. 2016). This local feature appears in many 
coastal regions, such as the Leizhou Peninsula in Guangdong (Liu et al. 2018b), Tieshan 
Bay in Guangxi (Chen and Qiu 2000), Hangzhou Bay in Zhejiang (Shi et al. 2008), and 
Minjiang estuary in Fujian (Xia et al. 2014). In estuaries, the total water levels rise by a 
combination of upstream floods, typhoon storm surges, astronomical tides, and waves, 
leading to considerable damages in coastal regions; for example, “Imbudo Typhoon” 
triggered a TSSD in the Pearl River Estuary of Guangdong (Ma and Hu 2004).
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The Bohai Sea, Yellow Sea, East China Sea, and South China Sea are marginal seas of 
the western Pacific Ocean (Shi and Wang 2012; Wu et al. 2015), and most tropical cyclones 
that trigger TSSDs in China are generated in the northwestern Pacific Ocean (Ling et al. 
2011). Over the past few decades, there has been a decreasing trend in the frequency 
of tropical cyclones in the northwestern Pacific (Xiao and Xiao 2010; Yin et  al. 2013). 
However, due to climate change, the intensity of tropical cyclones is likely to increase in 
the northwestern Pacific (Yasuda et  al. 2014). In addition, China’s coastal sea level rise 
increased 3.3 mm per year during 1980–2018, and it will continue to increase to a value 
between 68 and 166 mm in the next 30 years, according to the Bulletin of China Sea Level 
(2018). Owing to the long coastlines and complex coastal environment (Wang et al. 2016; 
Liu et al. 2018a), the Chinese disaster managers are concerned about the occurrences of 
TSSDs.

2.2 � Data sources and methods

To show the spatiotemporal distribution of the frequency and damage of TSSDs at the 
national level, the following data of TSSDs were required: times of TSSD occurrences 
(years and months), total damages in China, affected regions, and individual  affected 
region’s damages. The first official storm surge forecast was issued in China in 1974 (Wang 
et al. 2003). However, because of the lack of damage information between 1974 and 1982, 
the data period was selected from 1983 to 2018 (no available data for 1987). Thus, the 
data of 172 TSSDs were collected for the period 1983–2018. The collected disaster data 
for 1989–2018 were obtained from the BCMD (State Oceanic Administration of China 
1989–2018), and the data for 1983–1988 were obtained from the book of the Collection of 
Storm Surge Disaster Historical Data in China 1949–2009 (Yu et al. 2015). For some dis-
asters lacking information about the affected region’s damages in the BCMD, the missing 
information was supplemented from the Bulletin of Guangxi Marine Ecological Environ-
ment Status (Oceanic Administration of Guangxi 2008–2009), along with the book data 
source, after checking the consistency of the data of total damages. It is worth noting that 
one TSSD could affect multiple coastal regions, or its duration could span two months 
(from the end of one month to the start of the following month). Hence, the total number 
of occurrences of TSSDs in the 11 coastal regions and 12 months was 324 and 180, more 
than the number of 172 TSSDs at the national and year level. The gross domestic product 
(GDP) and consumer price index (CPI) data were obtained from the China Economic and 
Social Big Data Research Platform (http://​data.​cnki.​net/​YearD​ata/​Analy​sis). The landfall 
sites of tropical cyclones were collected from the BCMD and book data source; the miss-
ing data of landfall sites in some disasters were supplemented from the Yearbook of Mete-
orological Disasters in China (China Meteorological Administration 2007–2018). Tropical 
cyclone track data were obtained from the Best Track Dataset (Ying et al. 2014), which 
was obtained from the China Meteorological Administration Tropical Cyclone Data Center 
(http://​tcdata.​typho​on.​org.​cn/​zjljs​jj_​zlhq.​html). The data sources are presented in Table 1.

If we analyze economic loss trends of natural disasters, normalizing economic losses is 
necessary because the social and economic situation of affected areas is changing (Chen 
et al. 2018). In this study, the direct economic loss from each TSSD was normalized using 
the most frequent inflation ratio, CPI (Fischer et  al. 2015), which is consistent with the 
normalization method in the study of Fang et al. (2017), analyzing the trend of direct eco-
nomic losses of storm surge disasters. We took 2018 as the base year, and the direct eco-
nomic losses in other years were adjusted to values of 2018 using Eq. (1):

http://data.cnki.net/YearData/Analysis
http://tcdata.typhoon.org.cn/zjljsjj_zlhq.html
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where Ly(2018) is the adjusted direct economic loss from year y to 2018; Ly is the recorded 
direct economic loss of year y ( y = 1983, 1984,… 2017) , and CPI is the consumer price 
index (preceding year = 100).

The average adjusted annual direct economic loss per disaster from year y to 2018 
( Lyp(2018)) is given as follows:

where Ny

(

Ny = 1, 2,…
)

 is the number of TSSDs in year y.

3 � Results

3.1 � Temporal distribution of TSSDs

As shown in Fig. 2a, despite the fluctuation in the number of TSSDs from 1983 to 2018, 
there was an increasing trend in the frequency during this period, especially after 2005. 
According to the calculation of the average annual number of disasters, it was approxi-
mately seven from 2005 to 2018, while it was only about three disasters per year before 
2005. The highest peak occurrence was in 2013 (11 disasters), and three years (2012, 2008, 
and 2005) showed the second-highest occurrences, with approximately nine disasters per 
year. However, except for 1987 (no available data), 1984 and 1988 had the lowest number 

(1)Ly(2018) = Ly ×

∏2018

y+1
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100(2018−y)

(2)Lyp(2018) =
Ly(2018)

Ny

1985 1990 1995 2000 2005 2010 2015
0

2

4

6

8

10

12 (a)

(b)

N
um

be
r o

f t
yp

ho
on

 st
or

m
 su

rg
e 

di
sa

st
er

s 

Year

January
February

March
April May June July

August

September
October

November
December

0

10

20

30

40

50

60

Month

Fig. 2   Frequency-time variations of TSSDs: a Number of TSSDs per year (red line indicates the linear 
trend); b Number of occurrences of TSSDs per month
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of disasters, with only two disasters with complete disaster data occurring in these two 
years. The monthly distribution of disasters is shown in Fig. 2b. As seen in the figure, all 
TSSDs occurred between April and November, and 176 occurrences from June to October, 
accounting for 98% of the total disaster occurrences in 12 months. August witnessed the 
peak, with over 30% (57 occurrences) of the total disasters occurring in this month.

The temporal distribution of the direct economic loss caused by TSSDs is shown in 
Fig. 3. There was a significant decrease after 1997, while there was a fluctuation with an 
upward trend during 1983–1997 (Fig.  3a). According to the calculation of the average 
direct economic loss before and after 1997, it was less after 1997 (12.7 billion RMB) than 
that in the pre-1997 period (20.9 billion RMB). The highest and second-highest losses 
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occurred in 1996 and 1997, respectively, while the third-highest losses were recorded after 
1997 (in 2005). The ratio of direct economic losses to GDP decreased significantly after 
1997 (Fig. 3a). By calculating average ratios before and after 1997, results showed that the 
average ratio before 1997 was 0.6%, which was higher than the average ratio of 0.08% after 
1997. Although the direct economic loss in 2005 (46.1 billion RMB) was close to the value 
in 1996 (50.9 billion RMB), the ratio in 2005 (0.3%) was approximately one-third of that in 
1996 (0.9%) (Fig. 3a). However, the average annual direct economic loss per disaster trend 
(Fig.  3b) was very similar to the direct economic loss trend (Fig.  3a); the few observed 
differences in these two trends were unneglectable. For example, the highest annual direct 
economic loss was reported in 1996 (Fig. 3a), while the highest average annual loss per 
disaster occurred in 1997 (Fig. 3b). This characteristic was related to the frequency and 
intensity of TSSDs in different years, as discussed in Sect. 4.

As for annual fatalities (Fig. 4), a significant decrease from 1983 to 2018 was found. 
Based on the calculation of the average number of fatalities during 1983–2018 and 
2010–2018, it was 159 fatalities between 1983 and 2018, while it dropped sharply to four 
fatalities from 2010 to 2018. The highest number of fatalities was reported in 1994 (1240 
fatalities), accounting for 22% of the total fatalities (5528 fatalities). The second and third 
highest number of fatalities occurred in 1990 (663 fatalities) and 1997 (537 fatalities), and 
around 80% (4571 fatalities) of the total number of fatalities occurred in the 1983–1997 
period. Similarly, the average annual number of fatalities per disaster peaked in 1994 (310 
fatalities); the highest average annual number of fatalities per disaster was only 1.2 between 
2010 and 2018.

3.2 � Spatial distribution of TSSDs

In Fig. 5a and b, the spatial distributions show marked variations in the 11 regions. Among 
the 11 regions, southern and eastern regions were affected far more than the northern 
regions (Fig. 5a). The high-grade group (Guangdong, Fujian, and Zhejiang) accounted for 
57% (185 occurrences) of the total number of disaster occurrences in the 11 coastal regions, 
with the highest proportion of 22% (73 occurrences) being in Guangdong (Fig. 5b). With 
fewer occurrences than the above three provinces, 34% (109 occurrences) of the total 
number of disaster occurrences in the 11 coastal regions were in the medium-grade group 
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(Guangxi, Hainan, Jiangsu, and Shanghai). The number of disaster occurrences in the 
remaining four northern regions (Liaoning, Hebei, Tianjin, and Shandong) accounted for 
less than 10% (30 occurrences) of the total number of disaster occurrences.

As seen in Fig. 6, the direct economic loss in the high-grade group (Guangdong, Zhe-
jiang, and Fujian) accounted for more than 75% (435.2 billion RMB) of the total direct 
economic loss (561 billion RMB), and the proportion of over 30% (190 billion RMB) in 
Guangdong was the highest. Within the three southern regions, Guangxi experienced the 
lowest direct economic losses. Shandong had the highest direct economic losses among the 
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Fig. 5   Frequency-region variations of the number of disaster occurrences in 11 coastal regions: a Spatial 
distribution of the number of disaster occurrences; b The number of disaster occurrences per region
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four northern regions. The highest ratio of direct economic loss to GDP was observed in 
Hainan (Fig. 6b).

TSSDs in the high-grade group (Zhejiang, Fujian, and Guangdong) caused approxi-
mately 80% (4452 fatalities) of the total number of fatalities across the 11 coastal regions 
(Fig. 7). The highest number of fatalities was 2417 in Zhejiang, far more than that in any 
other region. The medium-grade group consisted of a southern region (Hainan), an east-
ern region (Jiangsu), and a northern region (Shandong). Three northern regions (Liaoning, 
Tianjin, and Hebei) and an eastern region (Shanghai) were all in the low-grade group, with 
a total of 152 fatalities.
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4 � Discussion

Temporal trends of TSSDs in this study are consistent with previous studies (Table  2). 
Notably, previous studies have focused on the total damage distribution of storm surge 
disasters (typhoons and extratropical storm surge disasters) at the national level and over-
looked the spatiotemporal damage distribution of TSSDs.
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The monthly frequency of TSSDs can most likely be attributed to the monthly variation 
in tropical cyclone occurrences in the northwestern Pacific. In the northwestern Pacific, 
over the past 30 years, approximately 80% of tropical cyclones have been reported between 
June and October (Chen et al. 2019), explaining why most TSSDs occurred in the same 
period.

With respect to the temporal distribution of disaster damage, some years suffered from 
outstandingly huge damages, which are likely to be caused by the severity and number of 
extreme TSSDs. Severe damages have occurred in some years (1985, 1992, 1994, 1996, 
1997, 2005, and 2008), owing to one or two extreme disasters (shown in Table 3). Sev-
eral factors contribute to extreme TSSDs: high intensity tropical cyclones, typhoon storm 
surges combining with an astronomical high tide, and the destruction of seawalls during 
disasters. For example, when the “Fred” tropical cyclone made landfall with a central pres-
sure of 950 hpa in 1994, its typhoon storm surge combining with an astronomical high 
tide increased the sea water level, leading to 520 km of ruined seawalls and 1216 deaths, 
which was the highest number of fatalities among 172 disasters (Le 2000). Without com-
bining with the astronomical high tide, intense tropical cyclones can also trigger extreme 
TSSDs, e.g., the “Sally TSSD” in 1996 (Tai et al. 2009). In 1996, extreme damages were 
likely attributed to several disasters, with relatively high losses. For example, according 
to the direct economic loss records from data sources, the highest total loss occurred in 
1996 because of three disasters, with a total loss of 47.4 billion RMB. Although the most 
severe disaster occurred in 1997 (with the highest loss of 41.55 billion RMB) among 172 

Table 2   Temporal result comparisons between this study and previous studies

Temporal trend Results in this study Results in previous studies

Interannual trend An increasing trend in the TSSD fre-
quency from 1983 to 2018, especially 
after 2005 (Fig. 2a)

An increasing trend in the TSSD 
frequency since 2000 (Fang 
et al. 2017); A remarkable rise in 
the TSSD frequency in the past 
65 years (Shi et al. 2015)

Monthly trend Around 98% of TSSDs occurring 
between June and October during 
1983–2018 (Fig. 2b)

Around 93% of TSSDs occurring 
between June and October dur-
ing 1989–2008 (Xie and Zhang 
2010)

Table 3   Data of extreme TSSDs, 
including the direct economic 
loss and number of fatalities

In Table 3, the percentages are the damages caused by extreme disas-
ters in the table to the total damages in corresponding years

Year Disaster ID Direct economic loss (100 
million RMB, 2018 values)

Number of fatalities

1985 8509 171.27 (78.9%) 162 (91.0%)
1992 9216 260.36 (99.5%) 280 (100%)
1994 9417 267.20 (62.6%) 1216 (98.1%)
1996 9615 313.63 (59.9%) 279 (52.9%)
1997 9711 415.52 (80.0%) 444 (82.7%)
2005 0518 175.12 (36.9%) 25 (18.2%)
2008 0814 170.12 (69.1%) 26 (46.4%)
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disasters, the annual loss in 1997 was lower than that in 1996 (Fig. 3a). However, the aver-
age annual direct economic loss per disaster in 1997 was higher than that in 1996 (Fig. 3b).

There was a significant decrease in damage after 2000 (Figs. 3a, 4). The reasons behind 
this phenomenon are complicated and multifaceted, and it is challenging to find direct evi-
dence that reduces TSSD damages. We attempt to discuss the factors related to mitigation 
measures adopted from the beginning of the twenty-first century in China to analyze this 
decreasing trend. In this study, mitigation measures are discussed from three aspects: tech-
nical factors, engineering, and non-engineering mitigation measures.

In China, storm surge forecasting began in the early 1970s (Liu and Wang 1989; Li and 
Nie 2017). The China Ocean Yearbook (China Ocean Yearbook Compilation Committee 
1986–2017) reports that at the beginning of the twenty-first century, significant advances 
in the resolution of numerical storm surge forecasting were made, and a refined numerical 
forecasting system for storm surges covering the entire coastal sea of mainland China has 
been established. In addition, advanced warning systems make disaster information eas-
ily accessible to the public. Coastal people can get the forecasted and real-time disaster 
information through many approaches, such as the phone, broadcast, television, and web-
site (China Ocean Yearbook Compilation Committee 1986–2017). Thus, people can pro-
tect themselves and their assets during TSSDs. Advanced forecasting and warning systems 
(Ying and Yi 2018) can effectively mitigate TSSDs.

The seawall is an essential component of engineering mitigation measures. However, 
some seawalls that face poor maintenance and low protection standards are likely to be 
destroyed during TSSDs, amplifying the disaster impacts. From the end of the twen-
tieth century, the Chinese government built seawalls with high protection standards and 
reinforced the weaker sections in coastal areas. For example, the government launched 
a “Thousand kilometers of seawalls” project, and newly built seawalls could achieve the 
defense standard of a 100 year return period flood for cities in Zhejiang since 1997 (Zhang 
1999). Likewise, the Jiangsu government started seawall construction and improvement 
work in 1998 (Chen and Zhao 2019). Over the past 20 years, there was an increase in the 
ratio of the seawall length to the coastline length, with a peak of approximately 60% (Ma 
et al. 2014); Guangdong had the highest ratio of over 90% (Luo et al. 2015).

Non-engineering measures, including implementing regulations and guidance docu-
ments, establishing official agencies for disaster management, and strengthening public 
awareness, are also essential for disaster mitigation (Fang et al. 2017). Two official doc-
uments offer risk assessment methods and disaster response strategies for TSSDs called 
“Storm surge, Tsunami, Sea Wave, and Sea Ice Disaster Emergency Response Plans” 
and “Technical Guidelines for Risk Assessment and Zoning of Storm Surge Disasters.” 
Simultaneously, warning water levels, the index for the warning systems, have been 
approved in coastal regions based on the new specification “Specification for warning 
water level determination (GB/T 17,839—2011).” In 2011, the establishment of the 
National Marine Hazard Mitigation Service aimed at supporting marine disaster preven-
tion and emergency platform operations and encouraged more coastal regions to set up 
related agencies for disaster risk  reduction. In 2018, China implemented institutional 
reforms and established the Ministry of Emergency Management, which significantly 
improved the country’s emergency response ability during disasters. In addition, the 
government raises public awareness of TSSDs through many activities, such as holding 
emergency drills and promotional lectures. Moreover, increased marine emergency shel-
ters, growing rescue teams, and comprehensive marine disaster reduction demonstration 
communities can improve disaster response performance (Xin et al. 2012; Zhang et al. 
2013).
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From the perspective of tropical cyclones, many attributes are related to the TSSDs, 
such as intensities, wind field positions, and tracks (Colle et al. 2010; Booth et al. 2016; 
Zhang et al. 2019). Given the scope limitations of this study, we introduced the tracks of 
172 TSSDs and analyzed what kinds of tropical cyclone tracks (with landfall sites and shift-
ing directions) could trigger TSSDs in 11 coastal regions. The tracks of tropical cyclones 
that triggered TSSDs in each coastal region are shown in Fig. 8. For the 11 coastal regions 
(Fig. 8), more than 90% of TSSDs were triggered by landfalling tropical cyclones, and over 
70% of the landfall sites were in Zhejiang, Fujian, and Guangdong. The landfall tropical 
cyclones shifted northward, triggering TSSDs in more coastal regions (eastern and north-
ern regions). As seen in Fig. 8, more tropical cyclone tracks passed by the southern and 
eastern regions than the northern regions, consistent with the spatial frequency patterns of 
TSSDs (Fig. 5).

For the northern regions (Liaoning, Tianjin, Hebei, and Shandong) affected by TSSDs 
(Fig. 8a–d), the tracks had a clear northward shift from the eastern landfall sites (Fujian, 
Zhejiang, Jiangsu, and Shanghai) to the northern regions. In addition, some tropical 
cyclones, moving along the coastline from the East China Sea to the Yellow Sea, trig-
gered TSSDs in Shandong and Liaoning (Fig. 8a, d). Tropical cyclones triggering TSSDs 
in four eastern regions can be categorized into three types (Fig. 8e–h): shifting westward 
from landfall sites to inland areas, shifting northward from the landfall sites to northern 
regions, and shifting northward from the East China Sea to the Yellow Sea. For TSSDs 
in the southern regions (Guangdong, Guangxi, and Hainan), the tropical cyclones were 
dominated by tracks having a westward shift from the southern landfall regions (Fig. 8i–k). 
Approximately 88% of TSSDs in Guangdong and Hainan were triggered by landfall tropi-
cal cyclones, with landfall sites located in these two regions (Fig. 8i, k). TSSDs in Guangxi 
were mainly triggered by tropical cyclones that shifted westward to Guangxi’s coastal area 
after their landfall in Guangdong or Hainan (Fig. 8j).

As for the spatial damage distribution, Guangdong, Fujian, and Zhejiang were the three 
most affected regions and experienced the most severe damage. The highest number of 
fatalities was recorded in Zhejiang because the “Fred” TSSD (Disaster ID: 9417) caused 
far more fatalities than any other disaster in the last three decades (Table  3). The high-
est direct economic loss was observed in Guangdong due to the highest tropical cyclones 
(42%) along its coastline and its highest GDP among the 11 regions. Although the fre-
quency of TSSDs in Shandong was in the low-grade group (Fig. 5a), the damage was in the 
medium-grade group (Figs. 6a, 7a). The two most severe disasters (Disaster IDs: 8509 and 
9216 in Table 3) were responsible for Shandong’s damages, which accounted for over 50% 
of the TSSD damages in Shandong between 1983 and 2018. Higher defense standards and 
reasonable maintenance of seawalls in Shanghai could be one of the reasons for the low-
grade damage (Figs. 6a, 7a) despite the medium-grade frequency (Fig. 5a) (Zhang et al. 
2008).

5 � Conclusions

This study presented a complete spatiotemporal distribution of TSSDs in 11 coastal 
regions of China during the 1983–2018 period. The main findings were as follows: (1) 
the number of TSSDs increased over time, while the damage decreased significantly over 
the past three decades; (2) most disasters occurred from July to September; (3) the south-
ern and eastern regions were affected more (with respect to the frequency and damage of 
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TSSDs) than the northern regions. Multiple factors (e.g., climate, topography, and social 
factors) can influence TSSDs. In this study, three main aspects were introduced to ana-
lyze spatiotemporal patterns of the frequency and damage. Two aspects, i.e., contributors 
and damage records of extreme TSSDs and mitigation measures, have been analyzed for 
the spatiotemporal damage distribution. Another aspect was the tropical cyclone track, and 
we have analyzed tropical cyclone tracks that triggered TSSDs in each coastal region to 
help understand the spatial frequency distribution. In addition, the monthly frequency of 
TSSDs was consistent with the monthly variations of tropical cyclones in the northwest-
ern Pacific. Spatiotemporal patterns provide essential information in disaster hotspots and 
sensitive months, reminding disaster managers to strengthen protection in specific regions 
and months. From a future-based perspective, we should analyze and quantify relationships 
between more related factors and TSSDs to improve disaster management performance and 
reduce disaster damage.
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