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Abstract
Prediction of landslide movement is an efficient approach in the reduction in landslide risk. 
However, it is also a tough task due to the scientific challenges in forecasting a sophis-
ticated natural disaster. This paper proposes a VMD-MIC-M-KELM (variational mode 
decomposition-maximum information coefficient-multi-kernel extreme learning machine) 
technique for prediction of landslide movements. The original displacement is first decom-
posed into a predefined number of components by VMD. Then, the triggers of each com-
ponent are selected based on MIC between subseries and influencing factors. The decom-
posed terms are predicted by M-KELM respectively via k-fold cross-validation. Finally, 
predicted total displacement is achieved by summing up all forecasting subseries. A case 
study of Miaodian landslide (China) is presented for validation of the developed model. 
The verification results demonstrate the higher ability of the approach to forecast monthly 
displacement for periods up to 12 months as compared to the Poly-KELM and SVR mod-
els. Thus, improved monthly predictions may be achieved with constantly updated datasets 
from the monitoring system, which would offer reliable information for early warning of 
landslide.
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1 Introduction

Landslide is a very destructive natural disaster and has posed severe threat to humans, 
assets and the environment. Generally, high-precision monitoring data of landslide dis-
placement are capable of representing the complicated deformation and failure charac-
teristics of landslide and thus are an important index to evaluate landslide stability (Shi-
habudheen et al. 2017). Hence, predicting landslide deformation is regarded as one of the 
most effective ways for landslide disaster prevention and is also vital in avoiding or at least 
minimizing devastating influences on human lives and infrastructures. However, due to the 
adverse impacts of numerous factors, such as intrinsic geotechnical triggers (variations in 
landslide geometry and stress conditions, changes in material rheology, etc.) and external 
environmental factors (precipitation, widespread irrigation and snowmelt, etc.) (Guzzetti 
et al. 2005; Kawabata and Bandibas 2009; Bernardie et al. 2015; Intrieri and Gigli 2016), 
accurate prediction of landslide displacement is still a challenging task and has been a hot 
research topic in geological hazard worldwide.

At present, with respect to the study of landslide displacement prediction, research-
ers first decompose the original displacement into several subcomponents using meth-
ods like wavelet analysis (WA), empirical mode decomposition (EMD) and ensemble 
empirical mode decomposition (EEMD). Then, all the subseries are predicted separately. 
At last, the forecasting displacement is obtained by summation of all the predicted sub-
components, namely the almost reconstruction of the measurements (Du et  al.2009; Xu 
et al.2011; Zhang et al.2015; Zhou et al. 2016; Shihabudheen et al. 2017; Deng et al.2017). 
As for prediction models, due to the influence of internal geological conditions and exter-
nal factors (rainfall, temperature, reservoir water level, etc.), the cumulative displacement 
is a monotonically nonlinear time series, and its evolution contains multilevel informa-
tion. Consequently, satisfactory results are not always achieved using creep theory-based 
physical models in numerical simulation or displacement–time-based statistical techniques 
in mathematics (Calvello et al. 2008; Federico et al 2012; Krkač 2015; Corominas et al. 
2005; Sassa et al. 2010). With the development of artificial intelligence (AI) and machine 
learning (ML), many nonlinear intellegent  models have wide application in prediction of 
landslide displacement, such as artificial neural network (ANN), the grey model, the sup-
port vector regression (SVR) model and the kernel extreme learning machine (KELM) 
model(Wu et al. 2007; Melchiorre et al. 2008; Alimohammadlou et al. 2014; San 2014; Liu 
et al. 2016; Pham et al. 2016; Zhou et al.2018).

Although outstanding achievements have been made in displacement–time series analy-
sis and prediction models, there are still three problems to be addressed. First, the decom-
posed components divided by WA, EMD and EEMD are too more (more than five com-
ponents) to realize the relationship between displacement components and factors due to 
the ignorance of physical meaning of each component. Second, the frequently used predic-
tion models are constructed based on single factor or multiple factors selected by empirical 
methods. These models do not take into account the joint constraints of multiple influenc-
ing factors or the actual evolution of landslide deformation, resulting in low reliability of 
predictions. Finally, due to the influence of intrinsic factors and environmental triggers, 
landslide displacement exhibits several properties like complexity, randomness and uncer-
tainty, leading to low universality of the developed model.

Therefore, to counteract the abovementioned issues, we propose a novel model, i.e., 
VMD-MIC-M-KELM, for the purpose of forecasting landslide movements which has not 
yet been studied or put forward before. This new model adopts VMD to decompose the 



927Natural Hazards (2021) 108:925–946 

1 3

original displacement into three sub-components with  physical meaning of each term, and 
selects the corresponding      influence factors by MIC (Reshef et al. 2011). Moreover, the 
M-KELM model is developed to predict subcomponents by linearly integrating the linear 
and nonlinear kernel function-based ELMs. Then, the predictions are achieved by summa-
tion of all the predicted subcomponents. The Miaodian landslide of Jingyang in Shaanxi 
Province (China) is adopted to validate the ability of the developed technique. The results 
show that the proposed model is capable of realizing the relationship between displace-
ment components and factors with artificially defined number of decomposition and high-
lighting the temporal evolution of landslide displacement with representative triggers. 
Further, the developed approach also achieves well applicability in prediction with multi-
kernel functions. Besides, traditional models such as the Poly-KELM and SVR are applied 
for comparison. The results indicate that the VMD-MIC-M-KELM model performs better 
as compared with the other two techniques.

2  Methodology

2.1  Variational mode decomposition (VMD) algorithm

VMD decomposes the original displacement f (t) into a given number (k) of band-limited 
subsignals or modes ( uk ) (Dragomiretskiy and Zosso 2014). Each mode ( uk ) is mostly com-
pact around a center frequency �k . On dividing the displacement into components, valua-
ble information concealed in the displacement can be retrieved (Dragomiretskiy and Zosso 
2014).

Assuming that the landslide displacement f (t) is equal to the summation of k decom-
posed components, the constrained problem is expressed by:

where �(t) is the Dirac distribution and t is time script. The solution to the original minimi-
zation problem (1) is achieved by a chain of iterative steps as explained in Dragomiretskiy 
and Zosso (2014) and Dragomiretskiy ( 2015).

2.2  Multi‑kernel‑based extreme learning machine (M‑KELM)

ELM is an efficient SLFN (single-hidden-layer feed-forward network) with randomly pro-
duced hidden nodes (Huang et  al 2006). Despite its attractive attributes such as higher 
generalization performance, better accuracy, faster speed in contrast to traditional neural 
network, there are still some deficiencies to be addressed. For instance, it is difficult to 
determine the number of hidden layers. The solution equation may be ill-conditioned due 
to the singular output matrix of hidden layers. In addition, there still exists model overfit-
ting since the optimum output weight of ELM is obtained by the Moore–Penrose inverse 
without adding regularization parameter (Ranjeeta et al.2018; Fang et al. 2020). Therefore, 
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to further enhance the generalization ability and stability of ELM, a kernel-based ELM 
(KELM) was proposed by Huang et al. in 2012, which is inspired by the kernel functions 
of support vector machine. The formula of KELM is as follows:

where I
C
 is a positive value added to the diagonal of HHT based on ridge regression, and Y  

is the output vector. ΩELM is the kernel matrix for KELM which can be defined as follows:

The performance of KELM depends on the kernel function which transforms low-
dimensional nonlinear data into high-dimensional linear data. Hence, proper kernel func-
tion can significantly improve model generalization capability. At present, the frequently 
used kernel functions satisfying Mercer’s conditions and its parameters are shown in 
Table 1.

The kernel functions in Table 1 can be grouped in three varieties. The first category is 
the global kernel function with strong generalization and weak learning ability like poly-
nomial kernel function and sigmoid kernel function. The second type is the local kernel 
with weak learning ability and strong generalization, such as Gaussian radial basis kernel 
function. The last is the wavelet kernel (Morlet) with multilevel and multiresolution prop-
erties which can approximate any function accurately (Fig. 1, test point x = 0.3, parameter 
c = -1.5). Thus, researchers can select suitable kernel-based ELM to predict landslide dis-
placement. However, the intrinsic factors and external factors of landslides have various 
characteristics such as complexity, diversity and randomness, which lead to poor perfor-
mance in prediction by adopting one single kernel based ELM. Consequently, a new multi-
kernel ELM (M-KELM) model is developed by linearly integrating all the kernel functions 
in Table 1 for accurately predicting future evolution and development trend of landslide.

The newly developed multi-kernel function is as follows:

Subject to 
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Figure  2 shows the characteristic curve of multi-kernel function with predefined 
parameters (test point x = 0.3). The multi-kernel values with various weighted factors 
are greatly affected regardless of the distance from the test point as depicted in Fig. 2. 
Further, the approximation performance is also significantly improved. Accordingly, the 

Fig. 1  Characteristic curve of single-kernel function

Fig. 2  Characteristic curve of multi-kernel function with different weighting factors
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developed multi-kernel function integrates the advantages of all single kernels as shown 
in Table 1.

In addition, eight parameters, including four kernel parameters ( �,b,c and d ) and four 
weight factors (e.g. �1,�2,�3,�4 ), should be appropriately selected to enhance perfor-
mance of predicting via k-fold cross-validation. Thus, in this paper artificial bee colony 
algorithm (ABC) is applied for optimization as explained in Karaboga and Bandibas 
(2009) and Karaboga et al. (2014).

2.3  The developed coupling technique and evaluation metrics

This paper proposes a model, i.e., VMD-MIC-M-KELM, for predicting of landslide 
movements. Poly-KELM and SVR are adopted for comparison. All hyperparameters 
related to the models discussed in this paper are optimized by ABC algorithm via nine-
fold cross-validation. The flowchart of the developed approach is shown in Fig. 3.

Four measures, i.e., the root-mean-square error (RMSE), absolute percentage error 
(APE), mean absolute error (MAE) and goodness of fit  (R2), are applied for evaluating 
the performance of the proposed approach. The detailed mathematical expressions are 
as follows:

d
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Fig. 3  Proposed approach for landslide displacements prediction
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where n is the number of measurements, Li is the observations and L̂i is the predictions.

3  Case study

3.1  Geological conditions

The study region is in the lower reaches of Jing River, the central part of Shaanxi Prov-
ince belonging to the Northwest Loess Plateau region of China. The landslide cov-
ers an area of 6.2 ×  104m2 with a maximal width and length of ~ 267 m and ~ 227 m, 
respectively. The topographic inclination follows the SW direction. Both sides of the 
slope are high and abrupt, and the rear is nearly vertical. The abrupt terrain conditions 
are favorable for the development of landslides.

The Jingyang landslide comprises three layers, i.e., Malan loess, Paleosol, and Lishi 
loess. Vertical joints are well developed in the loess layer which has high permeability, 
offering favorable conditions for groundwater seepage. Paleosol has low permeability 
and is thus regarded as an impermeable layer. Geographically, the region is a tem-
perate continental monsoon climate. Two distinct seasons are reported in this region, 
namely hot and rainy summer, and cold and dry winter. Heavy and concentrated pre-
cipitation of 100–200 mm/month has been registered from July to September. In the 
rainy season, the highest daily precipitation of over 80 mm has been recorded. During 
dry period, average precipitation less than 20  mm/ month has been reported in five 
months (i.e., November to March), where November and December have the lowest 
and even no rains. The temperature ranges from − 20.8 to 41.8 °C. Further in one year 
there are frost-free period of 213 days and frost duration of 51 days with a maximum 
frozen soil depth of 44 cm. Besides, the groundwater level changes with seasonal pre-
cipitation, which is also one of the main factors that poses adverse influence on land-
slide displacement (Cao et al. 2016).
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3.2  The evolution of landslide deformation

To assess the stability of Miaodian landslide, we constructed a deformation monitoring 
network in June 2015 (Fig. 4d). Twelve monitoring stations were built in the study region, 
including nine monitoring stations (MD01-MD09) and three datum stations (JZ01, JZ02 
and JZ03) established on stable area. The Leica TS30 measurement robot (Switzerland), 
with a nominal accuracy of 0.5″ (angle surveying), 0.6 mm + 1 ppm × d (precise distance 
surveying) and 0.6 mm + 1 ppm × d (standard distance surveying) (d is the measured dis-
tance, unit km), was adopted to monitor landslide displacement with high precision. A 
local independent coordinate system was applied with coordinate origin outside moni-
toring region. The original coordinate of JZ02 was set as (500,500,300). The length and 
geodetic azimuth angle from JZ01-JZ02 were achieved by GNSS relative positioning tech-
nique. Further, for validation the high-precision total station was employed to measure the 

Fig. 4  a Map of China; b geographic locations of Miaodian landslides; c photograph of the Miaodian land-
slide; d deformation monitoring network of Miaodian landslide; e geological profiles of Miaodian landslide
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length between the two datum points. Accordingly, the coordinate of JZ01 in independent 
coordinate system was obtained. Due to regular deformation monitoring since May 2015, 
measurements of the landslide (plane precision better than ± 5 mm, height precision bet-
ter than ± 3 mm) from May 2015 to February 2018 were available. In addition, the data of 
temperature and rainfall were gathered from the nearby meteorological stations and tem-
perature and rain gauge stations established by surveyors in Jingyang (Fig. 4).

The observations of nine stations are depicted in Fig. 5. The results indicate that each 
point had certain degree of deformation, where MD09 had an apparent S-shaped curve. 
The total displacement of MD09 was up to − 608 mm until February 2018. Initially, the 
displacement of MD09 increased slowly, and then it became faster before gradually slow-
ing down. MD09 tended to deform on favorable circumstances (e.g., precipitation and 
temperature variations) due to its special location as depicted in Fig. 5. Accordingly, we 
choose MD09 station for detailed analysis.

Further, to explore deformation mechanisms and the triggers of Miaodian landslide, 
data on monthly displacement, largest daily rainfall and monthly cumulative precipitation 
at MD09 are plotted in Fig. 6, and the associations among these triggers are summarized as 
follows.

Initially, the precipitation was heavy, whereas small deformation was developed from 
July to October 2015. Due to significant transformation of stress field, seepage field and 
strata structure after landside occurred in June 2015, the slip mass demonstrated gentle 
response to the variations of external triggers. Hence, the development of landslide defor-
mation had little correlation with precipitation changes during this period.

In the second phase, rainfall was gentle but large deformation occurred from Novem-
ber 2015 to May 2016, which indicated precipitation exerted little impact on landslide 
movement. According to collected data in the study region, winter (Early November–Late 
December) and summer irrigation (Early March–Middle April) was implemented during 
this period. Widespread irrigation may have generated rapid increase in groundwater level 
and pore pressure. Further, high saturation at the initial position of irrigation would have 
resulted in obvious vertical deformation of the area. As depicted in Fig. 6, two peak values 
had been registered during this period, one of which is bigger with displacement of 58 mm. 
In addition, precipitation also retards impact on landslide deformation. For instance, due to 
heavy rainfall in the previous month, high deformation was recorded in November 2015. 

Fig. 5  Monitoring curves of 
accumulated displacement of 
landslides for nine stations
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Similar patterns can also be found in November 2016 (Fig. 6). Accordingly, the influence 
of widespread irrigation and lagged impact of rainfall accounted for the deformation in this 
period.

In the third phase, from June 2016 to February 2017, observations in Fig. 6 show that 
the monthly displacement exhibited close correlation with rainfall intensity. Precipitation 
impacts the soil properties such as reduction in soil anti-shearing strength, soil liquefac-
tion as well as even flow of soil or debris mass, thus advancing the susceptibility of soil 
materials to landslides (Highland and Bobrowsky 2008). Besides, large displacements in 
August and November were also attributable to the hysteresis effect of rainfall since heavy 
precipitation was registered in the previous two months. Further, continuous rainfall also 
aggravated landslide movement. Thus, rainfall was the major trigger that affected landslide 
deformation and also exerted a “retarded impact” on landslide movement during this stage.

In the last phase (March 2017–February 2018), since the field of stress and seepage as 
well as geotechnical characteristics in front of the landslide underwent a significant adjust-
ment in the previous stage, the response of the landslide to the external periodic factors 
became stable. Further, due to the accomplishment of canal renovation, widespread irriga-
tion exerted minimal impact on landslide deformation (Fig. 7). So landslide displacement 
increased slowly regardless of the heavy rainfall.

3.3  Decomposition of total displacement by VMD

Observations of MD09 for the period from July 2015 to February 2017 were adopted for 
training via ninefold cross-validation (Li et al. 2018a, b; Li et al. 2020), and those from 
March 2017 to February 2018 were employed for testing. All data were normalized within 
the range [0, 1] using Eq. (9):

Fig. 6  Monthly cumulative rainfall, daily maximum precipitation and monthly displacement monitoring 
data of station MD09
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where Lnorm is the normalized data, Li are the observed data, Lmin is the minimum value of 
observations, and Lmax is the maximum value of observations.

To ensure that each component decomposed by the VMD has practical physical 
meaning, the decomposition level was set to 3. The penalty parameter and rising step 
were set to 0.3 and 0.1, respectively after several trials. Thus, there were three subseries 

(9)Lnorm =
Li − Lmin

Lmax − Lmin

Fig. 7  Position of new and old irrigation canal

Fig. 8  Decompositions of the total displacement of MD09
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generated, where high frequency was the random term, low frequency was the periodic 
term and the residual was the trend term (Fig. 8).

3.4  Association analysis between decomposed components and influencing factors

Whether the choice of triggers is proper or not will directly affect the performance of the 
developed technique. Generally, the grey relation grade (GRG) is adopted to analyze the 
correlation between the decomposed components and their triggers to verify the reason-
ability of selected triggers (Du et al. 2009; Lian et al. 2013; Zhang et al. 2015; Miao et al. 
2018). If the correlation between the influencing factor and the component is greater than 
0.6, the two factors are closely related to the resolution coefficient set to 0.5. In this study, 
MIC is also introduced to analyze the associations. There are obvious differences between 
the results of the two approaches (Table 1). Accordingly, based on analysis as discussed in 
Sect. 3.3, and the values of GRG and MIC, the following factors were selected as the trig-
gers of each component.

Trend term is mainly affected by intrinsic geotechnical conditions during the evolution 
of landslide deformation, and changes gradually with time. The MIC listed in Table 1 also 
shows high associations between displacement in the previous 1, 2 and 3 months and trend 
term. So the movements during the previous 1, 2 and 3 months were chosen as the triggers 
of trend component.

Periodic term is not only affected by the precipitation and temperature variations over 
a period of time, but also related to its own changes. Therefore, the following seven terms 
were adopted as the main influencing factors, namely daily largest rainfall, monthly cumu-
lative rainfall, bimonthly cumulative precipitation, monthly mean temperature and dis-
placements during the previous 1, 2 and 3 months (Table 1).

Random term is influenced by environmental factors such as rainfall, temperature, and 
wind load. Due to limitations of monitoring conditions, certain data such as groundwa-
ter level variations contributed by irrigation and seasonal freeze–thaw were not avail-
able. Hence, in this study we selected six factors as enlisted in Table 1 to predict random 
displacement.

4  Results and analysis

The prediction performances of trend component, periodic component and random com-
ponent using M-KELM, Poly-KELM and SVR models by k-fold cross-validation are pre-
sented in the next sections.

4.1  Trend term prediction

As shown in Table 1, the trend term is mainly triggered by inherent geotechnical condi-
tions. Therefore, the factors, i.e., deformation for the previous 1, 2, and 3 months, are cho-
sen as model inputs and the trend term is used as output (Cao et al. 2016; Zhou et al. 2018). 
Measurements from July 2015 to February 2017 are adopted for training by using ninefold 
cross-validation, and those from March 2017 to February 2018 are employed for testing. 
M-KELM is adopted to forecast the trend term. Poly-KELM and SVR models are applied 
for comparison. Moreover, optimization of all hyperparameters in abovementioned models 
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is performed by ABC algorithm. The performance of all discussed techniques in terms of 
 R2, RMSE and MAE is enlisted in Table 2.

As shown in Table 2, it is observed that the M-KELM performs better as compared with 
the other predictive techniques. For instance, in model testing, the values of RMSE and 
MAE for the developed model are found to be 0.636 mm and 0.509 mm, respectively; for 
Poly-KELM, the values are 0.919 mm and 0.700 mm, respectively; for SVR, the values are 
0.779 mm and 0.647 mm, respectively. The trend term accuracy of the proposed technique 
is improved by 44.5% and 18.4% on RMSE, 37.5% and 21.3% on MAE, respectively, in 
comparison with single kernel-based ELM and SVR. Similar pattern can also be found in 
model training and validating. Accordingly, the developed approach, which integrates the 
merits of four kernel functions, produces a more satisfactory result.

4.2  Periodic term prediction

Seven triggers as enlisted in Table 1 are applied for the inputs of all discussed techniques, 
while the periodic displacements are used for output. Similarly, in the training stage, nine-
fold cross-validation is adopted to achieve the optimum hyperparameters for M-KELM, 
Poly-KLEM and SVR with datasets of the period from July 2015 to February 2017. The 
performances of all discussed models are shown in Table 3. Predictions of periodic term 
are depicted in Fig. 9. As shown in Table 3, the accuracy of M-KLEM is nearly equal to 
that of Poly-KELM and SVR in the stage of model training. However, in model testing, the 

Table 3  Performance of M-KELM, Poly-KELM and SVR for trend term

The unit of RMSE and MAE is mm

Model Training Validating Testing

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

M-KELM 0.044 0.054 1 0.303 0.305 1 0.509 0.636 1
Poly-KELM 0.897 0.945 1 0.739 0.739 1 0.700 0.919 1
SVR 1.169 1.604 1 0.305 0.318 1 0.647 0.779 1

Fig. 9  Predictions and measurements of periodic displacement
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proposed technique performs better than the other two approaches. For example, the lowest 
RMSE and MAE values of 1.223 mm and 1.017 mm are reported in the developed model. 
Also the  R2 value (0.995) in M-KELM is found to be higher in comparison with those val-
ues (0.991 and 0.994, respectively) in Poly-ELM and SVR. Thus, the M-KELM is regarded 
as the best technique in this section.

4.3  Random term prediction

Six factors as shown in Table 1 are selected for prediction of random displacement. Since 
all datasets are normalized within the range [0, 1] using Eq. (9), six input factors have the 
same weight. However, each factor has different influence on landslide deformation. There-
fore, for better performance, different impact factors are given the same weight as their MIC 
values shown in Table 1(Li et al. 2018a, b) after normalization. In addition, Poly-KELM, 

Table 4  Performance of M-KELM, Poly-KELM and SVR for periodic term

The unit of RMSE and MAE is mm

Model Training Validating Testing

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

M-KELM 0.866 1.040 1 0.620 0.866 1 1.017 1.223 0.995
Poly-KELM 0.944 1.159 1 0.700 0.725 1 1.512 1.645 0.991
SVR 0.819 1.461 0.999 2.110 2.134 1 1.689 2.041 0.994

Fig. 10  Predictions and measurements of random displacement
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SVR, Gaussian progress regression (GPR) and random forest are also adopted for compari-
son. The performance evaluation indices  (R2, RMSE and MAE) of all discussed models 
are enlisted in Table 4. For clear visualizing the compared results, the predictions of all the 
discussed models by using ninefold cross-validation are shown graphically in Fig. 10.

As shown in Table 4 and Fig. 10, it is obvious that during model training, M-KELM 
with and without MIC has similar performance. However, in model testing, the M-KELM 
model with MIC is superior to the M-KELM model without MIC. For instance, in Mar 
2017, the absolute error for M-KELM model with MIC is 0.013 mm, while the value for 
M-KELM model without MIC is 1.446 mm. Hence, the developed technique, which gives 
different impact factors the same weight as their MIC values, performs better than the 
M-KELM without MIC.

In addition, better performance is also achieved by the proposed approach as compared 
with the other models. For example, the lowest RMSE value is recorded in the M-KELM 
with MIC during model testing strategy, where RMSE value showed a variation from 
1.543 mm( random forest), 1.483 mm(Poly-KELM),1.459 mm (GPR), 1.247 mm (SVR), 
0.683 mm (M-KELM) to a minimum of 0.585 mm (proposed approach). The MAE val-
ues show similar patterns. Also the highest  R2 value of 0.834 is reported in M-KELM 
with MIC. Therefore, the proposed approach, which integrates the advantages of multi-
kernel functions and MIC, has better performance among all the considered models in this 
section.

4.4  Total displacement prediction

The cumulative displacement is achieved by summation of predicted trend, periodic and 
random displacements from ninefold cross-validation. The performance evaluation indices 
such as  R2, RMSE and MAE of M-KELM, Poly-KELM and SVR models are included in 
Table 5. The comparison of total predictions is plotted in Fig. 11. Model training and test-
ing results produced by the developed approach are depicted in Fig. 12.

As shown in Table 5 and Fig.  11, the best performance in model fitting and predict-
ing phases is registered in the developed model. Considering the results of predictions, 
the lowest RMSE and MAE values are reported in the proposed methodology. The RMSE 
and MAE are found to be 1.573 mm and 1.309 mm, respectively, with the M-KELM with 
MIC technique; 2.494 mm and 2.185 mm, respectively, with the Poly-KELM model; and 

Table 5  Performance of M-KELM with MIC, M-KELM, SVR, GPR, Random Forest and Poly-KELM for 
random term

The unit of RMSE and MAE is mm

Model Training Validating Testing

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

M-KELM with MIC 0.002 0.003 1 0.581 0.581 1 0.514 0.585 0.834
M-KELM 0.002 0.003 1 0.401 0.411 1 0.542 0.683 0.765
SVR 0.025 0.026 1 0.414 0.501 1 0.921 1.247 0.295
GPR 0.065 0.082 1 0.171 0.242 1 1.087 1.459 0.302
Random Forest 1.375 1.690 0.959 0.534 0.546 1 1.359 1.543 0.225
Poly-KELM 1.208 1.538 0.566 1.600 1.725 0.346 1.079 1.483 0.291
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Fig. 11  Total displacement prediction of MD09 using M-KELM, Poly-KELM and SVR

Fig. 12  Fitting and predicting displacements of MD09 using M-KELM
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3.031 mm and 2.579 mm, respectively, with the SVR approach. Also  R2 value of 0.980 
is found to be higher in M-KELM with MIC in comparison with the two approaches. 
The proposed model produced an APE varying from 1E-3% to 0.434% as depicted in 
Fig.  11. Besides, the developed technique also yields better performance than other dis-
cussed approaches during highly displacement fluctuating stages (Fig. 11, from Septem-
ber to December 2017). For instance, in September 2017, the absolute error and APE are 
found to be 0.101 mm and 0.018%, respectively, with the proposed approach; 1.874 mm 
and 0.312%, respectively, with the Poly-KELM model; and 3.901 mm and 0.663%, respec-
tively, with the SVR technique. Further, higher MAE values are also found in the Poly-
KELM and SVR techniques. The lower the performance measures, the higher the predic-
tive capability. Similar patterns can also be found in November 2017.Accordingly, the 
results in this paper revealed that VMD-MIC-M-KELM model is the optimum approach 
among all the models considered.

4.5  Discussion

In this study, six models for comparison with the developed approach are adopted to pre-
dict decomposed displacement, respectively. The results show that accurate predictions 
of trend term are achieved by adopting all six models, whereas inaccurate predictions of 
periodic term and random term occur in models such as Wavelet-KELM, Sigmoid-KELM, 
RBF-KELM and ELM. For the predictions of cumulative displacement, only three models, 
i.e., M-KELM, Poly-KELM and SVR, perform better in comparison with the other models. 
Accordingly, in this paper we only exhibit the performances of the M-KELM, Poly-KELM 
and SVR approaches.

KELM and other statistical approaches have similar limitations, e.g., the requirement of 
long and successive data time series, the similar natural/anthropogenic conditions during 
the training and testing period and the choice of appropriate influencing factors. Moreover, 
poor predictions may be attained provided that an occurrence happened in the testing stage 
that did not take place in the training stage. In this paper, the developed model eliminates 
some limitations mentioned above. The time series employed for the development of an 
accurate model in Miaodian landslide are more than 3 years and continuous. Results of the 
model fitting and prediction indicate that the selected parameters are relatively representa-
tive. Refined predictions would be achieved by continually updating the developed tech-
nique with newly monitoring datasets from the monitoring system.

To explore further, Table  6 shows the total displacement forecasting performance of 
M-KELM with and without MIC. In fact, the same experiments are also conducted on 
period term prediction. However, the results show that the addition of MIC has little effect 
on model performance improvement. Hence, we only present the results of random term 

Table 6  Performance of 
M-KELM, Poly-KELM and SVR 
in model training and testing

The unit of RMSE and MAE is mm

Model Training Testing

MAE RMSE R2 MAE RMSE R2

M-KELM with MIC 0.985 1.199 1 1.309 1.573 0.980
Poly-KELM 2.452 3.236 1 2.185 2.494 0.951
SVR 2.217 2.918 1 2.579 3.031 0.946
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improved by MIC. As shown in Table 6, it is obvious that the performance of M-KELM 
with MIC for total displacement forecasting is improved by 13.77% on MAE, 12.95% on 
RMSE and 0.8% on  R2, as compared with the MKELM approach. The results reveal that it 
is effective to add MIC value in random displacement prediction, which contributes a lot to 
the model improvement in total displacement prediction.

Despite the better accuracy of our method in landslide prediction, inaccurate predictions 
occasionally occur without proper triggers. For instance, it is obvious that predictions in 
August and November 2017 for the three models are relatively smaller than the measure-
ments (Fig. 11). The highest absolute errors for all discussed models are reported in August 
and November 2017. As depicted in Fig.  9, the absolute errors in the two months are 
found to be 1.481 mm and 2.588 mm, respectively, with the M-KELM model with MIC; 
2.961 mm and 3.808 mm, respectively, with the Poly-KELM approach; and 5.386 mm and 
4.872 mm, respectively, with the SVR technique. According to our collections, some farm-
lands near the landslide are far away from the canal and farmers have to irrigate the land 
broadly by traditional method for spring and autumn farming annually. Hence, groundwa-
ter level variations contributed by summer and winter irrigation which were not considered 
in this study account for the higher absolute errors even though the canal renovation had 
been completed. Therefore, the influence of groundwater level due to widespread irrigation 
should be further considered in the model for better performance (Table 7).

In addition, the penalty parameter and rising step of VMD were obtained by continu-
ously trials to insure the fidelity of decomposed time series. This procedure is very labori-
ous and time-consuming since the subseries varies with the change in penalty parameter 
and rising step. Hence, determination of these two parameters, i.e., penalty parameter and 
rising step, should be further studied to enable researchers free from selection.

Further, although random component is available by VMD in this study, it is still unable 
to achieve better performance since we are lack of monitoring data of relevant triggers 
owing to limited monitoring conditions. Accordingly, data with high quality should be 
required for better performance in the future.

5  Conclusion

Due to the impact of geological factors and environmental triggers, it remains a tough task 
to predict landslide displacement accurately for landslide prevention. Thus, this paper pre-
sents a predictive technique, i.e., VMD-MIC-M-KELM, to achieve better performance for 
forecasting long-term landslide movements. The Miaodian loess landslide (China) was 
taken as a case study. With more than 3-year observations in the study region, the devel-
oped model is able to accurately predict landslide movements for periods up to 12 months. 
The technique developed in this study proved to consider the physical meaning of sub-
components with manually set number of decomposition. Besides, the triggers selected 
were also representative. Moreover, the M-KELM approach was capable of producing 

Table 7  the total displacement 
forecasting performance of 
M-KELM with MIC and 
M-KELM

Model Testing

MAE/mm RMSE/mm R2

M-KELM with MIC 1.309 1.573 0.980
M-KELM 1.518 1.807 0.972
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satisfactory results in model prediction by employing a weighted integration of individual 
kernel functions. Model validation also showed that the technique developed in this paper 
achieved the best performance in comparison with the Poly-KELM and SVR.

However, there are also some limitations that require to be addressed in the future: (1) 
groundwater information contributed by broad irrigation should be modeled into landslide 
prediction model; (2) parameters of VMD should be optimized by potential algorithm like 
ANNs; and (3) prediction performance of random component should be improved with 
efficient monitoring datasets. The developed model can be employed to forecast landslide 
displacements influenced by factors such as precipitation, temperature, groundwater, but be 
inapplicable to predict movements triggered by artificial evacuation, earthquakes, or other 
emergency events.

Accordingly, given the reliability of predictions and robustness, VMD-MIC-M-KELM 
presented in this study proves to be applicable for prediction of landslide behavior with 
high coverage of data sources such as displacement, intrinsic geotechnical factors and envi-
ronmental factors. And the technique may be constantly updated on a monthly basis from 
the monitoring system, thus providing reliable information for early warning of landslide.
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