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Abstract
The primary objective is to propose and verify an ensemble approach based on fuzzy sys-
tem and bivariate statistics for landslide susceptibility assessment (LSA) at Azarshahr 
Chay Basin (Iran). In this regard, various integrations of fuzzy membership value (FMV), 
frequency ratio (FR), and information value (IV) with index of entropy (IOE) were inves-
tigated. Aerial photograph interpretations and substantial field checking were used to iden-
tify the landslide locations. Out of 75 identified landslides, 52 (≈70%) locations were uti-
lized for the training of the models, whereas the remaining 23 (≈30%) cases were employed 
for the validation of the models. Fourteen landslide conditioning factors including altitude, 
slope aspect, slope degree, lithology, distance to fault, curvature, land use, distance to river, 
topographic position index (TPI), topographic wetness index (TWI), stream power index 
(SPI), normalized difference vegetation index (NDVI), distance to road, and rainfall were 
prepared and utilized during the analysis. The FMV_IOE , FR_IOE , and IV_IOE models 
were designed utilizing the dataset for training. Finally, to validate as well as to compare 
the model’s predictive abilities, the statistical measures of receiver operating characteristic 
(ROC), including sensitivity, accuracy, and specificity, were employed. The accuracy of 
92.7, 92.5, and 91.8% of the models such as FMV_IOE , FR_IOE , and IV_IOE ensem-
bles, respectively, was by the area under the receiver operating characteristic (AUROC) 
values developed from the ROC curve. For the validation dataset, the FMV_IOE model 
had the maximum sensitivity, accuracy, and specificity values of 95.7, 91.3, and 87.0%, 
respectively. Thus, the ensemble of FMV_IOE was introduced as a promising and premier 
approach that could be used for LSA in the study area. Also, IOE results indicated that 
altitude, lithology, and slope degree were main drivers of landslide occurrence. The results 
of the present research can be employed as a platform for appropriate basined management 
practices in order to plan the highly susceptible zones to landslide and hence minimize the 
expected losses.
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1  Introduction

Landslide is mass movements of soil or rock from the top to the bottom of a slope (Chen 
et  al. 2018). It is known as one of the most significant and dangerous natural disasters 
worldwide, which leads to extensive social and economic losses along with the devastation 
of water and soil resources (Korup et al. 2012; Alimohammadlou et al. 2013; Raja et al. 
2017). Thus, the occurrence of landslides is a complex phenomenon and is related to vari-
ous parameters, i.e. geology, topography, vegetation, heavy rain, and activities of humans 
(Cruden 1991).

Worldwide from 1998 to 2017, landslides accounted 5.2% of natural hazards according 
to the information of the Centre for Research on the Epidemiology of Disasters (CRED 
2018). Landslides caused global total annual damages of about 18 billion Euros (Zhu et al. 
2018). Extensive sections of Iran are covered by mountainous regions, and therefore, land-
slide is commonly considered as natural disaster causing abundant economic and social 
losses (Shirzadi et al. 2017). Landslides happen in Iran mainly due to the Alpine–Himala-
yan belt activities (Farrokhnia et al. 2011; Shirzadi et al. 2017) which caused an economic 
loss of 10 billion USD with 4900 landslides occurrence till September 2007 (Shirani et al. 
2018). Government agencies throughout the world have developed different approaches to 
alleviate and preclude the damages of landslides, including issuing early warnings, plan-
ning evacuation routes, and building engineering structures (Choi and Cheung 2013; Luo 
and Liu 2018). However, all of these techniques are dependent on the actual determination 
of spatial landslides prediction (Bui et al. 2016) which have properties that make them sus-
ceptible to land sliding, i.e. landslide susceptibility modelling (LSM) (Luo and Liu 2018).

The landslide susceptibility concept demonstrates the possibility of landslide events 
happening in an area based on the conditions of the local terrain, which do not include the 
return period nor the probability of happening of the instability process (Corominas et al. 
2014; Zêzere et al. 2017). LSM is a solution for the apprehension and prediction of future 
landslides to alleviate their consequences (Feizizadeh and Blaschke 2013). Therefore, the 
generation of landslide susceptibility maps (LSMs) at the preliminary step of landslide 
hazard assessment is of significance for the safe economic planning. However, a standard 
procedure for the LSMs generation does not exist (Samodra et al. 2018).

It has been proven effective and feasible in recent decades to make use of geographic 
information system (GIS) and remote sensing (RS) technologies for the evaluation of land-
slide (Dou et al. 2019). A broad range of techniques and models have been suggested and 
employed for the LSM. The most usual approaches and procedures suggested in the lit-
erature are frequency ratio (Yilmaz 2009; Yalcin et al. 2011; Aditian et al. 2018), index of 
entropy (Constantin et al. 2011; Devkota et al. 2013; Youssef 2015), analytical hierarchy 
process (AHP) (Pourghasemi et  al. 2012; Bahrami et  al. 2020), analytical network pro-
cess (ANP) (Melchiorre et al. 2008; Rajabi et al. 2016; Swetha and Gopinath 2020), infor-
mation value (Du et al. 2017; Sharma and Mahajan 2019), fuzzy logic (Bui et  al. 2012; 
Sahana and Sajjad 2017; Tsangaratos et al. 2018).

Comparatively the performance of these methods is good in LSM which can be 
improved further using hybrid methods to develop techniques (Bui et  al. 2014; Truong 
et  al. 2018). In recent years, researchers around the world have proposed various tech-
niques, using hybrid and integrated approaches to generate LSM of distinct areas of the 
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world. These approaches include fuzzy logic and analytic hierarchy process (Gorsevski 
et  al. 2006); fuzzy logic and ANP (Abedi Gheshlaghi and Feizizadeh 2017; Feizizadeh 
et al. 2021); AHP and statistical index (Arabameri et al. 2020); random forest base classi-
fier and its ensembles (Ebrahimy et al. 2020; Nhu et al. 2020); fuzzy logic and weight of 
evidence (Hong et al. 2017); support vector machines and random subspace (Tien Bui et al. 
2019); SVM and differential evolution (Tien Bui et al. 2016), and Bat algorithm optimized 
SVM (Bui et al. 2019).

The mentioned literature review reveals that world widely several techniques have been 
individually used. FMV, IV, and FR are such techniques which are capable to analyse the 
effect of factor classes on the occurrence of landslide. However, in most cases the correla-
tion between the factors is neglected. On the contrary, the IOE is capable of analysing the 
association among the parameters, but it is not able to evaluate the factor classes. There-
fore, there is a need of their integration into hybrid techniques for the landslide modelling. 
The above-cited hybrid models give rise to new thoughts of combining two distinct tech-
niques in order to minimize the sensitivity to noises and isolated samples, thus appealing 
for many scholars (Meng et al. 2016). Combinations of index of entropy (IOE) with fuzzy 
membership value (FMV), information value (IV), and frequency ratio (FR) techniques can 
overcome the flaws of four approaches.

In this paper, new ensemble techniques, i.e. FMV_IOE , FR_IOE , and IV_IOE , have 
been proposed and substantiated for the LSM, with the case study of Azarshahr Chay 
Basin (ACB). Hence, the main purpose of this paper is to identify the landslide prone 
areas and to yield better predictions by developing the novel hybrid methods for LSMs. 
The major distinction between the present study and previous studies is that in this study 
three ensemble techniques are compared on the foundation of performance, and in the 
mapping of landslide susceptibility and for the first time their performance has been ana-
lysed. Fourteen factors were chosen as landslide controls factors: altitude, slope aspect, 
slope degree, lithology, distance to fault, curvature, land use, distance to river, topographic 
position index (TPI), topographic wetness index (TWI), stream power index (SPI), normal-
ized difference vegetation index (NDVI), distance to road, and rainfall. They were created 
based on ArcGIS environment for the spatial analysis and manipulation of data. Finally, 
the LSMs were acquired and then compared with the three distinct integrated approaches. 
These maps provide important information for local landowners, planners to prepare emer-
gency plans to minimize the negative effects on human life.

2 � The study area and data used

2.1 � The study area

The ACB is situated on the west side of the province East Azerbaijan with Urmia Lake 
spreading in its west side (Fig. 1). The lowest and highest elevation of the location under 
consideration is 1239 m a.s.l and 3300 m a.s.l, respectively (mean elevation 2282 m a.s.l.), 
with the slope variation from 0 to 75.95° (mean 11.06°).

The local climate can be separated into two different seasons, rainy and dry seasons. The 
dry season runs between June to September, while the rainy season runs between October 
and May. January is the coldest month with mean temperature of about −1 °C, and July is 
the hottest month of the region with mean temperature of about 27 °C. The geology of area 
is responsible for earthquakes, landslides, and volcanic hazards (Feizizadeh and Blaschke 
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2013; Rahmati et al. 2019a, b). Various geologic units are included in the lithology of ACB 
such as dacitic andesite (35.14%) and yellow brecciated limestone and light-grey mas-
sive limestone (15.74%) (Table 1). The geological tectonic settings combined with unsta-
ble slopes make this area highly prone for hazards of landslide (Feizizadeh and Blaschke 
2013). The land use includes agricultural land, orchard land, grassland, barren land, and 

Fig. 1   Location of ACB

Table 1   The lithology of ACB

No. Symbol or code Description

1 Qsd Salt-clay deposits
3 PLQash Volcanic ashes with block, lahar and welded breccia (Pelean)
2 Ngct Tuff breccia with intercalations of Conglomerate and sandstone
4 PLQd Dacitic andesite
6 Q2 Old terraces and alluvial fan deposits
5 Qtr Travertine
7 Ngb Volcanic breccia with pyroxene andesite
8 Q3 Young terraces and alluvial fan deposits, locally including cultivated
10 Jd Light grey to whitish, thin to thick-bedded ammonite and belemnite bearing 

argillaceous limestone (Dalichai Formation)
9 JI Limestone and dolomitic limestone
13 Kc

l Red conglomerate, sandstone and siltstone
12 JKl Yellow brecciated limestone and light-grey massive limestone (Lar Formation)
11 Kl

l Grey to dark grey, Orbitolina bearing, argillaceous-limestone and limestone
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cultivation and built-up area, whereas maximum area is covered by grassland (58.54%). 
In this area, massive rain and unfit practices of land use contribute to natural hazards, i.e. 
landslides, flooding, and erosion of soil during past several years.

Due to its steep slopes, absence of full-scope shelter by vegetation, unconsolidated soil 
and materials of surface and various active processes over the year, this region is one of the 
watersheds of the Sahand Mountains. It has been made as one of the areas prone to mass 
movements because of human’s indirect manipulation in recent decades (Abedi Gheshlaghi 
and Feizizadeh 2017). In the study area, most of the landslides occur during rainy sea-
son. Mostly landslide events can be contemplated as a rotational landslide according to the 
observations (Feizizadeh and Blaschke 2013) and the statements of field observations.

2.2 � Landslide inventory

Future risk events of a specific location may be estimated through the assessment of the 
records of past happenings (Devkota et  al. 2013; Abedi Gheshlaghi 2019; Costache and 
Bui 2019; Rahmati et  al. 2019a, b). The requisite input for examining the association 
between the spatial dissemination of landslides and the conditioning factors is the landslide 
inventory map (Chen et al. 2019b). Therefore, in the assessment of landslide susceptibil-
ity, the primary step is the assessment of similar past happenings and their conditioning 
factors. In this research, a landslide inventory was acquired utilizing images of Google 
Earth employing Google Earth software and field surveys through GPS. The obtained land-
slide inventory included 75 landslide conditions, which were classified randomly into two 
classes, for training (≈70%) and validation (≈30%). This inventory of landslide consists 
of translational (20 points), rotational (43 points), and debris flows (12 points). Landslide 
destruction example in the study region is depicted in Fig. 1.

2.3 � Landslide conditioning factors

An essential step in LSM is the proper selection of conditioning factors for a landslide to 
find the spatial association between landslide inventory happenings and geo-environmental 
factors. In ACB, the conditioning factors were chosen after taking into account many exist-
ing studies related to landslide susceptibility as well as the field investigation (Gariano and 
Guzzetti 2016; Alvioli et al. 2018). Afterwards, the parameters of slope degree (Fig. 2a), 
slope aspect (Fig. 2b), altitude (Fig. 2c), lithology (Fig. 2d), land use (Fig. 2e), distance 
to river (Fig.  2f), distance to road (Fig.  2g), distance to fault (Fig.  2h), NDVI (Fig.  2i), 
curvature (Fig. 2j), SPI (Fig. 2k), TPI (Fig. 2l), TWI (Fig. 2m), and rainfall (Fig. 2n) were 
utilized for the mapping of landslide susceptibility. Detailed information is available in 
Table 2 which includes sources of data, GIS data type, and related LSM factor classes.

For the preparation of slope, curvature, altitude, TWI and SPI factors in ArcGIS 10.6 
environment, the digital elevation model (DEM) of the county having a spatial resolution 
of 30 m was acquired from the United States Geological Survey (USGS, http://www.usgs.
gov).

In our study for checking the multicollinearity between the landslide conditioning fac-
tors, the tolerance (TOL) and variance inflation factor (VIF) were employed. These meth-
ods are mostly used for checking the multicollinearity between independent variables 
(Chen et al. 2018; Arabameri et al. 2019a), and critical multicollinearity between the con-
ditioning factors is shown by a TOL value b of 0.1 or a VIF value N5 (Chen et al. 2018).

http://www.usgs.gov
http://www.usgs.gov
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2.3.1 � Slope degree

According to the researchers, the most significant factor in landslide stability assess-
ment is always the slope degree (Reichenbach et al. 2018) because it directly influences 
the shear forces (Lee and Min 2001). The slope degree classifications of the region 
under consideration were acquired from a DEM with 30 m spatial resolution. It was cat-
egorized into five classes, namely: 0–5°, 5–15°, 15°–25°, 25°–35°, and > 35° (Fig. 2a). 
The investigation of spatial distribution exhibits that about 42.31% of the landslides in 
the region under study were noticed on the slope degree of 15–25° (Fig. 3a).

Fig. 2   Maps of thematic: a slope degree; b slope aspect; c altitude; d lithology; e land use; f distance to 
river; g distance to road; h distance to fault; i NDVI; j curvature; k SPI; l TPI; m TWI; n rainfall
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2.3.2 � Slope aspect

The direction of the highest slope of the terrain surface is known as slope aspect (Meng 
et  al. 2016) and is a crucial topographic factor that affects moisture on slopes due to 

Fig. 3   Analysis of landslide conditioning factors: a slope degree; b slope aspect; c altitude; d lithology; 
e land use; f distance to river; g distance to road; h distance to fault; i NDVI; j curvature; k SPI; l TPI; m 
TWI; n rainfall
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radiation from the sun and rainfall depending on the slope facing directions (McKean and 
Roering 2004; Pham et al. 2018). DEM was utilized for the acquisition of the slope aspect 
map. The map of the slope aspect was developed with nine intervals, including flat, east, 
north, northeast, southwest, south, southeast, west, and northwest (Fig. 2b). Slope aspect 
frequency assessment (Fig. 3b) manifests that the majority of landslide event happenings 
are in the north direction (34.62%), west (23.08%), and southwest (19.23%).

2.3.3 � Altitude

Altitude which is the height above the sea level is familiar for its effects on biological as 
well as natural factors (Kavzoglu et  al. 2014). Various geomorphological and geologic 
processes controlled this parameter (Ayalew and Yamagishi 2005). Altitude was catego-
rized into five categories: 1239–1500, 1500–2000, 2000–2500, 2500–3000, and > 3000 m 
(Fig. 2c). Landslide frequency assessment exhibited that the majority of landslides were 
recorded in the group of 2000–2500 (38.46%) (Fig. 3c).

2.3.4 � Lithology

One of the principals and basic factors having direct influence on the landslides occur-
rence is lithology (Abedini et  al. 2018; Jiménez-Perálvarez 2018) since lithological and 
structural alterations usually lead to variations in durability and porosity of rocks as well 
as soils (Kavzoglu et al. 2014). Many researches have considered lithological features as 
impact factors for the susceptibility of landslide (Chen et al. 2016; Rosi et al. 2018; Dang 
et al. 2019). The map of lithology (Fig. 2d) was created by the Geological Survey of Iran at 
a scale of 1:100,000 (Table 1). Frequency evaluation of landslide happenings on lithology 
shows that majority of the landslides (42.31%) are located on dacitic andesite which occu-
pies about 35.14% area (Fig. 3d).

Fig. 3   (continued)
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2.3.5 � Land use

Alterations in the environment and activities of humans affect land use (Kalantar et al. 
2018). According to Pourghasemi et  al. (Pourghasemi et  al. 2018), it is the maximum 
utilized predictor layer after lithology, slope, and aspect which can be generated using 
techniques of remote sensing (Guan et  al. 2017; Pham et  al. 2018; Yang et  al. 2019). 
For this research, map of land use was generated from OLI of Landsat 8 images in con-
nection with the field maps. Land use in the region under consideration is categorized 
into five categories: agricultural land, orchard land, grassland, barren land, and cultiva-
tion and built-up area (Fig. 2e). Frequency assessment on land use (Fig. 3e) data of the 
region under study suggests that the majority of landslides are observed in grassland 
area (65.38%).

2.3.6 � Distance to river

In the stability of the landslide, the distance to the rivers conditioning parameter plays an 
effective role (Dehnavi et al. 2015; Abedini et al. 2018). The measure of distance to river 
has been utilized in numerous studies as an impact factor (Nicu and Asăndulesei 2018; 
Moayedi et al. 2019). The river network was generated from DEM and grouped into five 
buffer groups: 0–200, 200–400, 400–600, 600–800, and > 800 m (Fig. 2f). The results of 
the analysis show that about 30.77% landslides are distributed from 600–800 m distance in 
river valley (Fig. 3f).

2.3.7 � Distance to road

Distance to road has a significant association with the landslide event happening that can be 
the result of cut slope formations through the building of roads which disturbs the natural 
topology and impacts the slope stability (Kavzoglu et al. 2014). Distance to road is often 
utilized in the assessment of landslide susceptibility in numerous studies and is known as 
one of the causal parameters for the landslide event (Chen et  al. 2019a). In the current 
research, distance to roads was considered for the landslide susceptibility and grouped into 
five zones of buffer making use of 200 m interval (Fig. 2g): 0–200, 200–400, 400–600, 
600–800, and > 800  m. The output of the frequency assessment (Fig.  3g) manifests that 
high number of landslides are observed in > 800 mm (62.67%).

2.3.8 � Distance to fault

Faults form a zone or line of weakness specified by tectonic structure (Meng et al. 2016). 
The distance to faults is an important parameter in the mapping of LSM (Abedini et  al. 
2018). Proximity to these structures escalates the chances of the occurrence of landslides 
(Bourenane et  al. 2016). In this research, the distance to faults was generated from the 
structural geology map of the area under study at a scale of 1:100,000 and was grouped 
into five groups using 1000  m interval based on the ArcGIS 10.6 software, and the 
fault buffer categories were specified as 0–1000, 1000–2000, 2000–3000, 3000–4000, 
and > 4000  m (Fig.  2h). Results indicate that the majority of the landslides are nearly 
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equally disseminated within these classes: 2000–3000  m (30.77%); 3000–4000  m 
(23.08%); and > 4000 m (23.08%) (Fig. 3h).

2.3.9 � NDVI

The landslides occurrence is closely associated with the density of vegetation (Meng et al. 
2016). The NDVI is a parameter that can detect an increase in vegetation and vegetation 
coverage (Hong et  al. 2016). The map of NDVI for the present research was developed 
from the Landsat-8 satellite images associated with the OLI-sensor making use of the 
equation given below (Hong et al. 2016):

where NIR is the near-infrared band (0.85–0.88  µm, Band 5) and RED is the red band 
(0.64–0.67  µm, Band 4). For the current research, the map of NDVI was created with 
three intervals, including (−0.09)–0.2, 0.2–0.4, and > 0.4 (Fig.  2i). Landslide frequency 
assessment manifests that maximum landslides were observed in the group of (−0.09)–0.2 
(80.77%) (Fig. 3i).

2.3.10 � Curvature

Curvature influences the events of landslide beside other geo-environmental, and topo-
graphic factors as the movement of water depends on the curvature of the ground surface 
(Pham et al. 2018). Positive value of curvature shows convexity, zero value exhibits the flat 
areas, and negative value manifests concavity (Fig. 2j). Landslides are nearly equally dis-
seminated in concave (57.69%) and convex (40.38%) groups (Fig. 3j).

2.3.11 � SPI, TWI, and TPI

The SPI, TPI, and TWI are three important hydrologic factors that can assess the spatial 
alteration of landslide-vulnerable areas. They are broadly utilized in the mapping of land-
slide susceptibility (Kalantar et  al. 2018; Pourghasemi et  al. 2018). The SPI represents 
the erosion strength of streams which might affect the occurrence of landslide (Raja et al. 
2017). TWI commonly supplies a means of quantification of the topographical influence 
on the hydrological activities (Tehrany et  al. 2019). Maximum TWI values were related 
to the wet regions, whereas the minimum values with dry regions (Laamrani et al. 2015). 
ArcGIS software was utilized to create SPI and TWI from DEM making use of the equa-
tions given below:

where As is the particular catchment region (m2 m−1), and � (radian) is the slope gradient 
(in degrees). The maps of TWI and SPI of the watershed were developed with five inter-
vals, including SPI: (−4.6)–(−1.5), (−1.5)–0, 0–2, 2–4.5, and > 4.5; TWI: (−0/5)–2, 2–4, 
4–6, 6–9, and > 9 (Fig. 2k–m). The SPI density of 0–2 and in the case of TWI as 2–4 is 
highly vulnerable to the landslide occurrence (48.08%) (Fig. 3k–m).

TPI was computed in ArcGIS software by employing the equation given below:

(1)NDVI = (NIR − RED)∕(NIR + RED)

(2)TWI = ln(As∕tan�)

(3)SPI = Astan�
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where Ec is the elevation at the central point, Ei is the elevation and M is the predetermined 
radius (predetermined matrix length) (Kavzoglu et al. 2015). The watershed TPI map was 
developed with five intervals, including: (−106.7)–(−34.5), (−34.5)–(−9.28), (−9.28)–14, 
14–47.48, and > 47.48 (Fig. 2l). Maximum landslides were observed in TPI of 14–47.48 
(30.77%) (Fig. 3l).

2.3.12 � Rainfall (mean annual)

The most influential factor for landslide occurrence is the high-intensity rainfall (Youssef 
2015). The landslides induced by rainfall have been widely studied by scholars (Yano et al. 
2019). The map of rainfall map was created making use of the inverse distance weighted 
(IDW) technique for the period 2005–2015 at the Tabriz, Sahand, Ajabshir, Bonab, 
and Maragheh stations and then grouped into five groups including 221–227, 227–230, 
230–234, 234–239, and > 239  mm (Fig.  2n). The output of the frequency assessment 
(Fig. 3n) manifests that high number of landslides are observed in > 239 mm (46.15%).

3 � Methodology

The susceptibility modelling was carried out employing the ensemble FMV_IOE , FR_IOE , 
and IV_IOE methods. The proposed methodology in the present study has been carried out 
in seven main phases: (a) preparation of the spatial database; (b) selection of the condition-
ing factors for landslide analysis; (c) preparation of training and validation datasets; (d) 
development of the hybrid landslide models; (e) generation of the LSMs; (f) validation and 
comparison of the three models; (g) selection of the best model. The procedures of selected 
techniques are stepwise shown in Fig. 4.

3.1 � Frequency ratio (FR)

FR model can be utilized to quantify the spatial association between dependent and inde-
pendent variables and is a bivariate statistical method (Termeh et  al. 2018). The spatial 
association between landslides and conditioning factors was employed in the FR technique. 
It was computed by employing the equation given below:

where Ai is the landslide pixels number within each group area, A represents the number of 
total landslides in the region under study, Bi exhibits the number of the pixels in the condi-
tioning factor group, and B is the number of total pixels in the region under consideration. 
If the weights are less than 1, then it represents a minor correlation, whereas if they are 
more than 1, then it represents a higher correlation (Lee and Min 2001).

(4)TPI = Ec −

(

1

nM

∑

i�m

Ei

)

(5)FR =
Ai
/

A

Bi
/

B
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3.2 � Fuzzy membership value (FMV)

Fuzzy logic shows a grey look into the actual world, finding a way to draw the external fact. 
For a sample, if white is represented by 1 and black by 0, then grey will be a number which 
will be between 1 and 0 (Abedi Gheshlaghi and Feizizadeh 2017). Various techniques have 
been suggested to implement fuzzy principles. One of the techniques of executing this is 
by utilizing the FR. After the calculation of the FR, the values acquired by making use of 
the equation given below were normalized, and fuzzy membership values (FMVs) were 
obtained.

where �ij is the FMV of class i of parameter j.

3.3 � Information value (IV)

It is a bivariate statistical method for the spatial forecasting of an event based on the param-
eter and occurrence relationship. Until now IV has been the most useful model for the map-
ping of landslide susceptibility by determining the impact of factors governing landslide 
events happening in the region under study (Achour et  al. 2017). A negative value of Ii 
shows that the probability of a landslide occurrence is less than average, whereas a positive 
value of Ii exhibits that the probability of a landslide occurrence is maximum than average. 
The IV Ii for a parameter i can be computed using the equation given below:

(6)�ij = FRij∕maxi(FRij)

Fig. 4   Methodology flow chart for LSM
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where Ii is the information value, Ai represents the landslides number containing parameter 
class i , Bi shows the area of parameter class i , A exhibits the whole number of landslides, 
and B manifests the total of the study region.

3.4 � Index of entropy (IOE)

Index of entropy is the evaluation of the uncertainty of a system (Al-Abadi et al. 2016). 
Researchers, i.e. Kornejady and Pourghasemi (Kornejady and Pourghasemi 2019) and 
Sharma et al. (Sharma et al. 2015), employed the IOE model for the susceptibility of land-
slides in various parts of the globe. IOE allows approximating the weight for every land-
slide conditioning factor ( Wj ) utilizing the equations given below (Bednarik et al. 2010):

where b is the percentage of the pixels in a class to the whole pixels; a is the percentage 
of landslide happening pixels in a class to the total landslide happening pixels; (Pij) is the 
probability density.

where Hj and Hjmax are the entropy values; Sj is the number of classes.

where Wj is the weight value of the factor as a whole; and Ij is the value of information 
coefficient.

3.5 � Methods integration

To integrate the techniques, the landslide susceptibility index (LSI) is computed, on the 
basis of weights and rating values to all categories of the distinct conditioning factors 
which represent the association between classes in a parameter, and the weight values of 
every parameters (Table 4). Therefore, the final maps of LSI were created making use of 
the equations given as:

(7)Ii = log2

Ai
/

Bi

A∕B

(8)Pij =
a

b

(9)(Pij) =
Pij

∑SJ
i=1

Pij

(10)Hj = −

SJ
∑

i=1

(Pij)log2(Pij). j = 1.2.… n

(11)Hjmax = log2Sj

(12)Ij =
Hjmax − Hj

Hjmax

.I = (0.1). j = 1.2.… .n

(13)Wj = IjPij
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where LSIFMV−IOE,LSIFR−IOE , and LSIIV−IOE are the susceptibility indexes of the landslide, 
FMVij is the weight of class i in factor j , FRij is the weight of class i in factor j , IVij is the 
weight of class i in factor j , Wj the weight of factor and n is the number of factors.

LSI shows the landslide susceptibility on the basis of the number of factors (param-
eters), weight of the classes of every factor, and weight of every factor in the final suscepti-
bility analysis (Fig. 5).

3.6 � Performance and validation of model

To understand the significance of the model outputs, validation of the techniques is an 
essential step in any modelling process (Balamurugan et  al. 2016). In this research, the 
relative operating characteristics (ROC) curve was employed to analyse the models’ perfor-
mance. The ROC curve is designed in a two-dimensional space in which the Y-axis denotes 
specificity (the number of non-landslide pixels accurately classified as non-landslide), and 
the X-axis specifies sensitivity (the number of pixels of landslide accurately classified as 
a landslide). As an integral section of the ROC curve, the area under the receiver operat-
ing characteristic (AUROC) was employed to assess the landslide models’ performance. 
In the AUROC, the graph depicts the rate of false-positive ( 1 − specificity ) on the X-axis 
(Eq. 14) and the rate of true-positive (sensitivity) on the Y-axis (Eq. 15):

(14)LSIFMV−IOE =

n
∑

j=1

FMVijWj

(15)LSIFR−IOE =

n
∑

j=1

FRijWj

(16)LSIIV−IOE =

n
∑

j=1

IVijWj

Fig. 5   Integration of methods for LSI
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where FP is false-positive, TN is true-negative,FN is false-negative, and TP is true-posi-
tive (Arabameri et al. 2019a). The AUROC and prediction accuracy quantitative–qualita-
tive correlation, which ranges from 0 to 1, are described as follows: excellent (0.9–1), very 
good (0.8–0.9), good (0.7–0.8), moderate (0.6–0.7), and weak (0.5–0.6) (Arabameri et al. 
2019b).

In addition to this, statistical indexes such as specificity, sensitivity, and accuracy 
were utilized to assess the ensemble techniques performance. The proportion of pixels 
accurately classified as occurrences of landslide is known as sensitivity. On the other 
hand, the proportion of non-landslides pixels accurately as non-landslides is known 
as specificity. The proportion of pixels of landslide and non-landslide which are accu-
rately classified is known as accuracy (Chen et al. 2018). These terms can be computed 
utilizing the equations given below:

where TN (true-negative) and TP (true-positive) represent the number of pixels which are 
correctly classified and FN (false-negative) and FP (false-positive) represent the number of 
pixels which are incorrectly classified.

4 � Results

The significant step in the prevention of landslides in the landslide-vulnerable areas is 
the LSM (Abedi Gheshlaghi and Feizizadeh 2017). The maps of landslide susceptibil-
ity were prepared after the completion of training process of landslide techniques in 
three major stages such as (i) preparation of factors (ii) generation of landslide sus-
ceptibility indexes (LSIs), and (iii) reclassification of LSIs. During the first step, the 
techniques, that is, FMV, IV, and FR, were employed for the derivation of the sub-cri-
teria weights, and IOE technique was computed for the derivation of criteria weights 
(Table  4). During the second step, a set of whole sampling pixels were used for the 
generation of LSIs of all pixels in the whole study region. During the third stage, mak-
ing use of the natural break technique the LSIs has been reclassified. On the basis of 
this approach, the reclassification of LSIs has been done into five susceptible levels 
such as very high, high, moderate, low, and very low (Fig. 7).

(17)X = 1 − specificity = 1 −
[

TN

TN + FP

]

(18)Y = sensitivity =
[

TP

TP + FN

]

(19)Sensitivity =
TP

TP + FN

(20)Specificity =
TN

TN + FP

(21)Accuracy =
TP + TN

TP + TN + FP + FN
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4.1 � Importance analysis of landslide parameters

Fourteen landslide parameters predictive capability is presented in Fig. 6 while utilizing 
the IOE method. Of these, altitude has the maximum value of all ( Wj= 1.343), followed by 
lithology ( Wj= 0.641), slope degree ( Wj= 0.321), NDVI Wj (= 0.315), rainfall ( Wj= 0.295), 
TWI ( Wj= 0.274), SPI ( Wj= 0.259), distance to road ( Wj= 0.210), distance to fault ( Wj

= 0.160), slope aspect ( Wj= 0.159), land use ( Wj= 0.143), distance to river ( Wj= 0.081), TPI 
( Wj= 0.061), and curvature(Wj= 0.037) (Table 4).

The results of multicollinearity test (Table 3) show that no significant multicollinearity 
was noted between the landslide conditioning factors. The minimum TOL was computed 
for lithology (0.242) as well as for the runoff height (0.397) which are, however, maxi-
mum than the theoretical critical value (0.10) for the confirmation of collinearity. Also, 
for all parameters the values of VIF are below the threshold of theoretical multicollinear-
ity (b5.00). Therefore, these conditioning factors were all selected as input layers to cre-
ate the maps of landslide susceptibility, because they make significant contribution to the 
occurrences of landslides on the basis of IOE and the assessment of multicollinearity in the 
study region.

4.2 � Integration of the FMV and IOE methods

The relationship between landslides and every landslide associated parameter are summa-
rized in Table 4. Higher FMV values show the maximum chances of landslide occurrence.

The obtained FMV values were employed as inputs to run the method of IOE. The 
LSI values were from 0.217 to 3.961. Finally, the LSM was obtained from the FMV_IOE 
method, which was categorized into five levels of landslide susceptibility: very high 
(2.597–3.961), high (1.648–2.597), moderate (1.272–1.648), low (0.918–1.272), and very 
low (0.217–0.918) (Fig. 7a).

Fig. 6   Analysis of factor importance using IOE method
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4.3 � Integration of the FR and IOE methods

The correlations between landslides and every parameter making use of the FR method are 
summarized in Table 4. Overall, greater chances of landslide occurrence are manifested by 
the FR larger values.

To run the IOE method, the acquired values of FR were also employed as inputs. The 
range of measured LSI values was from 0.472 to 33.314. Finally, the LSM for the case 
of FR_IOE method was obtained, and was separated into five levels of landslide suscep-
tibility: very high (12.565–33.314), high (7.791–12.565), moderate (4.413–7.791), low 
(2.399–4.413), and very low (0.472–2.399) (Fig. 7b).

4.4 � Integration of the IV and IOE methods

The relationship between every landslide associated factor and landslides is summarized in 
Table 4. The IV larger values of exhibit maximum likelihood of landslide occurrence.

The acquired values of IV were also taken into account as inputs for running the IOE 
method. The range of computed LSI values was from −1.674 to 2.847. Finally, the LSM 
for the case of IV_IOE method was obtained, and the study region was dissected into five 
levels of landslide susceptibility: very high (1.543–2.847), high (0.441–1.543), moderate 
((−0.132)–0.441), low ((−0.617)–(−0.132)), and very low ((−1.674)–(−0.617)) (Fig. 7c).

4.5 � Percentage and density of susceptibility levels

Figure  8 presents the percentages of landslide susceptibility groups for every model. 
According to the FMV_IOE results, 1.86% of the entire region was observed in the very 
high susceptibility level, 13.98% in the high level, 28.22% in the moderate level, 29.13% 
in the low level, and 26.81% in the level of very low susceptibility. As for the FR_IOE 
ensemble, the low, very low, moderate, high, and very high levels were considered for the 

Table 3   Multicollinearity 
assessment for conditioning 
factors

Conditioning Factors TOL VIF

Altitude (m) 0.832 1.202
Slope degree (°) 0.564 1.773
Slope aspect (°) 0.694 1.441
Curvature (100/meter) 0.751 1.332
Lithology 0.611 1.637
Land use 0.397 2.519
NDVI 0.788 1.269
Distance to river (m) 0.282 3.546
Distance to road (m) 0.797 1.255
Distance to fault (m) 0.488 2.049
SPI 0.712 1.404
TPI 0.575 1.739
TWI 0.722 1.385
Rainfall (mm) 0.521 1.919
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percentage values of 31.6, 31.42, 32.86, 2.32, and 1.8%, respectively. Correspondingly 
in the IV_IOE ensemble, 41.1, 20.24, 25.98, 10.89, and 1.79% of the region under study 
were assigned to low, very low, moderate, high, and very high susceptible to landslide 
respectively.

Fig. 7   LSMs using: a FMV_IOE ; b FR_IOE ; c IV_IOE
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To assess the performance of the three LSMs, the landslide density (LD) was also com-
puted (Table 5) which is a ratio of the percentage of landslide pixels and the percentage 
of the level pixels on every susceptible level (Pham et al. 2016). In the reliable LSMs, the 
levels of maximum susceptibility should indicate maximum LD.

The findings indicated that the LD value changed among the levels the ranging from 0 
to 17.88 (Table 5). In each map, the level of very low susceptibility had the minimum LD 
values, followed by the level of low susceptibility, level of moderate susceptibility, level of 
high susceptibility, and level of very high susceptibility. The findings also manifested that 
the FMV_IOE technique had the maximum LD for the very high susceptibility level and 
showed good performance than the other two techniques.

Figure 8 manifests the density of LSI maps in every individual level of landslide sus-
ceptibility. In the context of the FMV_IOE model, the density was highest to low, very 
low, moderate, high, and very high susceptibility levels in northwest, central, southeast, 
eastern, and eastern regions, respectively. In this context, in the FR_IOE model, the density 

Fig. 7   (continued)

Fig. 8   Distribution of the different susceptibility levels for a FMV_IOE , b FR_IOE , and c IV_IOE methods
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was higher to low, very low, moderate, high, and very high susceptibility levels in western, 
central, northeast, southern, and eastern regions, respectively. For the IV_IOE model, the 
density was maximum to low, very low, moderate, high, and very high susceptibility lev-
els in northwest, southwest, southeast, eastern, and eastern regions, respectively (Abedi 
Gheshlaghi et al. 2020a, b).

4.6 � Integrated techniques assessment

Tables 6 and 7 show the general assessment of the landslide susceptibility methods while 
making use of ROC curves with training and validation datasets.

The AUROC values in integrated methods were significant statistically due to having 
Std. error to 0.018 (less than 0.05). For the ease of interpretation, the performance of meth-
ods was overlaid on a single graphic ROC (Fig.  9a and b). The acquired output for the 
training phase manifests that the values of AUROC for FMV_IOE , FR_IOE were rather 
similar to value 0.930 and 0.929, respectively, whereas the AUROC value of IV_IOE 
(0.926) was lower than it models. Also, the validation of the three achieved maps revealed 
that values of AUROC for FMV_IOE , FR_IOE with values close to one other (0.927 and 

Table 5   Landslide density within 
the LSMs

Methods Susceptibility levels % of pixels 
in levels

% of land-
slides in 
levels

LD

Very high 1.86 33.33 17.88
High 13.98 26.67 1.91

FMV-IOE Moderate 28.22 30.67 1.09
Low 29.13 9.33 0.32
Very low 26.81 0 0
Very high 1.8 30.67 17.06
High 2.32 5.33 2.3

FR-IOE Moderate 32.86 48 1.46
Low 31.42 16 0.51
Very low 31.6 0 0
Very high 1.79 28 15.65
High 10.89 25.33 2.33

IV-IOE Moderate 25.99 33.33 1.28
Low 20.24 13.33 0.66
Very low 41.1 0 0

Table 6   AUROC analysis for 
the ensemble methods with the 
training dataset

Methods AUROC SE Asymptotic 95% confidence 
interval

Lower-bound Upper-bound

FR-IOE 0.929 0.018 0.894 0.964
FMV-IOE 0.930 0.018 0.895 0.965
IV-IOE 0.926 0.018 0.891 0.961
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0.925, respectively) had a better degree of fit with the training database, while IV_IOE 
with AUROC value (0.918) was lower than it models. Therefore, based on the acquired 
results, IV_IOE model in both training and validation phases has the lower that it mod-
els. On the other hand, FMV_IOE , FR_IOE were rather similar, but the FMV_IOE was 
more efficient in the process of modelling using the dataset for training. Therefore, the 
FMV_IOE can be utilized as a propitious technique to develop the study region’s landslide 
susceptibility map.

Statistical indexes were used to perform the additional training and validation of the 
datasets for the three models (Tables 8 and 9).

The landslides techniques performance employing statistical index-based training data-
set is exhibited in Table 8. Here, the FMV_IOE method manifests the highest performance 
for the landslides pixels’ classification ( sensitivity = 96.2% ), followed by the FR_IOE 
method ( sensitivity = 94.2% ), and the IV_IOE method ( sensitivity = 90.4% ). The classi-
fication of non-landslide pixels was shown by the highest performance of the FMV_IOE 
method ( specificity = 90.4% ), followed by the FR_IOE method ( specificity = 88.5% ), 
and the IV_IOE method ( specificity = 86.5% ). The highest accuracy is of FMV_IOE 
method with 93.3% value, followed by the FR_IOE method (91.3%), and the IV_IOE 
method (88.5%). The landslides techniques validation making use of statistical indexes 
based dataset for validation is represented in Table  9. The highest performance is of 
FMV_IOE method for the landslide pixels’ classification ( sensitivity = 95.7% ), followed 

Table 7   AUROC analysis for 
the ensemble methods with the 
validation dataset

Methods AUROC SE Asymptotic 95% confidence 
interval

Lower-bound Upper-bound

FR-IOE 0.925 0.018 0.890 0.960
FMV-IOE 0.927 0.018 0.892 0.962
IV-IOE 0.918 0.019 0.882 0.955

Fig. 9   a ROC curve and AUROCs of the training dataset and b ROC curve and AUROCs of the validation 
dataset
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by the methods such as FR_IOE method ( sensitivity = 91.3% ), and IV_IOE method 
( sensitivity = 87% ). For the non-landslides pixels’ classification, the better performance 
is of the FMV_IOE method ( specificity = 87% ), followed by the other two methods such 
as FR_IOE method ( specificity = 87% ), and the IV_IOE method ( specificity = 82.6% ). 
The FMV_IOE method showed better performance with the maximum value of 91.3%, fol-
lowed by the methods that are FR_IOE method (89.1%), and the IV_IOE method (84.8%). 
As a whole, all the three landslide ensemble techniques are appropriate for LSM in the 
ACB, and out of all the FMV_IOE technique shows the most stable and best performance 
in the ACB.

5 � Discussion

The LSMs is generally considered the first stage in dealing with landslide hazard mitigation. 
Hence, the preparation of a high-precision LSM can be useful in the field of hazard man-
agement. Hitherto, several approaches have been developed for LSMs to obtain the best 
method for a given area. Therefore, it is necessary to investigate novel techniques for LSA 
(Abedi Gheshlaghi and Feizizadeh 2017). In comparison with conventional approaches, i.e. 
FMV, FR, IV, and IOE methods which are familiar in solving many real-world problems, 
recently, researchers around the world have designed various models utilizing integrated tech-
niques to various scientific topics (Abedi Gheshlaghi and Valizadeh Kamran 2018; Ferrari 
et al. 2018; Hong and Lee 2019; Wagner and Fohrer 2019; Abedi Gheshlaghi et al. 2020a, 

Table 8   The performance of 
techniques using the training 
dataset

Evaluation parameters Methods

FMV-IOE FR-IOE IV-IOE

True-positive 50 49 47
True-negative 47 46 45
False-positive 5 6 7
False-negative 2 3 5
Sensitivity (%) 96.2 94.2 90.4
Specificity (%) 90.4 88.5 86.5
Accuracy (%) 93.3 91.3 88.5

Table 9   Methods performance 
using the validation dataset

Evaluation parameters Methods

FMV-IOE FR-IOE IV-IOE

True-positive 22 21 20
True-negative 20 20 19
False-positive 3 3 4
False-negative 1 2 3
Sensitivity (%) 95.7 91.3 87.0
Specificity (%) 87.0 87.0 82.6
Accuracy (%) 91.3 89.1 84.8
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b; Feizizadeh et al. 2020). Ensemble models are showing promising and premier techniques 
to solve complex problems. Our study performs a comparison to evaluate the performances 
of some ensemble models (FMV_IOE, FR_IOE, and IV_IOE) in identifying landslide‐prone 
areas. The most important contribution of the present study is the simultaneous use of fuzzy 
system and bivariate statistics, and the integration of their results along for LSA.

Because of the limitations of each zoning approach, the models were combined and inte-
grated to improve their performance. Among the individual techniques, the FMV method had 
a higher predictive accuracy than the rest of the individual techniques, as already pointed out 
by previous studies (Sahana and Sajjad 2017; Ozdemir 2020). The combination of the indi-
vidual techniques increased their accuracy, which was also associated with previous research 
(Nguyen et al. 2019; Chen and Li 2020; Pham et al. 2020). Among the ensemble models, the 
combination of fuzzy system and bivariate statistics approaches was more efficient than the 
rest of the technique combinations, which was in associated with previous studies (Hong et al. 
2017).

An important and fundamental step in any LSM process is identifying the most significant 
factors in landslide assessment (Abedi Gheshlaghi and Feizizadeh 2017). To achieve this aim, 
we selected 14 conditioning factors (altitude, slope aspect, slope degree, lithology, distance 
to fault, curvature, land use, distance to river, TPI, TWI, SPI, NDVI, distance to road, and 
rainfall) for modelling. To test the contribution of these influencing parameters to the landslide 
methods, the IOE technique has been employed. The IOE technique is efficient to show high 
predictive proficiency parameters. Of these 14 factors, altitude and lithology contributed most 
to the models, whereas curvature and TPI contributed least. These results are in line with other 
previous works and studies (Ercanoglu and Temiz 2011; Du et al. 2017), especially things that 
are done in Iranian environments (Devkota et al. 2013; Jaafari et al. 2014).

The prediction power of the best-integrated methods was graphically determined to 
make use of the ROC curve (Fig.  9) and statistical measures (Tables  8 and 9). The maxi-
mum AUROC and statistical measures values among the integrated methods were acquired 
by the FMV-IOE (AUROC = 0.927, sensitivity = 95.7%, specificity = 87%, accuracy = 91.3%). 
Although in all three maps, the landslides are not present in the level of very low suscepti-
bility, the findings exhibited more values (19.78) of LD in the very high and high levels of 
the FMV_IOE map, while they are less in the FR_IOE (19.35) and IV_IOE (17.98) maps 
(Table 5). This indicates that the FMV_IOE ensemble model showed best performance than 
the mentioned two models.

In general, all three landslide ensemble methods have given best performance for LSM, but 
the FMV_IOE model has given the comparatively excellent performance. To emphasize the 
relevance of the results obtained in the present study, it is important to note that in the litera-
ture dealing with LSA, a small number of analyses report AUROC values higher than 0.9 (e.g. 
Abedini et al. 2018; Pham et al. 2019).

The ensemble models proposed here successfully improved the accuracy of LSM by 20% 
compared to previous studies that used individual techniques for the study area (Rajabi et al. 
2016). Therefore, this study constitutes a step forward in the field of accurate prediction of 
natural hazards by suggesting that ensemble models.



2009Natural Hazards (2021) 107:1981–2014	

1 3

6 � Conclusions

To alleviate the devastating impacts of landslides, modelling, and creating precise LSMs is 
essential. The techniques suggested in this research are three hybrid intelligent approaches 
( FMV_IOE , FR_IOE , and IV_IOE ) for the mapping of landslide susceptibility. The ACB, 
East Azerbaijan province of Iran, was the case study for which the techniques were utilized. 
It was developed employing 52 (training data) and validated with 23 (validation data) loca-
tions of landslide and fourteen parameters, which includes altitude, curvature, slope aspect, 
slope degree, lithology, NDVI, land use, distance to faults, distance to rivers, distance to 
roads, SPI, TWI, TPI, and rainfall. Investigation of the spatial impact of every parameter 
on the occurrence of landslide showed the altitude, lithology, slope degree, and NDVI as 
the most effective factors.

The comparison indicated that though all three methods were applicable for landslide 
modelling, the FMV_IOE method generated higher accuracy of prediction. Therefore, the 
FMV_IOE can be used as a propitious method to create the landslide susceptibility map in 
the ACB. We propose that this evolutionary approach ( FMV_IOE ) can be employed for 
other areas with homogeneous (similar) conditioning factors. The generated susceptibility 
maps can assist the governments, planners, and managers to offer a better way for the man-
agement of slope and planning of land use in order to manage the hazard associated risks 
and mitigate further damage.

As the final conclusion, integrated models are suggested for landslide mapping because 
of their more stable results, higher prediction accuracy, and more generalization ability. 
Nevertheless, there is limited literature on the utilization of integrated approaches in land-
slide mapping, and thus, the development of other integrated frameworks is strongly rec-
ommended. The proposed approach is a promising tool that can be applied in other types of 
natural hazard modelling such as wildfire, gully erosion, land subsidence, and flood. From 
this, it is apparent that a more accurate susceptibility map can decrease the damage and 
cost from natural hazards.
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