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Abstract
Landslides are one of the most destructive geological disasters and have been caused many 
casualties and economic losses every year in the world. The reservoir area formed by 
the world’s largest hydropower project, Three Gorges Hydropower project of China, has 
become a natural testing ground for landslide prediction in the hope of reducing losses. 
In this paper, a new algorithm with strong optimization ability, the water cycle algorithm 
(WCA), is combined with the extreme learning machine (ELM) to improve the prediction 
accuracy of step-wise landslide. The gray relational grade analysis method was adopted 
to determine the main influencing factors of the landslide’s periodic displacement. Then, 
the determined factors were used as the input items of the proposed WCA-ELM model, 
and the corresponding periodic displacement was used as the model output item. Taking 
the Liujiabao landslide in the Three Gorges Reservoir area as a case history, the proposed 
model was verified through a comparison with the measurements. The results showed that 
the model has a faster convergence rate and higher prediction accuracy than the traditional 
back-propagation neural network model and ELM-model. The water cycle algorithm is 
suitable for optimizing the accuracy of the extreme learning machine model in landslide 
prediction.
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1 Introduction

Landslide is one of the natural disasters in the world (Zhang et al. 2019a, b; Friele et al. 
2020; Gao et al. 2020; Hu et al. 2020; Bar et al. 2020; Shaunik and Singh 2020; Obregon 
and Mitri 2019; Taoet al. 2020; Zha et al. 2017; Zhang et al. 2017), and it causes countless 
casualties and economic losses every year (Zhang et al. 2020b, c). It is well known that the 
bank slope of the reservoir is more prone to landslides due to the change of the original 
hydrogeological environment in the region caused by water storage in the reservoir area 
(Huang et al. 2020). The stable rock and soil mass on the bank slope of the reservoir are 
softened and consolidated again by rising the water level, also affected by periodic water-
level fluctuation (Ma et  al. 2018a; Yu et  al. 2019), such as Baishuihe landslide and the 
Bazimen landslide in the TGRA (Delaney and Evans 2015). It may even lead to a series 
of multiple hazards such as barrier lake, dam breaks and floods (Fan et al. 2019; Wu et al. 
2020; Zhang et al. 2020f; He et al. 2020a, b; Qiu et al. 2019; Qiu et al. 2020a, b; Zou et al. 
2020; Mcquillan et al. 2020; Oggeri et al. 2019; Zhang et al. 2016; Mnzool et al. 2015; 
Basahel et al. 2019).

To minimize the losses caused by the landslides, an efficient and accurate early warning 
system is essential (Katsenis et al. 2020; Krkač et al. 2016; Yao et al. 2015). At present, 
researchers have mainly used physical models and data-driven models to predict the land-
slides (Huang et al. 2017; Zhang et al. 2020a). However, due to the large uncertainty in 
the physical properties of the landslide itself (Ma et al. 2018a, b) and the differences and 
uncertainties in the internal mechanism of the landslide (He et al. 2018; Xie et al. 2019), 
the physical model seems to be able to provide a reasonable theoretical explanation, but 
its application is actually limited. In addition, the landslide prediction test based on the 
physical model is very complicated and expensive (Thiebes et al. 2013; Zou et al. 2020). 
The data-driven model is based on powerful computing power and combined with machine 
learning methods, which makes it more efficient and easier to operate than physical models 
(Hegde and Rokseth 2020; Zhou et al. 2018).

In recent years, machine learning methods have been widely used to solve the engi-
neering safety problems in various fields (Bao et al. 2019; Butcher et al. 2014; Hegde and 
Rokseth 2020; Zhang and Yang 2020; Temeng et al. 2020; Zakaria 2016; Wijesinghe and 
You 2016), and as one of the important methods of the data-driven model, it has been 
widely and successfully used in the landslide displacement prediction t (Guo et al. 2019; 
Luo et al. 2020). Generally, in the machine learning methods, the landslide displacement is 
decomposed into several components, including trend and periodic components (Du et al. 
2012; Yang et al. 2019). The trend displacement presents a stable linear change. Therefore, 
most researchers use polynomial function to predict, and the results are relatively accu-
rate. However, as the periodic displacement is caused by unstable factors, its fluctuation 
is large and the prediction is not accurate; thus, a more diversified prediction method is 
formed (Cao et al. 2015; Yang et al. 2019), such as BPNN (Du et al. 2012), artificial neural 
network (ANN) (Moayedi et al. 2019), recursive neural network (RNN) (Lian et al. 2015), 
long-short-term memory neural network (LSTM) (Yang et  al. 2019), and least-squares 
support vector machine (LSSVM) (Lian et al. 2015). However, the BPNN model has the 
deficiency of slow convergence speed and easy to fall into the local minimum. The RNN 
does not capture long-term correlations in input sequences very well (Yang et al. 2019); 
the LSTM weights parameters slowly and time-consuming and so on. To make up for the 
shortcomings of the above methods, Lian et  al. (2013) optimized the model of extreme 
learning machine (ELM) and achieved a good performance. In fact, the ELM algorithm 
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itself is famous for its nonlinear mapping ability and fault-tolerant ability, and it is also 
suitable for simulating the complex nonlinear relationship between the periodic displace-
ment of landslide and influencing factors. The key is the optimization strategy of parameter 
weight.

The water cycle algorithm (WCA) based on the principle of natural water cycle is 
just such a new optimization algorithm, which has the characteristics of strong optimiza-
tion ability, strong robustness and fast convergence speed. Therefore, WCA is adopted to 
replace the original calculation method of parameter weight of hidden layer in ELM to 
improve the prediction accuracy in this paper. The influencing factors of the input layer 
of the model were screened out by WCA-ELM model, and the prediction accuracy of the 
proposed WCA-ELM model is company of the gray relational grade (GRG) analysis (Yang 
et al. 2019) which were closely related to the periodic displacement of the landslide.

The corresponding periodic displacement of the influencing factors in the measured data 
of Liujiabao landslide from January to December 2013 was used as the learning dataset 
of the model input and output, after the prediction and accuracy analysis of the proposed 
WCA-ELM with that of the traditional BPNN and ELM models under the same dataset.

2  Introduction of ELM and WCA 

2.1  ELM

The ELM was proposed by (Huang et al. 2006; Qiao et al. 2021; Zhang et al. 2021) on the 
basis of a single hidden layer feedforward neural network, including the input layer, hid-
den layer, and output layer, the structure of which can be seen in Fig. 1. External data are 
provided as an input to the network, and the hidden layer and output layer are composed of 
multiple neurons. Each layer is connected by a weight system, and the connection weights 
of the input layer and the hidden layer and the neuron deviation of the hidden layer are ran-
domly set. For a detailed introduction to ELM, please refer to the following article (Huang 
et al. 2006, 2016; Lian et al. 2014; Tan et al. 2019; Zhang et al. 2020a).

Fig. 1  The structure of ELM
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The prediction process using the extreme learning machine algorithm includes the fol-
lowing steps: (1) determine the number of neurons in the hidden layer, the weight of the 
connection between the input layer and the hidden layer, and the offsets of neurons in the 
hidden layer; (2) calculate the output matrix H of the hidden layer by selecting an infinitely 
differentiable function as the activation function of the hidden layer neurons; (3) learn and 
get the weight matrix β of the output layer, and then the prediction is carried out (Tan et al. 
2019).

2.2  WCA 

The WCA is a new type of intelligence proposed by Hadi Eskandar et al. (Eskandar et al. 
2012), which has been successfully used in the field of function optimization, mechanical, 
electric power, and civil engineering optimization because of its good random searchabil-
ity, robustness, and optimization ability. It is inspired by the natural water cycle phenom-
enon in which water evaporates from the sea and forms rain, which forms streams, rivers, 
streams, and rivers flowing to the sea. Therefore, the specific process of the WCA is some-
what similar to the water cycle as follows (Eskandar et al. 2012; Sadollah et al. 2014; El-
Fergany and Hasanien 2019), as Zhang introduced in Sect. 2 (Zhang et al. 2020d).

3  Proposed predictive model

3.1  Framework system

As shown in Fig.  2, a framework system for predicting the total accumulative displace-
ment of the landslide was proposed, and formula 1′–11′ in the figure corresponds to 1–11 
in Zhang et  al. (2020d). This model uses most of the landslide observation data for big 

Fig. 2  The framework system for predicting the total accumulative displacement of the landslide



1713Natural Hazards (2021) 107:1709–1729 

1 3

data matching and training. The training process includes trend term displacement, data 
processing, and periodic term WCA-ELM model. Finally, the remaining large amount of 
observation data is used for model verification. In the following sections, the creation pro-
cess of the proposed predictive model is presented in detail.

4  Partition of the displacement time series

Displacement time series divides displacement into trend term and periodic term to estab-
lish the displacement prediction model (Du et al. 2012; Yang et al. 2019). The development 
of landslides is affected by many factors (Xu et al. 2018; Guo et al. 2019), which can be 
divided into two categories, trending factors and periodic factors. The trend term factors 
will cause the landslide displacement to increase monotonously with time. These factors 
include structural state, geological conditions, stress state, and so on. It is worth noting that 
the growth of the landslide displacement caused by the long-term creep, degradation, and 
weathering was not considered in this model. The periodic factors make the displacement 
of landslide change periodically with time, such as the change of water level and seasonal 
rainfall. Therefore, the cumulative displacement of the given time series in this article was 
equal to the sum of the two parts, which is expressed as follows:

where t denotes time; S(t) denotes the accumulated displacement, μ(t) denotes the trend 
displacement, and σ(t) denotes the periodic displacement.

5  Proposed model for landslide displacement prediction

The displacement of the trend items is constrained by many factors, showing a monotonous 
increase trend. Therefore, the polynomial function is very convenient and efficient to simu-
late the displacement growth curve of the trend term. In this paper, a polynomial function 
was selected to predict the displacement of the trend term by fitting the curve shape of the 
observed data. For detailed prediction methods, refer to chapter 4.3.

The influencing factors of the displacement of the period term include reservoir water 
level, rainfall, slope state. In this paper, through the combination of extensive ELM and 
WCA, the rainfall factor, reservoir water level change factor, and landslide evolution state 
factor selected by the gray relational grade (GRG) analysis method were used as the model 
input layer (Tan et al. 2017; Yang et al. 2019). The landslide periodic displacement was 
used as the model output layer. The network error was reversely calculated to solve the 
model weights, and WCA-ELM model was constructed. The WCA determines the ELM 
optimal connection weight realization steps:

(1) The model includes the input layer, hidden layer, and output layer. Rainfall factor, reser-
voir water level change factor, landslide evolution state factor as input; output landslide 
periodic displacement; the number of hidden layer nodes is determined according to 
empirical formula (Du et al. 2012).

(2) Set the control parameters of the water cycle algorithm: the total number of raindrop 
layers m; the number of rivers Nriver; minimum dmax; maximum number of iterations 
kmax.

(1)S(t) = �(t) + �(t)
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(3) m raindrop layers are randomly formed, and the position of each raindrop layer is  
X i = [xi,1, xi,2, …, xi,N] represents all the weights in the model. According to each group 
of weights and the forward calculation of ELM, the input samples of q group rainfall, 
reservoir water level change, and landslide evolution state are trained, and the periodic 
displacement output value of q group model is obtained, and then the cost function of 
each raindrop layer can be expressed as formula 12′,

  where yk is the actual osmotic pressure, ŷk is the model calculated osmotic pressure, 
and q is the number of training samples.

(4) Choose the raindrop layer with the smallest cost function as the sea, and Nriver smaller 
ones as the river. The number of streams flowing to the specified river and sea is deter-
mined according to formula (4′).

(5) In the confluence stage, the location of streams and rivers is changed according to for-
mula (5′) ~ (7′). According to the new weights, train input samples of q group rainfall, 
reservoir water level changes, and landslide evolution status to obtain q group. The 
network output value is ŷk , and the cost functions corresponding to streams and rivers 
are calculated according to formula (12′). If the cost function of a stream is less than 
the cost function of a river, the position of the stream and the river is interchanged; if 
the cost function of the river is less than the cost function of the ocean, the position of 
the river and the ocean is interchanged.

(6) Formula 10′ is the criterion for determining whether to enter the evaporation stage. If 
it is not satisfied, then directly go to step (7′). If the conditions are met, it will enter 
the rainfall process, refer to 2.2.3 for the rainfall process, and finally calculate dj+1max by 
formula (9).

(7) When the maximum number of iterations or the minimum error is reached, the calcula-
tion ends; otherwise, return to step (5) to continue the calculation. The final sea position 
Xsea = [x1, x2, …, xN] is the weight of the extreme learning machine.

(8) Based on the final weights, the model calculates the predicted samples to predict the 
periodic displacement of the landslide.

The model prediction effect was tested by the root-mean-square error (RMSE) and mean 
absolute percentage error (MAPE) (Eqs. 2 and 3) (Zhang et al. 2020e).

where xi represents the measured accumulative displacement of landslide; yi represents the 
final predictive accumulative displacement of landslide; N represents the number of pre-
dicted values.

(2)RMSE =

√√√
√ 1

N
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)2
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6  Application of the proposed method

6.1  Liujiabao landslide

The Liujiabao landslide is in Chongqing, China, on the right bank of the Yangtze River. 
The landslide has a longitude of 109°45′0″ and a latitude of 31°01′22″. The landslide has a 
nearly “tongue-shaped” shape. The front edge of the landslide directly reaches the Yangtze 
River. The trailing edge elevation of the landslide is 445 m, the leading edge elevation is 
90 m, the relative elevation difference is 335 m, and the overall slope is 30°. The landslide 
is about 1000  m long from north to south, 60–1300  m wide from east to west, with an 
average thickness of 50 m, an area of about 930,000  m2, and a volume of 46.55 million  m3 
(Fig. 3a).

As shown in Fig. 3b, the profile of the landslide is "straight," with an average slope of 
about 35°, and the overall slope of the landslide is stepped. The material of the sliding 
body is mainly fragmentized mudstone and mudstone accumulation layer, the surface layer 
is mostly loose soil layer, and the foot of the steep slope is a mostly big rock. The volumet-
ric ratio of soil to rock in the gravel soil is 6:4. The slip zone is the contact zone between 
the accumulation body and the bedrock, which contains silty clay and contains a small 
amount of gravel. The sliding bed is the argillaceous limestone with an occurrence of strike 
330 330° and dip∠15°.

The Liujiabao landslide was ancient, and there had been many small landslides in his-
tory. The signs of landslide deformation had not been obvious since the 1990s. After the 
storage of the Three Gorges Reservoir reaches 135 m, the signs of deformation were not 
obvious. Professional monitoring results since 2007 indicate that the current deformation 
of the landslide body is in a state of constant creep deformation.

To avoid the occurrence of landslide disasters, since January 2007, nine GPS sensors 
were placed on the Liujiabao landslide to closely monitor its deformation process. The sen-
sor position and elevation are shown in Fig. 3a, b.

Figure 4 contains the data of precipitation, reservoir water level, and GPS displacement 
between January 2007 and September 2013. The slope displacement shows a step char-
acteristic with time. During the flood season between May and July of each year, the sur-
face displacement suddenly increases and gradually stabilizes in the following time. The 

Fig. 3  The topographic map of landslide (a: plan of the landslide; b: sectional view of the landslide)
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deformation of the slope body near the river is more obvious, and relatively large vertical 
deformation was noticed at GPS-1, GPS-4, and GPS-7. Especially when the water level 
drops, the slope surface displacement increases significantly. When the water level rises or 
is relatively high, the displacement increases slowly.

7  Displacement decomposition

The observation points GPS-1 and GPS-4 obtained relatively large deformations in the 
study area, so the displacement data of these two observation points were selected to estab-
lish a prediction model. The displacement measurement data of GPS-1 and GPS-4 are 
decomposed into two parts of the period and trend (Fig. 5). During the establishment of 
the model, the observation data obtained from observation point GPS-1 and GPS-4 of the 
Liujiabao landslide during the period from January 2008 to December 2012 were selected 
as train dataset; and the data monitored from January 2013 to December 2013 were used 
for testing the predictive model (Fig. 6a).

Considering that the cumulative displacement contains trend and period terms, the 
moving average method can be used to extract the trend terms (Miao et  al. 2017). The 
water level of the reservoir in the TGRA is between 145 and 175 m, so the moving average 
period was set at 12 months (Yang et al. 2019). The original displacement time formula is 
S(t) = {s1, s2, s3, …, st, …, sn}, and the displacement formula of the trend term is as follows:

(4)�(t) =
st + st−1 +⋯ st−n+1

k
, (t = k, k + 1, k + 2,⋯ , n)

Fig. 4  Relationship of accumulative displacement, reservoir level, and precipitation with time in the Liuji-
abao landslide
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where �(t) represents the displacement of the trend term at time t; St represents the accu-
mulative displacement at time t; n represents the number of time notes monitored accumu-
lative displacement; k represents the moving average cycle (set as 12).

The periodic term of the measured displacement σ(t) is gained by subtracting the 
obtained trend term from the accumulative displacement.

where t denotes time; S(t) denotes the accumulated displacement, μ(t) denotes the trend 
displacement, and σ(t) denotes the periodic displacement.

8  Predictive method for trend term of displacement

Liujiabao landslide GPS-1 and GPS-4 observation points trend term displacement 
could be divided into two parts. Equation 6 was used for the least squares fitting and 
cubic polynomial fitting. The results of the fitting calculation are shown in Table  1. 
The comparison between the fitting results and the measured curve is shown in Fig. 6a.

where φ(t) is the trend displacement at the time t and t is time; a, b, c, and d are the coef-
ficients, where a cannot be zero.

(5)�(t) = S(t) − �(t)

(6)�(t) = at3 + bt2 + ct + d

Fig. 5  Usage distribution of trend displacement and periodic displacement of GPS-1 and GPS-4 in the pre-
diction process
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9  Periodic displacement prediction

9.1  Main controlling factors

In the WCA-ELM model, the triggers for the displacement of these periodic terms were 
used as the input sequence, and the output sequence was the periodic displacement. Peri-
odic displacement was mainly affected by external trigger factors, so appropriate external 
trigger factors should be selected for model training.

Rainfall is one of the triggering factors of landslides, and its influence on landslide 
deformation has been extensively studied (Du et al. 2012; Xiong et al. 2019; Zhang et al. 
2019; Koner and Chakravarty 2016). According to the actual monitoring results, it can be 
proved that the condition of Liujiabao landslide was affected by rainfall. During the rainy 
season, GPS-1 and GPS-4 experienced a significant increase in displacement (Fig. 7).

In addition to precipitation, periodic changes in the reservoir water level due to pre-
cipitation or human factors are a trigger for landslides in the reservoir area (Du et  al. 

Table 1  Fitted results of trend displacement

Landslide Monitoring points Period a b c d R2

Liujiabao landslide GPS-4 Jan 2008 to May 
2010

0.0057 0.2243 7.8676 62.963 0.9983

May 2010 to Jul 
2013

– 0.0004 0.06 2.5905 126.14 0.9999

GPS-1 Jan 2008 to Dec 
2013

0.0002 0.0073 4.6666 34.759 0.9998

Fig. 7  Relationship between precipitation in late 1 and 2 months, reservoir water change in 1-month period, 
and the measured periodic displacement of GPS-1 and GPS-4
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2012; Ma et  al. 2018b; Yang et  al. 2019). The drop in the reservoir water level will 
cause a greater rate of deformation of the landslide. It can be seen from the monitoring 
data that when the water level of the reservoir drops, the deformation rate of the land-
slide increases (Fig. 7).

In addition to the influence of external factors, the development of landslides will 
exhibit different characteristics at different times. In a stable situation, the landslide can 
remain stable even if it receives a large downward force. However, when the landslide is 
in an unstable stage, the weaker external force may lead to the instability of the landslide 
(Cao et al. 2015). Therefore, it was necessary to consider the current evolution of the land-
slide in the model. The input values of periodic displacement analysis are shown in Fig. 8.

GRG is used to analyze the correlation between periodic displacements and exter-
nal triggering factors and landslide evolution status. When the value of GRG is greater 
than 0.8, it can be considered to have a high correlation (Lian et al. 2013). GRG value 
between the displacement of the periodic term and the input term in this model is shown 
in Fig. 8. It can be found that the GRG value is greater than 0.8, so the displacement of 
the input term and the periodic term has a strong correlation.

Fig. 8  The GRG of input items between inducing factors and periodic displacement
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9.2  Model training

The data used to build the model were divided into two parts according to the role: data 
used for model training and data used for model verification. Determine the proportion 
of the two parts of data according to the quality and quantity of the two parts of data. 
For example, in this paper, the total number of raindrop layers in the model is m = 60, the 
number of rivers Nriver = 4, the minimum value d

max
 = 0.001, and the maximum number 

of iterations kmax = 1000. Because the transfer function of the model is the Sigmoid func-
tion, the value range of this function is [0, 1], so the original data are normalized. The 
periodic displacement and key control factors of the landslide are normalized to [− 1, 1], 
72 sets of training samples are put into the water circulation neural network model, and 
the training is carried out according to the model realization steps in Sect. 3, and the final 
weight of the model is obtained. The WCA-ELM model is implemented in Python through 
the Keras software package and uses TensorFlow as the backend. At the same time, the 
key control factors determined by GRG are input to the WCA-ELM model as an input 
sequence. During the WCA-ELM model training, the weight of the input sequence is not 
fixed. The WCA-ELM continuously updates the weights to determine the most appropriate 
input sequence weights.

The grid search method was used to obtain the appropriate WCA-ELM parameters. Var-
ious parameters were combined and used in the model during the search process. After all 
the combined calculations were completed, the model automatically feeds back the optimal 
parameter combinations. The length of the input sequence determined the number of his-
torical data nodes. Therefore, it was very important to select the appropriate input sequence 
length through the grid search method, and the final length was 12. Figure 6a shows that 
the novel displacement prediction model can accurately predict the measured periodic dis-
placement of the landslide.

For comparison, the ELM model and BPNN models were also applied to predict the 
periodic displacement of the Liujiabao landslide. Results verified the fine predictive ability 
of the used model.

9.3  The prediction of periodic term displacement

Figure 6b, c and Tables 2 and 3 show the comparison between the WCA-ELM, ELM, and 
BPNN model predicted periodic displacements and monitoring data at the GPS-1 and 
GPS-4 observation points of the Liujiabao landslide. For GPS-1, the RMSE and MAPE 
values of WCA-ELM were 1.54 mm and 5.71%, respectively, while the RMSE and MAPE 
of ELM were 2.5 mm and 9.13%, respectively, and at the same time the values of RMSE 
and MAPE of BPNN were 3.14 mm and 10.96%. The displacement predicted by WCA-
ELM was more in line with the actual value than the displacement predicted by BPNN 
and ELM. The forecast curve of WCA-ELM was the same as the trend of the measurement 
curve, and the predicted value was very close to the true value. Especially in the peak area 
of September 2013, the prediction effect of WCA-ELM was significantly better than the 
BPNN model, the absolute error of WCA-ELM was 1.6 mm, and BPNN was 3.8 mm; dur-
ing the period from February to March when the ELM model fluctuated greatly, the rela-
tive errors were 6.1% and 11.03%. WCA-ELM also showed satisfactory prediction results, 
with relative errors of 6.28% and 7.23%. And in the overall prediction period, WCA-ELM 
had the smallest absolute error and relative error among the three prediction models, the 
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maximum absolute error was 1.9 mm, the maximum relative error was 10.61%; BPNN had 
the largest absolute error and relative error. Besides, during the landslide warning period 
(May–July), the reservoir water level decreased and the displacement began to increase. At 
this time, the predicted value of WCA-ELM was more accurate than ELM and more accu-
rately reflected the relationship between influencing factors and displacement.

The prediction accuracy of WCA-ELM is more obvious on GPS-4. The values of RMSE 
and MAPE for WCA-ELM of GPS-4 were 1.10 mm and 4.98%, respectively, while the val-
ues of RMSE and MAPE of ELM were 2.05 mm, respectively, and 9.08%; meanwhile, the 
RMSE and MAPE values of BPNN were 4.12 mm and 15.06%. The BPNN model had a 
large relative error in March, May, July, and November. The relative error exceeds 20% and 
reached a maximum value of 51.75% in November. At the same time, the entire prediction 
curve showed an obvious fluctuation. The predictive trend of the WCA-ELM model and 
the ELM model was the same, but the WCA-ELM had a better forecasting effect between 
February and July when the volatility of ELM was large. The forecasting trends of the 
WCA-ELM model and the ELM model were the same, but the relative errors of WCA-
ELM from February to July were smaller than that of ELM, which means that WCA-ELM 
has better between February and July with greater fluctuations in ELM predictive effect. It 
is worth mentioning that, at the minimum (June) and maximum (September) displacements 
of the periodic term, although the absolute error of BPNN at June was only 0.1 mm, con-
sidering the large fluctuations in the surrounding time, this paper believes that the degree 
of dispersion was large, so the prediction result of WCA-ELM was closer to the actual 
measured value.

10  The prediction of the accumulative displacement

The cumulative displacement prediction results are shown in Fig. 9. The accumulative dis-
placement is the sum of the trend term displacement and the period term displacement. 
Figure 9 illustrates the comparison between the predicted values of the WCA-ELM model 
of the observation points GPS-1 and GPS-4 and the accumulative displacement of in situ 
monitoring. This model has high prediction accuracy. 

11  Discussion

Based on the above analyses, the WCA-ELM model has more accurate prediction capabili-
ties and higher convergence speed than the ELM and the BPNN in the prediction of TGRA 
landslide displacement. In the WCA-ELM model, the weight of the ELM can be quickly 
analyzed based on GRG to find the optimal solution, which greatly improves the calcula-
tion speed.

The analyses of the Liujiabao landslide showed that the key factors affecting the dis-
placement of the periodic term were rainfall and reservoir water level changes. It should 
be noted that as the triggering factors change, the learning rules during the training process 
would also change. The WCA-ELM model recorded and fully considered these changes 
during the learning process.

In terms of the landslide displacement prediction, the WCA-ELM model yielded better 
prediction than the BP model and ELM model. However, the neural network algorithms 
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are based on a large amount of datum. It would be an interesting topic for increasing the 
prediction accuracy based on the limited datum in the future.

12  Conclusion

Many researchers have studied many neural network models to predict landslide displace-
ment. In order to improve the calculation speed of neural network weights, this paper built 
a new prediction model based on the WCA-ELM model.

Liujiabao landslide displacement prediction in the TGRA, the WCA-ELM model has 
a speed advantage in solving weights. By constructing the relationship between the land-
slide conditions at different times and the learning rules recorded in the previous time of 
deformation evolution, the WCA-ELM model can effectively use historical information; at 
the same time, the WCA determines the optimal connection weight and deviation of ELM, 
which improves the prediction accuracy of the model.

In the prediction of gradual landslide displacement, this paper compares WCA-ELM 
with ELM and BP models. WCA-ELM has a smaller relative error and absolute error in the 
prediction and has more stable prediction results in the period where the other two mod-
els have larger errors. During the landslide warning period, WCA-ELM more accurately 
reflected the relationship between influencing factors and displacement.

In summary, the WCA-ELM model based on time series analysis can accurately pre-
dict the displacement of landslides and has the advantage of calculation speed and has the 
potential to establish a landslide warning system for TGRA.
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