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Abstract
Establishing a soil liquefaction prediction model with high accuracy is a critical way to 
evaluate the quality of in situ and prevent the loss caused by seismic. In this paper, con-
sidering the advantage of cone penetration test (CPT) over standard penetration test (SPT) 
and the suitability for dealing with the nonlinear problems of the extreme learning machine 
(ELM), the ELM was tried to train the prediction model. Firstly, seven prediction param-
eters were analyzed and determined; then 226 CPT samples were divided into the training 
set and test set; then the parameter of ELM model was assured by comparing the training 
accuracy and speed of model when setting the number of the neuron of the hidden layer 
from 5 to 16 and the activation function as sig , sin , hardlim . Finally, the performance of the 
established ELM model was tested through the test set. The results showed the accuracy 
of using function sin was 81.43% and 87.50% for the training set and test set, respectively; 
at the same time, the operation was 1.5055 s which was not much different from other two 
functions. The prediction model based on CPT perform better than that of SPT and can 
obtain a highly accurate prediction of 100% for the liquefied case and overall accuracy of 
87.5%. ELM was proved to be feasible to be used and developed into the in situ evaluation.
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1  Introduction

Since the soil liquefaction was found to be the main cause of engineering failure and nat-
ural disaster, many researchers have been trying to predict and evaluate the liquefaction 
potential of one certain in situ in advance, so that the relevant loss can be relieved. The 
simplified procedure of comparing the cyclic shear ratio CSR with the cyclic resistance 
ratio CRR proposed by Seed and Idriss (1971) is a milestone of developing the prediction 
model of soil liquefaction. This procedure is always based on the in situ tests, which mainly 
consist of the cone penetration test (CPT) and standard penetration test (SPT). Compar-
ing to the SPT, a primary advantage of the CPT is the nearly continuous information pro-
vided along with the depth of the target stratum, and is also more consistent and repeat-
able (Kohestani et al. 2015), so many researchers have been proposing and developing the 
empirical prediction model based on the CPT data. Robertson and Wride (1998) described 
a new method to estimate grain characteristics directly from the CPT and to incorporate 
this into one of the methods for evaluating cyclic resistance. Olsen (1997) described the 
cone resistance-based and the CPT soil characterization chart-based techniques for esti-
mating liquefaction resistance. Juang et al. (2000) developed a mapping function between 
the factor of safety and the actual probability of liquefaction based on field case records; 
Juang et al. (2008) presented a piezocone penetration test (CPTu) method for evaluating 
soil liquefaction potential covering a more comprehensive range of soil types than previous 
approached and using the simplified stress-based procedure. Moss et al. (2006) presented a 
complete methodology for both probabilistic and deterministic assessment of seismic soil 
liquefaction triggering potential based on CPT. Idriss and Boulanger (2004) recommended 
revised CPT-based liquefaction correlations for use in practice based on these re-evalua-
tions of the CPT case history databases.

The models above are established by deriving empirical formulations for cyclic resist-
ance ratio (CRR) and cyclic shear ratio (CSR) based on massive historical data and in situ 
test data, including physical index such as cone tip resistance, overburden loading, water 
depth et al., they are unable to adequately learn and reflect the complexity of mesoscopic 
mechanism behind the soil liquefaction. As the development of the technology of com-
puter science and machine learning, they are gradually adopted into the actual engineering 
prediction, such as water inrush incident (Yonggang Zhang & Yang, 2020), displacement 
prediction of the landslide (Safa et al., 2020; Zhang et al. 2020a, b), underground mining 
(Zhao et al. 2020) and concrete technology (Shariati et al. 2020a, b; Shariati et al. 2020a, 
b). Besides, they are also tried to learn the relationship between soil liquefaction and influ-
encing factors. Samui (2007) proposed the use of the Relevance Vector Machine (RVM) 
to determine the liquefaction potential of soil by using actual cone penetration test (CPT) 
data. Goh and Goh (2007) trained the support vector machines (SVM) model and tested it 
on 226 field records of liquefaction performance and cone penetration test measurements. 
Sadoghi Yazdi et al. (2012) employed the Support Vector Data Description (SVDD) strat-
egy to ‘‘up sample’’ the minority data to overcome learning bias to the majority class in 
the prediction model. Xue and Yang (2013) developed an integrated fuzzy neural network 
model, called Adaptive Neuro-Fuzzy Inference System (ANFIS) which was revealed to be 
capable of representing the complicated relationship between seismic properties of soils 
and liquefaction potential. Muduli and Das (2015) developed an empirical model for deter-
mining the CRR using multigene genetic programming (MGGP) based on the post-lique-
faction CPT data. Kohestani et al. (2015) and Nejad et al. (2018) developed the random 
forest (RF) models on 226 and 415 field records, respectively, and indicated RF models 
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provided more accurate results by comparing with the available artificial neural network 
(ANN) and SVM models. Ahmad et al. (2019) investigated the performance of Bayesian 
belief network (BBN) and C4.5 decision tree (DT) models to evaluate soil liquefaction, 
showed that the BBN model was preferred over the other approaches for evaluation of seis-
mic soil liquefaction potential. Das et al. (2020) proposed and applied multi-objective fea-
ture selection algorithms (MOFS) to highly unbalanced databases of in situ tests including 
SPT, CPT, and Vs, to effectively select the optimal parameters and simultaneously mini-
mize the error.

To make the development of machining learning be better adopted in soil liquefac-
tion, and provide more choices of establishing prediction model, a new ANNs called ELM 
which is faster than traditional methods and suitable for predicting nonlinear problems was 
introduced to predict the soil liquefaction based on CPT. Firstly, seven prediction param-
eters based on the in situ CPT were analyzed and determined; then the 226 samples cited 
from Juang et al. (2003) were divided into the training set and test set; by comparing the 
training accuracy and speed of model when setting the number of the neuron of the hidden 
layer from 5 to 16 and the activation function as sig , sin , hardlim, the parameter of ELM 
model was assured. Finally, the performance of this ELM model was tested through the test 
set, and the cause of low overall accuracy was analyzed, its ability to predict the happening 
of soil liquefaction was also indicated.

2 � Determination of the training database

2.1 � The selection and analysis of parameters

According to the framework of the simplified procedure of evaluation of soil liquefaction 
(Seed and Idriss 1971), the CSR and CRR need to be calculated and compared. The CSR is 
generally obtained by using Eq. (1) in actual engineering.

where amax is the peak acceleration of surface, �v0 , �
′

v0
 is the total overburden stress and 

effective overburden stress, respectively; rd is the reduction index of shear stress, it is cal-
culated by Eq. (2);

where a(z) and �(z) are functions of depth z , the concrete expression can be checked in 
Idriss (1999), Mw is the seismic magnitude.

As for the cyclic resistance ratio CRR7.5 it can be estimated by using Eq. (3) proposed 
by Robertson and Wride (1998) and Robertson (2009).

(1)CSR = 0.65
amax
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�
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11.28
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where the 
(
qc1N

)
cs

 is the normalized penetration resistance of pure sand, it is related to the 
normalized penetration resistance qc1N in Eq. (4).

where the value of Kc is decided according to the value of Ic in Eq. (5), the qc1N is the nor-
malized penetration resistance which can be calculated in Eq. (6).

where Q , F is the modified tip resistance qc and sleeve friction fs.
So the selected parameters are Mw , �v0 , �

′

vo
 , amax , z , qc , f .

Another reason of choosing Mw is that the seismic magnitude generally represents the 
seismic energy, under the same condition, the higher value of Mw means the more energy 
input into the stratum, the liquefaction happens more easily; however, due to the different 
thickness of the soil layer and other reasons, the surface produces a different intensity of 
vibration for the different places within the same range of intensity, thus the seismic mag-
nitude Mw and the peak surface acceleration amax are required simultaneously. The total 
overburden stress �v0 and effective overburden stress �′

vo
 represent the total and effective 

vertical axial stress loaded on the target stratum, respectively; they can also indirectly rep-
resent the total and effective lateral axial stress if the lateral pressure coefficient is fixed; 
moreover, the corresponding effective overburden stress �′

vo
 includes not only the infor-

mation of the depth of underwater but also the contact force among grains. The qc , f  can 
reflect the relative density of the target stratum, besides they can also indirectly reflect the 
friction coefficient and the particle geometry. Thus, after the analysis above, it can be indi-
cated these selected macroscopic parameters contain the information of the mesoscopic 
property of the target stratum, so it is possible to dig out the inner relationship with devel-
oped computer technology.

2.2 � The introduction of CPT database

The database used in this paper was cited from the summary of 226 cases from Juang 
et al. (2003), this database collects CPT data from over 52 sites including 6 different earth-
quakes, the detailed information can be checked in the paper above. Part of the database is 
listed in Table 1. LI represents the index of liquefaction, 0 and 1 corresponds to the unhap-
pen and happens of the liquefaction. The f  is symbolized by the friction ratio Rf  in Eq. (7).

According to the study of Zhang and Gu (2005), there is a linear relationship between 
clay content FC and Rf  as Eq. (8), so the value of Rf  in the database can indirectly reflect 
the clay content.

(3)CRR7.5 =

⎧
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0.833
�
(qc1N)cs
1000

�3

+ 0.05
�
50 ≤

�
qc1N

�
cs
< 160

�

93
�
(qc1N)cs
1000

�3

+ 0.08
��
qc1N

�
cs
< 50

�

(4)
(
qc1N

)
cs
= Kcqc1N
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(7)Rf = f∕qc × 100%
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3 � The introduction of the ELM

The structure of the ELM is illustrated in Fig. 1, and its topological structure is similar to 
other networks, such as BP single hidden layer neural network and RBF neural network, 
it is a new kind of single hidden neural network. It is characterized by online simulation, 
dynamic calculation, and faster speed than traditional methods; ELM is suitable for all 
kinds of model calculation and can avoid common problems of local optimal and too many 
iterations without affecting the training speed. It had been used to predict the displacement 
of landslides (Huang et al. 2017), the prediction of the strength of concrete (Shariati et al. 
2020a, b), and the photovoltaic power output (Zhou et al. 2020).

During the adoption, the weight and the threshold values between input layer and neu-
ron will be randomly generated after the number of neurons is set; then, these values will 
be input into the feature space of ELM through the activation function; then real values are 
obtained by using the method of mathematics solving; finally, the trained network will be 
verified by the test set.

The scheme of establishing the relationship between the sand liquefaction determination 
result and relevant parameters is explained as follows:

(1)	 The liquefaction and non-liquefaction CPT samples 
(
xi, yi

)
 are divided into the train-

ing set and test set according to the optimist proportion ratio, the training set is used 
to calibrate the coefficients of prediction model while the test set is used to exam the 
performance of this model; xi and yi represent the input data and output data, respec-
tively.

(8)FC = 7.28Rf + 0.58

Table 1   Part of the CPT database 
(Hsein Juang et al. 2003)

Mw z(m) qc(Mpa) Rf (100%) �
′

vo
(kPa) �v0(kPa) amax(g) LI

6.4 6 2.6 3.3 103.5 116 0.5 1
6.4 13.7 12.9 3.5 215.2 267.2 0.5 0
6.4 13 6.6 5 181.5 253.5 0.5 0
7.3 12.7 6.2 0.6 118.5 235.5 0.13 0
7.3 3 1.4 1.3 35.9 55.9 0.13 1
6.6 4 2 2.8 56 76 0.8 1
6.6 4 4.9 2.5 56 76 0.8 1
6.6 5 6.9 2.3 45 95 0.2 0
6 6.5 5.8 2.1 73.5 123.5 0.1 0
6 3.2 3.3 0.8 43.4 59.9 0.1 0
6 4.5 3.5 0.9 55.1 84.6 0.1 0
7.1 3 4.7 0.6 51.5 58.5 0.24 0
7.1 6.6 7.7 0.9 85.7 128.7 0.24 0
7.6 3.5 1.4 2.7 53 69.7 0.19 0
7.6 6.5 1.1 2.6 68 125.3 0.19 1
7.6 14 1.2 2.6 151.1 271.6 0.19 0
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(2)	 Set the number of the neuron of the hidden layer as N , the potential activation function 
includes sig , sin , hardlim , then train the model. The specific formulation is expressed 
as follows;

where Oi is the output value, D represents the number of the neuron, mi and ni means 
the connection weights and thresholds between the ith neuron and the input layer 
nodes, respectively; �i is the weight vector between the ith neuron and the output 
layer.

(3)	 The value of �i is calculated by fitting the result of the model to the actual result of the 
training sample with zero error in Eq. (10)

where the ti is the actual result. By combining Eqs. (9) and (10), the matrix form of �i 
can be expressed in Eq. (11).

where H = g(mx + n) , T  is the matrix form of ti , H+ is the Moore–Penrose general-
ized inverse of the hidden layer output matrix H.

(9)Oi = yi =

D∑
i=1

�ig
(
xi
)
=

D∑
i=1

�ig
(
mxi + ni

)

(10)
D∑
i=1

‖‖Oi − ti
‖‖ = 0

(11)� = H+T =
(
HTH

)−1
HTT

Fig. 1   The structure of the extreme learning machine
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4 � The establishment of the prediction model

4.1 � The setting of model parameter

In the process of adopting the ELM into the liquefaction prediction based on CPT, the opti-
mist network topology can be obtained by trial and error method; the number of the neuron 
was tried to be determined by setting this number from 5 to 16 when the activation was 
fixed, the corresponding accuracy of the training set and test set is illustrated in Fig. 2a. It 
was shown the value of these two accuracies was 81.43% and 87.5%, respectively, which is 
the highest when the number of the neuron was 12.

Simultaneously, the variation of operation rate with the increase in the number of the 
neuron is shown in Fig. 3a, it changed from 1.50 to 1.52 s; it can be accepted this rate was 
not the fastest when this number was 12 considering the high accuracy; thus, this number 
was assured as 12. Besides, to verify the advantage of CPT over SPT, the ELM model 
established through the same procedure based on the SPT data is cited in Figs. 2 and 3. It 
can be seen the highest accuracy of the training set and test set of CPT model are all higher 
than that of SPT model, and the operation time of CPT model in Fig,3(a) is lower than that 
of SPT model in Fig. 3b. So the model of CPT performs better than that of SPT.

After that, the activation function was chosen from sig , sin , hardlim by comparing the 
accuracy and operation rate of them when the number of the neuron was 12; the results 
were listed and are indicated in Table 2, the function sig should be selected because of its 
highest accuracy and fastest rate. Finally, according to the number of parameters and lique-
faction index, the structure of the ELM model was decided as 7-12-1.

4.2 � The analysis of prediction result

The performance of the ELM model on the test set is illustrated in Fig. 4, among the 16 
samples, 14 samples were predicted correctly; the overall accuracy was 87.5% which was 
a decent result. To furtherly explain the advantage of ELM, the specific test result is listed 
in Table 3.

(a) CPT (b) SPT

Fig. 2   The accuracy of different number of the neuron
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It can be found that the accuracy of 7 liquefied cases was 100%, but that of 9 non-liquefied 
cases was 77.78%; thus the overall accuracy of 87.5% was due to the low accuracy of the non-
liquefied case, which can be explained as the low proportion of non-liquefied samples in CPT 
database. So the accuracy of the liquefied set can satisfy the request of the engineering.

(a) CPT (b) SPT

Fig. 3   The operation rate of different number of the neuron

Table 2   Accuracy of three 
activation function

sin sig hardlim

Training set (%) 62.85 81.43 63.81
Test set (%) 62.50 87.50 62.50
Operation rate (s) 1.5113 1.5055 1.5065

Fig. 4   The performance of the trained model
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5 � Conclusions

Considering the advantage of CPT over the SPT and the complexity of the mesoscopic 
mechanism of the soil liquefaction, the ELM was tried to train a prediction model based 
on 266 CPT samples. The ELM model based on CPT was established by choosing func-
tion sin and 12 neurons, in which the accuracy of using was 81.43% and 87.50% for the 
training set and test set, respectively; at the same time, the operation was 1.5055 s which 
was not much different from other two functions. It was indicated that the prediction 
model based on CPT perform better than that of SPT and can obtain a highly accurate 
prediction of 100% for the liquefied case and overall accuracy of 87.5% which can be 
promoted by adding more non-liquefied cases into the training set. ELM was proved to 
be feasible to be used and developed into the in situ evaluation.
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Table 3   Prediction of Liquefied test sample

NO Ms z(m) qc(Mpa) Rf (100%) �
′

vo
(kPa) �v0(kPa) amax(g) LI

Actual ELM

211 7.6 8 1.7 3.4 86 153.6 0.19 0 0
212 7.6 7.5 1.7 4.9 82.7 142.5 0.19 0 0
213 7.6 10.4 2.4 4 116.9 198.7 0.19 0 0
214 7.6 5.1 2.4 2.7 61.6 96.9 0.19 0 1
215 7.6 5 2.2 1.1 57.5 92.5 0.19 1 1
216 7.6 4.9 1.1 2.3 62.6 99.8 0.19 1 1
217 7.6 11.8 8.1 0.5 115.3 218.3 0.19 1 1
218 7.6 2.5 1.6 1 36.3 46.3 0.19 1 1
219 7.6 14 13.7 0.2 134 259 0.19 0 0
220 7.6 4.5 1.8 1.2 53.3 83.3 0.19 1 1
221 7.6 10.2 1.8 3 116.5 196.9 0.19 0 0
222 7.6 11.6 1.9 2 112.6 220.4 0.19 1 1
223 7.6 3.2 1.2 1.9 43.8 62.4 0.19 1 1
224 7.6 12.2 1.6 2.7 132.3 234.2 0.19 0 0
225 7.6 8 2.3 4 102.5 158.4 0.19 0 1
226 7.6 8.5 1.2 3.1 88.5 158.1 0.19 0 0
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