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Abstract
Two Artificial Intelligence (AI) methods, Fuzzy Inference System (FIS) and Artificial Neu-
ral Network (ANN), are applied to Landslide Susceptibility Mapping (LSM), to compare 
complementary aspects of the potentials of the two methods and to extract physical rela-
tionships from data. An index is proposed in order to rank and filter the FIS rules, selecting 
a certain number of readable rules for further interpretation of the physical relationships 
among variables. The area of study is Rolante river basin, southern Brazil. Eleven attrib-
utes are generated from a Digital Elevation Model (DEM), and landslide scars from an 
extreme rainfall event are used. Average accuracy and area under Receiver Operating Char-
acteristic curve (AUC) resulted, respectively, in 81.27% and 0.8886 for FIS, and 89.45% 
and 0.9409 for ANN. ANN provides a map with more amplitude of outputs and less area 
classified as high susceptibility. Among the 40 (10%) best-ranked FIS rules, 13 have high 
susceptibility output, while 27 have low; a cause is that low susceptibility areas are larger 
on the map. Slope is highly connected to susceptibility. Elevation, when high (plateau) or 
low (floodplain), inhibits high susceptibility. Six attributes show the same fuzzy set for the 
18 best-ranked rules, meaning this fuzzy set is common on the map. Overall findings point 
out that ANN is best suited for LSM map generation, but, based on them, using FIS is 
important to help researchers understand more about AI models for LSM and about land-
slide phenomenon.
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1 Introduction

Landslide is defined by Cruden (1991) as the movement of a mass of rock, earth or debris 
down a slope. Brazil has a history of these natural disasters causing death and property 
damage (Dourado et al. 2012; Guha-Sapir 2019).

Landslide susceptibility mapping (LSM) is the mapping of sites that are susceptible to 
landslides, which means to identify the areas subject to future landslides to prevent further 
loss of lives and properties. The objective of performing LSM differs from the one of other 
geomorphology research areas because, in this case, the analysis of observed distribution 
patterns, related to environmental conditions, is not of primary interest (Brenning 2005). 
Susceptibility maps show “where” landslides can be expected, they do not provide an esti-
mate of “when” they will occur (Neuhäuser and Terhorst 2007).

Within the vast number of possibilities for LSM, the role of machine learning (ML) 
(Murphy 2012) and artificial intelligence (AI) (Minsky 1961) models are highlighted. AI 
can be defined as a branch of computer science focused on creating machines to perform 
tasks that typically require humans. It includes but is not limited to logistic regression 
(LR), random forest (RF), Naïve Bayes (NB), adaptive-network-based fuzzy inference sys-
tem (ANFIS), fuzzy inference systems (FIS) and artificial neural networks (ANN). Previ-
ous studies on LSM area showed that AI methods usually outperform other methods (Xiao 
et al. 2019; Dou et al. 2019).

Both FIS and ANN are universal approximators (Hornik et  al. 1989; Wang 1992), 
which means that, correctly set, they can approximate any existing measurable relation. 
Therefore, both have potential for an accurate representation of the landslide phenomenon. 
According to Kosko (1992), both ANN and FIS process inexact information in an inexact 
way, though ANNs do not use an explicit set of rules. Conversely, FIS are rule-based sys-
tems (Kosko 1992) that are applied to fuzzy sets (Zadeh 1965), within the theory of fuzzy 
logic. Instead of using traditional crisp logic, variables are classified in one or more fuzzy 
sets each, for which they have different grades of membership. Rules which are simple 
relations between fuzzy variables are characterized by conditional statements, e.g., “if X 
is small then Y is large” (Zadeh 1973). The rules can be either expert-based or train-based 
and Mamdani-type FIS (Mamdani 1977) returns numbers, and not functions, as outputs 
to the rules. When applying a FIS to a problem set in the crisp logic domain, fuzzification 
must be performed before the execution of the rules. After, defuzzification should be per-
formed in order to return the results to crisp logic.

Even so, particularities of the phenomena or of the locations may cause one of the mod-
els to be more suited to the LSM task. Kanungo et al. (2006) compared maps generated by 
ANN and by FIS, although the main goal of their paper was to compare those to a conven-
tional weighting procedure and to a combined (ANN and fuzzy) method. Kanungo et al. 
(2006) ANN presented an accuracy of 72.6% for the validation set used on cross-validation 
training. This metric was also used for the choice of the ANN architecture between 39 
ANNs trained. It was the metric used for external verification as well. This is not the stand-
ard procedure, because generally, a separate verification set is generated to be used for test 
purposes only. The analysis of the area occupied by landslides for each output class showed 
that the model is acceptable, although Kanungo et  al. (2006) did not present accuracy 
metrics for their FIS, which made a direct comparison between FIS and ANN more dif-
ficult. Pradhan and Pirasteh (2010) also compared ANN to FIS for LSM. Their ANN was 
trained without cross-validation and the training was set to stop when a goal value of Root 
Mean Squared Error (RMSE) of 0.01 was achieved or by 300 epochs. Fuzzy procedure 



2383Natural Hazards (2021) 106:2381–2405 

1 3

was performed for some fuzzy operators, from which gamma operator with γ = 0.975 was 
chosen to generate the map. Comparing the resulting susceptibility indexes to the actual 
landslides, Pradhan and Pirasteh (2010) concluded that the ANN outperformed the FIS.

Nevertheless, even if comparisons between FIS and ANN for LSM were shown in the 
two previous studies, some knowledge gaps are still to be investigated. The knowledge field 
can benefit from a comparison between Mamdani FIS and well-trained ANNs for LSM, 
and from a thorough exploration of the similarities and differences between the outputs of 
those two methods.

The existence of a human-friendly representation (visible rules) (Benitez et  al. 1997) 
is one of the main differences between FIS and ANN and can be taken as an advantage of 
FIS. Interpretation of ANN behavior is not as apparent, so FIS can be used as a tool for 
understanding data and their relations. In Ercanoglu and Gokceoglu (2002), FIS rules were 
based on each variable separately, generating a total of 23 rules that were combined later. 
In this case, rules did not need interpretation as they had been provided by the authors, 
based on a prior factor analysis. Pourghasemi et al. (2012) FIS rules were also based on 
each separate variable. Their 40 rules were generated based on frequency ratio technique 
and were not further discussed. A total of 17 rules were generated by Zhu et al. (2014) on 
their expert-based FIS, but no thorough discussion is presented in the paper. Some authors 
focused their research on the susceptibility maps and did not present the FIS rules (Pradhan 
2010; Peethambaran et al. 2019). The existence of explicit rules is a particularity of the FIS 
methodology that can be used for a better understanding of the method and of the phenom-
enon itself. However, in LSM field, studies on FIS rule interpretation cannot be found in 
the present literature. Therefore, the approach to rule interpretation presented in the present 
paper is needed to fill a knowledge gap and is one of the main contributions of this paper.

In this manuscript, we draw comparisons between Mamdani FIS and ANN for LSM, 
analyzing the similarities and differences between the outputs, as well as the rules gener-
ated by the FIS. We design and adapt the Mamdani FIS used for the presented research 
and perform an automated procedure to generate the rules. Using the designed resources 
of the FIS to our favor, the rules are filtered and interpreted, which is the main novelty 
of the present paper. The discussion here presented helps us to understand not only the 
landslide phenomenon, but also the methods employed to model it. The ANNs are trained 
by using cross-validation procedure with independent training, validation and verification 
sets, which provides the ANN a better adjustment to the problem and favors a fairer com-
parison to FIS than the ones currently found in the literature. The same metrics, accuracy 
and AUC, are calculated for both methods, by analogous procedures based on the verifica-
tion sets, in order to enable a direct comparison between FIS and ANN.

2  Materials and methods

2.1  Area of study

The area of study is Rolante river basin, with an area of 828.26  km2. It is a sub-basin of 
Sinos river basin, located in the state of Rio Grande do Sul, southern Brazil (Fig. 1). The 
altitude in the area used for this study varies from 15 to 997 m and the average slope angle 
is 13.1°. Serra Geral formation, from which the scarps of Rolante river basin are derived, 
was formed by basaltic and rhyolitic spills that happened during the Triassic period (White 
1908), approximately 127–137 Ma ago (Turner et al. 1994). The lava spills that generated 
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Serra Geral formation cover an area of approximately 917,000  km2 (Frank et  al. 2009). 
This includes about half of the territory of Rio Grande do Sul state, where many of its 
scarps are located. Rolante river basin and other on the scarps of Serra Geral have had 
landslide events in the last decades, showing that this geological setting may pose a risk of 
future landslides.

A series of landslides occurred in Rolante river basin on January 5, 2017. It did not 
cause any casualties, but properties were damaged, and some people lost their homes. The 
rainfall event that triggered Rolante river basin landslides accumulated 142.44 mm of rain 
in 57 h, according to the rainfall measurements of Tropical Rainfall Measuring Mission 
(TRMM) Multisatellite Precipitation Analysis (TMPA) (Huffman et  al. 2007), and the 
highest rainfall intensity was 21  mm/h. For reference, the mean annual precipitation in 
the basin is 1625 mm, according to Serviço Geológico do Brasil—CPRM (2011) (meas-
urements between 1977 and 2006). TRMM estimates of convective rainfall are known 
to underestimate extreme rainfall in subtropical South America (Rasmussen et al. 2013). 
According to a Technical Report (SEMA and GPDEN, 2017) released shortly after the 
incident, farmers rainfall measurements varied from 90 to 272 mm in 24 h, showing that 
the spatial variability of the rain was high, making it harder for the satellites to capture it 
precisely.

2.2  Data sources

The scars from the landslides that occurred are mapped based on satellite imagery of the 
site and are revised. The images used for mapping were acquired from the satellite constel-
lation of Maxar Technologies ©, available in the software Google Earth ©. The location of 
the scars is presented in Fig. 1. Because of the high spatial variability of the rainfall event 
and the localized nature of the scarps, the landslide scars mapped are clustered in a region 
of the map.

The methodology here presented follows a protocol; there are two sources of information 
for retrieving data to use in our models: one of them is the scar polygons, and the other one 
is a digital elevation model (DEM), which is a data source available for most of the globe. 
The DEM used is the Phased Array type L-band Synthetic Aperture Radar (PALSAR) by 
Advanced Land Observing Satellite-1 (ALOS) from Japan Aerospace Exploration Agency 
(ASF DAAC 2018), with 12.5 m spatial resolution. Lee et al. (2004) indicated that a spatial 

Fig. 1  Location of Area of Study within its regional context, and location of the Rolante river basin and of 
the landslide scars in the Area of Study
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resolution of about 10 m is good for mapping susceptibility. Arnone et al. (2016) analyzed the 
spatial resolution of the DEM especially for ANN landslide susceptibility applications and 
found out that the best resolutions were 10, 20 and 30 m, and that higher resolutions did not 
necessarily result in better maps. Susceptibility mapping is generally carried out in scales in 
the order of 1:50,000 to 1:100,000, that are compatible with the DEM used for this research.

2.3  Attribute generation

The default attribute is (a) elevation, which is the DEM itself. Other ten attributes are gener-
ated on QGis: (b) aspect: the slope aspect; (c) hillshade: a shaded image based on the DEM; 
(d) natural logarithm of flow accumulation: flow accumulation, based on flow direction, in 
log scale; (e) planar curvature: horizontal curvature of the terrain; (f) profile curvature: verti-
cal curvature of terrain; (g) slope angle: declivity of the slope; (h) slope length and steepness 
factor (LS factor): a term used on Universal Soil Loss Equation; (i) topographic wetness index 
(TWI); (j) valley depth: vertical distance to the channel network base level; (k) vertical dis-
tance to channel network: vertical distance to the nearest draining channel. The attributes are 
shown in Fig. 2. The equation for the TWI is:

Some of the attributes present high intercorrelations with each other. However, in Lucchese 
et al. (2020), it was  shown that even attributes that were intercorrelated by a coefficient higher 
than 0.7 brought useful information to the model.

2.4  Multilayer perceptron

The type of ANN used is a multilayer perceptron (MLP) with one hidden layer (Fig. 3), con-
sisting of nh = 30 neurons. The number of neurons in the hidden layer is determined by using 
a novel approach (Lucchese et al., 2020). It consists in choosing the minimum number of neu-
rons in the hidden layer for which the relationship between the input and the output variables 
is well represented. This analysis is performed by using the validation sample and all neural 
networks trained for this purpose are carefully observed not to be overfitted. The overall goal 
is to avoid producing a purposely oversized neural network. The neuron number choice is per-
formed by analyzing the metrics attained using a range of neuron numbers in the hidden layer 
and plotting this data so that the tendencies can be carefully analyzed by the researcher.

The activation function used is unipolar sigmoid, and the inputs are represented by 
�⃗p = p1, p2,… pn . The weights of the hidden layer are ���⃗wh = wh,1,wh,2,…wh,k (in which 
k = nh ∙ n ), while the output weights by ���⃗wo = wo,1,wo,2,…wo,nh , and ���⃗bh are the bias weights 
of the hidden layer and bo is the bias of the output layer. The output is susceptibility, given in 
index values between 0 and 1.

The inputs, as they are derived from attributes that have multiple different orders of magni-
tude, are linearly scaled to [0,1] by

where Pi is the original attribute, acquired by sampling on QGis, pi is the normalized attrib-
ute, mini is the global minimum value for the attribute and maxi is the global maximum.

(1)TWI = ln

(

upstream drainage area

tan(Slope angle)

)

.

(2)pi =
Pi − mini

maxi − mini
, i = 1,2,… 11,
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Fig. 2  Attributes on the Area of Study. a Elevation (min: 15, max: 997); b Aspect (min: 0, max: 360); c 
Hillshade (min: 0.00, max: 2.29); d Natural Logarithmic of Flow Accumulation (min: 5.05, max: 20.60); e 
Planar curvature (min: −0.5, max: 0.5; real minimum −1.36, real maximum 1.18); f Profile curvature (min: 
-0.5, max: 0.5; real minimum:−3.17, real maximum: 1.70); g Slope (min: 0, max: 50; real minimum: 0, real 
maximum: 79); h LS factor (min: 0, max: 30; real minimum: 0, real maximum: 123); i TWI (min:0.6, max: 
25.2); j Valley Depth: (min:0, max: 401); k Vertical Distance to Channel Network (min: 0, max: 454)
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The MLP is trained by backpropagation (Rumelhart et al. 1986), on which the error 
obtained in the last layer is backpropagated to the previous layers progressively to the 
first one. It is based on the approximation given by the gradient descent of the errors, 
applied to progressively minimize the loss function value. The delta rule used is:

where delta is defined as �⃗δ = ��⃗ek
���⃗s
�

k

(

ηk
)

 , the errors in k layer are ��⃗ek , and ���⃗s� k
(

ηk
)

 is the activa-
tion function derivative. In Eq. (3), the output weights of k layer are ���⃗wk , τ is the learning 
rate, ��⃗pk are the inputs of layer k , and subscript t indicates the current epoch. A momentum 
term is used for faster training; mo is set to 0 if there was no improvement in training on the 
last epoch, and to 0.96 otherwise.

The learning rate used is heuristically varied (Vogl et  al. 1988), in order for the 
MLP to achieve a near-optimum rate. The initial rate is set to τ = 0.00001 . If, in a given 
epoch, the quadratic error increases, the rate is reduced to τ = 0.5τ , otherwise, it is 
increased to � = 1.1�.

In the training phase, a procedure based on the cross-validation technique (Hecht-
Nielsen 1990) is employed to avoid overfitting, using three sets, training (used for train-
ing the MLP), validation (used for cross-validation) and verification (used for testing 
and metrics calculation). Training is stopped when no improvement is made on valida-
tion set for over 10,000 epochs because a rise in the errors calculated based on the vali-
dation set, concomitantly with the errors of the training sample continuing to decrease 
as the training progresses, is a sign that overfitting is occurring. When this happens, 
training should be stopped. Training is also to be stopped if the overall training epochs 
exceed 300,000. To generate the three sample sets, the available samples are divided 
into 50% for training, 25% for validation and 25% for verification. This separation is 
random, but each set is ensured to consist in 50% occurrence (landslide) samples and 
50% non-occurrence (non-landslide) samples.

(3)�����⃗wk,t = ���������⃗wk,t−1 + τ �⃗δ ��⃗pk + mo
(

���������⃗wk,t−1 − ���������⃗wk,t−2

)

,

Fig. 3  Scheme of the MLP 
employed



2388 Natural Hazards (2021) 106:2381–2405

1 3

Initial weights are randomly set. To constrain variability provided by the initial weights, 
five repetitions are performed, and the network that provides the lowest quadratic error on 
the validation set is chosen between the five.

Other source of variability is the separation between samples. To overcome it, five dif-
ferent separations are made, and an average of the maps is calculated. For each of these 
five separations, five sets of initial weights are tested (but only the best performing one is 
chosen to compose the final map), resulting in a total of 25 ANNs trained for this study. 
Both FIS and ANN models are custom programmed in Matlab® R2012b, which favors 
occasional improvements to the methods.

2.5  Mamdani fuzzy inference system

Mamdani fuzzy inference systems (FIS) are based on highly formalized insights about the 
structure of categories and articulated fuzzy “IF THEN” rules that can be based on expert 
knowledge. Fuzzy systems combine fuzzy sets with fuzzy rules to produce overall com-
plex nonlinear behaviors (Kosko 1992). General steps are necessary for the application of 
a fuzzy model (see Fig. 4): (1) Input and output variables are fuzzified by considering con-
venient linguistic subsets; (2) Rules that relate input to output are constructed based on 
expert knowledge and/or extracted from data samples; (3) A reasoning mechanism is used 
to apply the rules to each input, resulting in a compound fuzzy set generated by the logical 
union of two or more fuzzy membership functions defined on the universe of discourse of 
the output variable; (4) A defuzzification procedure is performed to convert the fuzzy out-
put to a crisp number.

In this paper, the number of FIS fuzzy sets employed for inputs is three (Low, Medium 
and High) and for the fuzzy sets employed for the output it is two (Low and High suscep-
tibility). The prototype, which is the point where the fuzzy set achieves maximum mem-
bership, corresponds to the point where the other fuzzy sets have null membership. This 
results in every point belonging to a maximum of two fuzzy sets for each variable. The 
membership functions are initially sinusoidal for all fuzzy sets, but they can be altered later 
on the adaptive phase. All rules generated for this paper are of the type AND, which means 
they consider the effects of one variable classification combined to other variables clas-
sifications. Another possibility, not used, would be the OR-type rule, which considers the 
effects of one classification for one variable or another classification for other variable in 
the same rule.

The original dataset is divided in rule generation (50%), weight and function adapta-
tion (5% + extreme values for each attribute) and verification (45%). Rule generation sets 
should be as large as possible so that more scenarios are presented, and more rules are 
generated, making the FIS model more generalizable. However, the ANN is using 50% of 
the samples, therefore 50% of the samples are used for FIS rule generation in order to keep 

Fig. 4  Scheme of the general FIS structure. Based on Sen (2010)
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the same proportion. But weight, location and function adaptation are different from cross-
validation, because it is an adjustment, that needs to be performed to the rules that have 
been already formed. It needs a well-distributed set, therefore 5% plus the extreme values 
for each attribute.

FIS needs large datasets for rule generation because, in order to represent all possible 
combinations between variables, the FIS would need to have 311 = 177147 rules, which is 
much more than the total number of samples (13,480), but one must try to obtain sufficient 
rules to cover the situations that actually occur. To be consistent with ANN, five FIS based 
on different random separations of the dataset are generated and adapted, and the maps and 
metrics presented are an average of these five.

2.5.1  Self‑organizing training

The rules are generated based on data. The method we employ for rule generation is based 
on Wang and Mendel (1992) and consists of fuzzification, assigning rules, assigning 
weights to the rules, and comparing similar rules generated by different registers. After this 
process, extra rules can be added by the expert.

Fuzzification of training data consists of transforming the data from crisp to fuzzy logic. 
Example: register 1, variable x1 has 0.8 membership to fuzzy set Very low, 0.2 member-
ship to fuzzy set Low; variable x2 has 1.0 membership to fuzzy set high, and output has 
1.0 membership to fuzzy set Medium. When assigning rules, the fuzzy set with the high-
est membership for each variable is saved, and a rule is created based on the information. 
Example: Very low, High → Medium. To generate the rule weight, the membership val-
ues of the variables that generated the rule are multiplied. Example: 0.8 ⋅ 1.0 ⋅ 1.0 = 0.8 . If 
another register generates a similar rule, but with a different output, the rule with the high-
est weight is saved and the other is discarded. Example: rule Very low, High → Low with 
0.2 weight would be discarded.

2.5.2  Adaptive training

Adaptive training used for FIS was first developed by Driankov et al. (1996). Training per-
formed is not exhaustive, as not all training options are explored, only variations in settings 
and parameters. The adaptations are about the membership function, the location of fuzzy 
set prototypes and the modification of the weights. For this research, we use a data subset 
for which the quadratic error should be lowered. The quadratic error is defined by:

where Sx is the output response of the FIS, when executed, and Tx is the output (label) 
given on the dataset. The configuration that provides the lowest Eq is kept.

The possible modification of the membership functions is to trapezoidal, triangular, or 
inverted sinusoidal. A limitation is imposed that, for each variable, all membership func-
tions should be the same. The next analysis is the possible modification of the location of 
the medium fuzzy set prototypes, on the input variables. Ten equally spaced displacement 
options between the neighboring prototypes (Low and Medium, Medium and High) are 
tested for each variable prototype. The weights of the fuzzy rules can also be altered at 
this point. For the weight of each rule, ten alternatives are tested varying between half and 
twice the original weight.

(4)Eq =
(

Sx − Tx

)2
,
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2.5.3  Defuzzification

Among many methods that have been proposed in the literature, we choose the center of 
area method, which is the most prevalent and physically appealing (Lee 1990a, b). It is 
given by the algebraic expression:

where Z∗ is the resulting centroid, z is the set of numerical values of the output variable in 
its domain, and � is the degree of membership of z to the composite output membership 
function. We use a numerical approximation for the integrals, performed along the domain 
of the output function. For this, we calculate integrals by the Riemann method for numeri-
cal integration, using domain discretization of dz = 1 ∙ 10−4.

3  Theory and calculation

3.1  Dataset generation

The dataset is generated based on the attributes and scars location. First, every point of the 
rasters located within the scars is considered an occurrence sample and is acquired. There 
is a total of 6740 occurrence points available. Then, buffers of 5 km are generated around 
the scars and the same number of non-occurrence samples is acquired randomly in the 
area, resulting in 13,480 points, half of them occurrence, half of them non-occurrence sam-
ples. This sampling procedure was chosen based on the analysis of Lucchese et al. (2021).

3.2  Rule analysis

Since hundreds of rules are generated on each FIS, the rules have to be filtered to enable 
further analysis. Two factors are accounted for: the weight of the rule and the occurrence of 
it in the map. The following steps are proceeded:

– The attributes are scanned, and each time a pixel activates a rule, its counter is increased 
by one.

– The occurrence of each rule is normalized by the total number of pixels.
– The weight and the normalized occurrence are multiplied to calculate a factor.
– The rules are ordered based on the factor.
– The first 40 rules are shown.

3.3  Validation of methods

Accuracy is the rate of correct classifications made by the model and can be defined as 
acc = (TP + TN)∕(TP + TN + FP + FN) , where TP is the number of True Positives, TN, 
True Negatives, FP, False Positives, and FN, False Negatives. To compute TP, TN, FP and 
FN, a threshold for classification is needed, since the models ANN and FIS outputs are 
continuous between zero and one. Our procedure is to calculate acc for every threshold and 
choose the threshold for the highest acc.

(5)Z∗ =
∫ �(z)zdz

∫ �(z)dz
,
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Another metric used to evaluate our models is the area under Receiver Operating Char-
acteristic (ROC) curve, or AUC (DeLong et  al. 1988). To plot a ROC curve, a range of 
thresholds is needed, as well. TP, TN, FP and FN calculated for each threshold are used to 
calculate True Positive Rate, or TPR, and False Positive Rate, or FPR. TPR is defined by

and FPR is given by:

TPR is plotted on the abscissa and FPR on the ordinate, generating a graph that is 
expected to start on (0,0), as for threshold equal to one, both TP and FP will be null, and to 
end on (1,1) for a threshold equal to zero, because then TN and FN will be null. A flawless 
model would be located on (0,1) for the other thresholds because the FP and FN counts 
would be zero. This situation also maximizes the AUC to one. In opposition, a model with 
an AUC of 0.5 would not be able to discriminate between the output classes at all. AUCs of 
reliable models are usually over 0.7.

4  Results

4.1  Resulting fuzzy sets

Five FIS are generated and the membership functions and prototype locations for the 
Medium fuzzy set are adjusted. FIS 1 generates 396 rules, FIS 2, 390, FIS 3, 398, FIS 4, 
405, FIS 5, 406 (average: 399).

The prototype of the fuzzy set relative to the medium class was initially placed on the 
middle point between each attribute minimum and maximum, and, in the adaptive phase, 
the membership function and the location of the medium prototype can be modified. In 
Fig. 5, fuzzy sets for FIS 1 are shown.

The resulting fuzzy sets presented in Fig. 5 show that for most attributes the trapezoidal 
membership function was chosen by the adaptive procedure. The only attribute for which 
sinusoidal function is kept is profile curvature. For elevation, planar curvature, profile cur-
vature and slope, the Medium fuzzy set remains close to the center of the domain. Aspect 
middle fuzzy set migrates to the right, which can mean a separation between 300 and 
350° benefits the model. The separation between Low and Medium fuzzy sets for TWI is 
adjusted to be lower.

For the five resulting FIS, prototype locations of the resulting medium fuzzy sets do not 
vary widely, and the functions chosen by the algorithm for each attribute resulted the same, 
making it possible to perform analysis based on FIS 1.

4.2  Metrics calculated

For FIS and ANN trained, metrics AUC and acc are calculated based on the verification 
sample of each model. These metrics are presented in Table 1, where an average for each 
model group is also shown. It is possible to observe that ANN provides higher metrics than 
FIS, although both present accuracies over 80%. Within both FIS and ANN groups, metrics 

(6)TPR =
TP

TP + FN

(7)FPR =
FP

FP + TN
.
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Fig. 5  Fuzzy sets of FIS 1 after adaptive phase. Blue: Low fuzzy set; red: Medium fuzzy set, green: High 
fuzzy set
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are very balanced between different models trained, showing the separation of samples is 
sufficiently random (Table 1).

4.3  Susceptibility maps

Resulting susceptibility maps are plotted, based on the output given by the models. This 
is done by executing each model individually to every pixel of the raster and saving the 
output as a raster as well. Later, the ensemble maps are composed by an average of the 
raster maps generated by each individual model. These are shown in Fig. 6, and an area 
is zoomed so that the landslide scars can be observed over the maps. The zoomed area is 
marked in yellow. The ANN resulting map shows more amplitude of outputs than the FIS 

Table 1  Metrics AUC and 
acc, calculated based on the 
verification samples

Model AUC Acc (%) Model AUC Acc (%)

FIS 1 0.8876 81.63 ANN 1 0.9481 90.01
FIS 2 0.8874 80.49 ANN 2 0.9345 89.43
FIS 3 0.8901 81.43 ANN 3 0.9377 88.41
FIS 4 0.8869 80.99 ANN 4 0.9445 90.54
FIS 5 0.8909 81.81 ANN 5 0.9399 88.84
Average 0.8886 81.27 Average 0.9409 89.45

Fig. 6  Resulting susceptibility maps for a FIS and b ANN. Highlights on the scar area with the landslide 
scars plotted over it for c FIS and d ANN. In c and d, tags representing the susceptibility output in two loca-
tions were added to observe the amplitude of results for both models
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map, as it can be observed in the color range in gray scale of the output map of each model, 
and by observing the susceptibility outputs in some locations, represented by the tags in 
Fig. 6c and d. Also, it shows to be more constrained regarding the areas classifiable as sus-
ceptible, as it is observable that for FIS a larger region has darker shades of gray, indicating 
outputs closer to 1. In the zoom (Fig. 6c and d), it is possible to observe that both maps 
can be considered acceptable, as the scars tend to be located in the areas marked as highly 
susceptible.

4.4  Comparisons between susceptibility maps

Based on the average thresholds, calculated as 0.49 for FIS and 0.53 for ANN models, one 
can generate maps that include the binary classification between low and high susceptibil-
ity, and then analyze in which areas do the resulting maps from FIS and ANN differ. First, 
the map is divided into four classes: both FIS and ANN resulting Low, both FIS and ANN 
resulting High, and the two cases in which the classifications differ between the models. 
The totals of each classification within the basin limits are presented in Table 2, a contin-
gency table. It is possible to observe that, for most of the locations, the models agree on 
the classification, but, when they disagree, FIS providing high while ANN providing low 
outputs is more common than the opposite.

In order to further investigate the discrepancies between FIS and ANN, a map is gener-
ated with the differences calculated for the output values, between FIS and ANN outputs. 
Figure 7 allows for us to understand the numerical differences between the output values. 
Positive values mean the FIS provided a higher susceptibility for that area, and negative 
values mean that the ANN provided higher output, instead. An area in which the models 
mostly agree is the plateau on the north. Differences concentrate on the scarped slopes 
on mid- and lowlands. Three places with negative differences are plotted (Figs. 8, 9, 10), 
and then, three places with positive differences (Fig. 11), in order to analyze which factors 
contribute to these discrepancies between models. Along with the zooms in the highlighted 
areas, attributes considered useful for the analysis are plotted. The classifications on fuzzy 
sets of the attributes shown are relative to FIS 1.

As it can be observed in Figs. 8, 9 and 10, a combination of High aspect, Low hillshade 
and Medium slope can influence the output. Since the discrepancy is negative, it must 
mean that output susceptibility was higher for ANN than for FIS. Looking into the rules 
created by the FIS, those which include these variables fuzzy sets and result in low suscep-
tibility have lower weights and are less common than rules that have these fuzzy sets but 
result in High susceptibility, indicating these could be particular cases. By the locations, it 
is not possible to infer which classification, Low or High, is right.

The opposite occurrence, which is when ANNs provide a lower output susceptibility 
than FIS, is also analyzed. This effect, seen in Fig. 11, is observed to be connected to the 

Table 2  Contingency table of the 
output classifications provided 
by FIS and by ANN, inside the 
basin limits

ANN

High Low

FIS High 292,652 536,669
Low 100,416 4,086,217

No Data: 284,893



2395Natural Hazards (2021) 106:2381–2405 

1 3

attribute LS factor, as it transitions from Low to Medium fuzzy set in the areas with posi-
tive differences. This can either be an underestimation of the effect of LS factor on the 
ANN, or an overestimation of a rule connected to LS factor in FIS.

4.5  FIS rules

Because there are approximately 400 rules for each FIS model, only one FIS (FIS 1) is 
chosen to be shown. Even so, there are too many rules to interpret directly (396 for FIS 
1). Some rules, even if they have high weights, are rarely used for map generation, while 
others, generated with low weights, are widely used instead. In order to balance these two 
effects, rule weight and rule use, a factor is calculated, and the rules are ordered and fil-
tered based on it. FIS 1 rules are ordered based on this proposed factor which is the product 
between the rate of use of the rule on the map, and the rule weight. After ordering the 
rules, the first 40 (10% of total) are filtered and are shown in Table 3. The rule number is 
an indication of the order in which the rules are created by the original dataset (rule 1 was 
the first one created, then, rule 2, and so on). Therefore, observing the rule number, it is 
possible to see if the rule was one of the first or the last to be created. The rules related to 
Low susceptibility output are created before the ones related to High susceptibility, what 
is expected since the data were organized with all Low output first, and High output last, 
50% each. This results in 228 rules (58%) with Low susceptibility, rules 1 to 228, and 168 

Fig. 7  Difference between FIS and ANN output for susceptibility. Rolante river basin is plotted for refer-
ence
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Fig. 8  Four representations of the same area: a Difference between FIS and ANN output for susceptibility, 
b Hillshade, c Slope, d Aspect. First zoomed area, negative difference between FIS and ANN highlighted

Fig. 9  Four representations of the same area: a Difference between FIS and ANN output for susceptibility, 
b Hillshade, c Slope, d Aspect. Second zoomed area, negative difference between FIS and ANN highlighted
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rules with High susceptibility output (42%), rules 229 to 396. Rules with High susceptibil-
ity output appear less on the filtered list (13 out of 40), possibly because areas with high 
susceptibility are less abundant on the map and this is accounted for in the factor.

5  Discussion

In this manuscript, we provide a workaround for a FIS issue, i.e., the difficulty to interpret 
a large set of rules, making it possible to analyze the rules by implementing a factor and 
filtering some of them. FIS rule analysis had not been shown in previous LSM papers. This 
novel approach allows for a focused analysis of the rule set, in which the most important 
and most used rules gain a spotlight to be actively discussed.

ANN metrics are significantly higher than those achieved by FIS model. The amplitude 
of results portrayed by ANN is larger than the FIS one, showing it is a model that carries 
less uncertainty on the results. In a visual inspection, both susceptibility maps provided by 
ANN and FIS seem acceptable. In the binary analysis, FIS provided more areas with High 
susceptibility output than ANN.

FIS model is rule based, so the rules used to generate the maps can be observed directly. 
In opposition, because it is rule based, the system depends on specific rules to generate the 
output, which can be a weakness of FIS. Some or all rules may not be available for a given 
point during FIS execution, generating outputs that are either: a) nonexistent (No Data), or 
b) generated based on some of the possible rules, but not all. The case “a” happens when 

Fig. 10  Four representations of the same area: a Difference between FIS and ANN output for susceptibility, 
b Hillshade, c Slope, d Aspect. Third zoomed area, negative difference between FIS and ANN highlighted
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no rule could be found to suit any of the fuzzy classification combinations present on the 
said point. This can be directly observed in Figs. 6 or 7 (No Data points).

The case “b” happens when the output is generated based on the rules that exist on the 
rule set, ignoring rules that, though possible, do not exist. Case “b” is not directly observ-
able in any map, because it results in non-null outputs. The existing rules are a small subset 
of the universe of possible rules (~ 400/177,147). Each pixel in the domain can activate up 
to 211 = 2048 rules (2 fuzzy classifications for each attribute, maximum, and 11 attributes 
total), depending on its attribute fuzzy set memberships. Because only approximately 400 
rules exist in the rule set, the output needs to be generated based on a subset of the gener-
ated rules, even if the map pixel is predominantly a member of the adjacent fuzzy set, i.e., a 
combination of fuzzy sets for which no rules exist. Based on that, particular cases existing 
in the sample that generated the rules can have large influence on the rule set. Additionally, 
rules do not merge or blend with each other at any point of model generation or adaptation. 
That means it is possible to have 20 rules, for which 19 that relate Medium slope to High 

Fig. 11  Difference between FIS and ANN output for susceptibility. Three zoomed areas with positive dif-
ferences highlighted
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susceptibility, and 1 that relates Medium slope to Low susceptibility, but no action is taken 
to suppress the latter. Supposing a given point falls into that one rule, output provided 
is Low. The effects of this issue (case “b”) can be observed in the negative differences 
between FIS and ANN outputs in the map. For the fuzzy sets present in these areas, many 
rules exist, most of them providing the opposite output (High), but by the combination of 
those attribute fuzzy classifications to others, the model provides output Low instead.

As the two (ANN and FIS) are models and there is no definitive answer for the suscep-
tibility on the area, it is not possible to be sure which output is correct, because the other 
attributes that influenced the FIS response can be relevant, although, they can be a source 
of misguidance for the model, as well. ANNs do not deal with the discussed issue, since 
there are no apparent rules, and merging continuous function inputs and outputs on the lay-
ers is part of its architecture.

For the areas where the difference is positive (FIS output is higher), it is possible to 
observe that, for FIS, LS factor guards a strong influence on the resulting output. This 
means that, in these places, the outputs provided by the ANN disagree with those from the 
FIS, and this can be happening due to the ANN not connecting LS factor to susceptibility 
as strongly as FIS does. As discussed, it is not possible to know if this influence is justified 
because the ANN, on the other hand, can be erasing the strong connection LS factor (a fac-
tor used for erosion calculation) has with landslide triggering.

Overall, one of the advantages of FIS is the possibility to directly observe the rules. The 
rule that achieves the highest factor, activated by over 29% of the pixels in the domain, 
was the fifth one to be generated. Probably, it is very abundant in the set that generated the 
rules, as it is abundant in the map. Rule number 78 ranks 4th even if its weight is not as 
high as the previous rules, but it is the most activated rule (37.7% of the pixels). Pixels can 
activate many rules, so some of the rules that are activated serve only to fine adjustment 
purposes, which can be the case for rule 78.

Some fuzzy sets of the attributes repeat themselves in many rules. Every one of the first 
18 rules shown is activated by Medium hillshade, Medium planar curvature, Medium pro-
file curvature, Low LS factor, Medium TWI, and Low vertical distance to channel network. 
It does not mean all these factors are unimportant for landslide susceptibility, but that these 
classifications are the most abundant in the map. Most of these attributes are on Medium 
fuzzy set (4 out of 6), that can either appear alone or combined with Low and High fuzzy 
sets, so it tends to be more activated if the variable has an approximately centered distri-
bution of occurrence in the map. Following this line of thought, LS factor and vertical 
distance to channel network are predominantly Low in the area (see Figs. 2 and 5), and that 
explains the occurrence of the Low fuzzy set.

Some attributes show patterns in their connection to the output. Slope Low fuzzy set 
appears in 27 out of 40 rules, being 24 resulting in Low susceptibility and 3 in High. 
Medium slope results in High susceptibility in 10 rules out of 13. It shows that slope, as 
expected, is deeply connected to the landslide phenomena. Researchers of the area can 
agree that slope angles ranged from 10 to 70 degrees (Medium slope) are more prone to 
landslides than slope angles ranged from 0 to 30 degrees (Low slope), as shown by the 
rules of the FIS model. Elevation also shows to be connected to the landslide susceptibility 
output, in this case. Among the first 29 rules ranked, all of them that present High output 
had Medium elevation. And as expected, all of these rules that have High elevation resulted 
in Low susceptibility. This is probably a way that the FIS made itself able to differentiate 
the plateau from the susceptible areas. Lowlands, which are typically also not suscepti-
ble areas, are differentiated by the model using the same principle. The susceptibility to 
landslides is not typically connected to terrain altitude. However, in the study area, there 
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is a preferential altitude for the occurrence of landslides, which can be associated with a 
specific pedological or geological formation. And it is possible that the elevation attribute 
indirectly brought information about these formations to the model. Also, a disclaimer for 
the findings about elevation attribute is that the fuzzy set classifications for elevation are 
particular of the Rolante river basin. Different geological settings may need different fuzzy 
set classifications and can generate different rules than those presented here.

The findings show that the FIS model can propose rules for LSM that are human-
friendly and could as well be produced by rational thought. In addition to those rules that 
seem apparent to researchers, FIS provides a range of other rules that can be physically 
logical, however are not as easy to be interpreted. In 20 out of 22 rules (in Table 3) with 
Low valley depth, output was Low susceptibility, showing these variables are related, as 
expected. This is not a simple effect of elevation attribute, since elevation fuzzy sets vary 
widely between the 22 rules. Based on these findings, it is possible to observe that valid 
physical relationships between variables can be extracted from data alone on LSM mod-
eling with FIS.

Rule 5 and rule 15 (the first two ranked) differ only in aspect fuzzy classification (one 
is Low and other is Medium) and, for both, output is Low. Rule number 2 (rank 316), not 
shown in Table 3, differs from rules 5 and 15 only by being based on High aspect, and 
returns Low susceptibility as well. It can mean that aspect alone is not a defining factor 
for susceptibility, as, in the presence of these other variable classifications, the aspect of 
the slope does not alter the susceptibility output. However, this finding is limited to this 
study area (Rolante river basin). With a latitude of approximately 29º30′S, in this region, 
landslides occurred in all directions, but this is not generalizable. In higher latitudes, the 
moisture of the soil is expected to vary with the slope aspect, because the insolation varies 
more between the scarps with different orientations (Isard 1986). Hillsides with lower solar 
incidence due to shading tend to have deeper and moister soils (Franzmeier et  al. 1969; 
Wang et al. 2011), which can be a compounding factor for mass movements. Therefore, in 
other settings, especially in high latitude locations, it is expected that the rules generated 
would be different regarding the aspect attribute.

6  Conclusions

In this manuscript, we compare two models, FIS and ANN, for LSM. FIS has inherent 
advantages, based on the possibility to understand the paths that lead to the output. In FIS, 
the rules are explicit, and their occurrence and weight can be analyzed. However, it should 
be noted that the FIS (as well as the ANN) generated is applicable only to this study area, 
because different settings may ask for different fuzzy set classifications and rules.

It is observed that the FIS rules can compartmentalize the relations between cause and 
effect, as similar rules that differ in only one attribute fuzzy set, but result in different out-
puts can coexist. This way, ANN has a greater possibility of merging the effects of different 
attributes, and it has generated outputs with more amplitude of results, and higher metrics. 
The compartmentalization of FIS rules can cause another issue, which is that only a small 
part of the universe of possible rules is covered, due to the limitations of the data used for 
training, so that outputs may be generated by an incomplete set of rules, ignoring combina-
tions of fuzzy set attributes for which rules could, but do not exist.

ANN provides better maps, with greater accuracy. Although, FIS rules help us under-
stand the phenomena and formulate clear rules to represent what occurs. The use of 
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both models for the same area of study, Rolante river basin, integrated the possibility to 
present a susceptibility map with high accuracy with the possibility to analyze the maps 
and their differences thoroughly for a better understanding of both the phenomenon and 
the processes performed by the models.

Based on the findings presented, many areas could benefit from this type of analysis, 
using one model in which the rules can be analyzed, and another one, without apparent 
rules, but providing higher accuracy. By comparing the resulting maps from both mod-
els and analyzing the locations in which their outputs differ, and why they do, it is pos-
sible to develop a more reliable knowledge of each place is more certainly susceptible to 
landslides, within the study area.

For future studies, it is suggested that more fuzzy sets can be employed in each vari-
able to analyze the changes in rules. Also, different factors can be developed to rank the 
most relevant rules for this analysis.
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