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Abstract
Human exposure to floods continues to increase, driven by changes in hydrology and land 
use. Adverse impacts amplify for socially vulnerable populations, who disproportionately 
inhabit flood-prone areas. This study explores the geography of flood exposure and social 
vulnerability in the conterminous United States based on spatial analysis of fluvial and plu-
vial flood extent, land cover, and social vulnerability. Using bivariate Local Indicators of 
Spatial Association, we map hotspots where high flood exposure and high social vulnera-
bility converge and identify dominant indicators of social vulnerability within these places. 
The hotspots, home to approximately 19 million people, occur predominantly in rural areas 
and across the US South. Mobile homes and racial minorities are most overrepresented in 
hotspots compared to elsewhere. The results identify priority locations where interventions 
can mitigate both physical and social aspects of flood vulnerability. The variables that most 
distinguish the clusters are used to develop an indicator set of social vulnerability to flood 
exposure. Understanding who is most exposed to floods and where, can be used to tailor 
mitigation strategies to target those most in need.
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1  Introduction

Inland flood exposure continues to rise in the USA, driven by changes in precipitation and 
development in floodplains. Heightened exposure has translated into economic impacts, 
as evidenced by increases in both average annual losses (ASFPM 2020) and billion-dollar 
events (NCEI 2020). The leading measures of flood impact tend to focus on direct damage 
to physical assets, painting a picture of what is exposed and to what degree. Much less is 
understood about who is exposed to floods, and what is known is largely based on local 
post-disaster studies. National-level understanding of population exposure is limited, in 
part constrained by the lack of spatially contiguous floodplain data.

Flood exposure is higher for socially vulnerable populations (Lee and Jung 2014; Rolfe 
et  al. 2020), especially for inland floods (Qiang 2019). Social vulnerability results when 
social, political, and economic process combine to produce heightened susceptibility to 
hazards for some populations (Cutter et  al. 2003; Emrich and Cutter 2011). Vulnerable 
groups often inhabit flood-prone areas due to societal barriers related to social stratifica-
tion, and their exposure has been examined in the USA (Adeola and Picou 2012; Lee and 
Jung 2014) and around the world (Kaźmierczak and Cavan 2011; Rolfe et al. 2020). Spatial 
indicators are regularly applied to measure and model dimensions of social vulnerability 
(e.g., age, race, poverty) and can deepen the understanding of the social dimensions of 
flooding.

Quantitative assessments of social vulnerability to floods have generally employed two 
methodological approaches. The first is integrated analysis, in which geospatial layers of 
flood hazard and social vulnerability indicators are superimposed and compared to identify 
where high levels of each coincide (Finch et al. 2010; Emrich and Cutter 2011). In the sec-
ond approach, indices are constructed and mapped in flood-prone places to identify which 
dimensions of social vulnerability dominate (Zhang and You 2014; Mavhura et al. 2017). 
Each approach has tended to employ generic indicator sets at local and regional scales, 
despite conceptual consensus of social vulnerability as hazard-specific (Rufat et al. 2015). 
There remains limited empirical understanding of the spatial distribution and determinants 
of social vulnerability to floods at the national level. Such understanding is needed to sup-
port changes in flood mitigation policy toward social equity.

This study explores the geography of social vulnerability to inland flood exposure in the 
conterminous United States (CONUS). Our objectives are to identify the most vulnerable 
places and develop a set of indicators of social vulnerability to flood exposure. In doing so, 
we apply flood hazard maps with a unique national-level combination of continuous spatial 
coverage, representation of fluvial and pluvial hazards, consistent spatial resolution, and 
high accuracy (Wing et  al. 2017) compared to previous analyses of social vulnerability. 
Through combining the floodplain data, land cover, social indicator modeling, and bivari-
ate spatial cluster analysis, we address two research questions: where do high flood expo-
sure and social vulnerability coincide in the CONUS, and which socially vulnerable popu-
lations distinguish these places?
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2 � Background

2.1 � Flood exposure

Flood exposure refers to valued societal elements (e.g., people, buildings) located in flood-
plains (de Moel et al. 2011; Koks et al. 2015). Analyzing flood exposure generally entails 
two steps: delineating the extent of flood hazard and aggregating the intersecting popula-
tion and/or built environment assets. The primary source for delineating US flood hazard 
is maps approved by the Federal Emergency Management Agency (FEMA). FEMA maps 
depict the spatial extent of the 1% annual chance flood (100-year flood) for communities 
enrolled in the National Flood Insurance Program. While widely available, FEMA flood 
maps have varying levels of quality and spatial coverage, with notable gaps in small catch-
ment areas and low population communities (Qiang et al. 2017; Wing et al. 2017). Accord-
ing to a recent estimate, FEMA maps cover only one-third of the nation’s stream miles 
(ASFPM 2020). Nationwide, there are also significant differences among FEMA maps in 
the underlying input data, analytical methods, and recency (Wing et al. 2018; Pralle 2019).

Continental-scale mapping initiatives have begun to address quality and coverage gaps 
inherent in local flood hazard maps (Sampson et al. 2015; Dottori et al. 2016). Inland flood 
maps are now available for the USA that are contiguous, high-resolution, span multiple 
flood return periods, and exhibit accuracy approaching that of local studies (Wing et  al. 
2017). These new maps also incorporate pluvial hazard, which is not reflected by FEMA 
maps yet is a significant source of flood exposure to people and the built environment 
(Houston et  al. 2011; Grahn and Nyberg 2017; NASEM 2019). Pluvial flooding occurs 
when heavy rainfall causes localized flooding independent of a river or overflowing water-
body. By contrast, fluvial occurs when high flow in rivers spills into the floodplain and is 
the focus of most inland flood mapping efforts. Newer initiatives are combining fluvial and 
pluvial maps with coastal flood maps to in the future derive continental-scale risk maps 
across flood hazard types (First Street Foundation 2020).

Aggregating exposed populations or built environment assets requires pinpointing their 
locations within the floodplain. Common inventory sources include point-level build-
ing and facility datasets, polygonal census and tax assessor data, and gridded population 
data. Polygonal and gridded datasets are the most widely available, but their boundaries 
may contain land types like open water, barren rock, and perennial snow where people and 
assets are largely absent. Including these land classes in exposure assessments can lead to 
misalignment of people and exposed areas. Dasymetric mapping addresses this problem, 
employing ancillary data to spatially distribute coarse gridded or polygonal data to realistic 
locations (Mennis 2003; Maantay et al. 2007; Prasad 2016). Land use/land cover data are 
the most oft-applied type of ancillary data (Zandbergen and Ignizio 2010), and dasymetric 
population mapping is now often employed in flood exposure and risk analysis. A recent 
study employed population data, dasymetric mapping, and flood maps for the CONUS to 
estimate that 41 million people are exposed to the 100-year floodplain (Wing et al. 2018), 
compared to lower estimates of 13.0–21.8 million based on FEMA maps (Wing et al. 2018; 
Qiang 2019).

2.2 � Social vulnerability to floods

Population estimates are valuable for defining the general severity of flood exposure, 
but such aggregated measures inform only how many people are exposed, not who. 
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Disaggregating exposed populations is important because socially vulnerable popula-
tions disproportionately inhabit flood-prone areas (Platt 1998; Lee and Jung 2014). Root 
causes include social stratification and associated paucity of political and economic power 
and resources that limit the locational choices of vulnerable groups in avoiding hazardous 
areas (Blaikie et al. 2014). For example, a study in central Texas reported comparatively 
lower house values, lower incomes, and more mobile homes inside the floodplain (Lee and 
Jung 2014), while research in the UK found that non-white populations were more flood 
exposed (Fielding 2018). Higher exposure can lead to greater susceptibility to impacts for 
socially vulnerable groups during flood disasters (Cutter et  al. 2014). Numerous empiri-
cal studies have evaluated this notion using post-disaster damage and related socio-demo-
graphic information (Laska and Morrow 2006; Adeola and Picou 2012; Kamel 2012; Col-
lins et al. 2013; Hamel et al. 2017; Emrich et al. 2020). Collectively, this research found 
multiple characteristics of vulnerable populations (e.g., race, poverty, unemployment, 
lower income) to be associated with more adverse outcomes.

At the national level, FEMA found inhabitants of the 100-year floodplain to have lower 
household incomes (FEMA 2018), while Qiang (2019) reported similar disparities for 
additional socioeconomic variables. However, social vulnerability is well understood to 
extend beyond socioeconomic characteristics, and encompass multiple dimensions associ-
ated with heightened hazard susceptibility.  The current state of knowledge regarding sta-
tistical and spatial relationships between exposure and social vulnerability at the national 
level has limited empirical support. In short, who lives in the floodplain and where?

Case study research on flood disasters has significantly contributed to understanding of 
the relationship between floods and social vulnerability, but translation of findings to the 
development of flood-specific social indicators is not well established (Rufat et al. 2015). 
Spatial indicators of social vulnerability are useful tools for flood risk management, includ-
ing prioritizing areas for flood mitigation measures (Lee 2014), distributing evacuation 
resources and personnel (Koks et al. 2015), and identifying communities most in need of 
recovery funding (SCDRO 2017). However, most studies apply generic models of social 
vulnerability across varying hazard types and disaster phases. Such generic measures con-
tinue to be used to spatially model social vulnerability in flood-prone areas (Kotzee and 
Reyers 2016; Roder et al. 2017), despite important distinctions between modeling social 
vulnerability in flood-prone places and modeling social vulnerability to floods. The former 
entails constraining the geographic scope of vulnerability indicators to flood-prone places 
(Garbutt et al. 2015; Aroca-Jimenez et al. 2017), while the latter analyzes spatial, statisti-
cal, and/or process interactions between flood hazards and social vulnerability (Burton and 
Cutter 2008; Sayers et al. 2018). Related research activities include customizing and testing 
indicators for flood exposure (Chakraborty et  al. 2019b; Collins et  al. 2019), flood pre-
paredness (Działek et al. 2019), flood impacts (Fekete 2009; Rufat et al. 2019), and flood 
recovery (Emrich et al. 2020).

2.3 � Flood exposure and social vulnerability

The spatial relationship between flood exposure and social vulnerability has often been 
studied using integrated analysis. Integrated studies develop and combine geospatial lay-
ers of multiple dimensions (e.g., physical, social, ecological) of natural hazards (Burton 
and Cutter 2008; Tate et al. 2010; Emrich and Cutter 2011; Rahman et al. 2016) to identify 
places with high multivariate vulnerability and their leading drivers. For example, Finch 
et al. (2010) combined map layers of tract-level social vulnerability and remotely sensed 
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flood depths from Hurricane Katrina. They used the resulting bivariate map to assess cor-
relation with the rate of recovery. In a similar vein, Koks et al. (2015) combined GIS lay-
ers of 50-meter flood hazard, parcel-scale exposure, and social vulnerability, and applied 
spatial statistics to examine the degree of clustering. Integrated studies are well suited for 
analyzing and visualizing the spatially varying linkages among physical and social dimen-
sions of vulnerability to hazards. Conceptually, integrated approaches are germane to haz-
ards analysis because the relative effect of exposure on places depends upon relative levels 
of susceptibility (Luers 2005).

Maps of bivariate spatial distributions are an increasingly common output of integrated 
geospatial analysis. But if the goal is to locate coincident extremes that are also spatially 
nonrandom, cluster mapping using Local Indicators of Spatial Association (LISA) can be 
applied. LISA measures spatial autocorrelation, the degree to which values at one place 
are similar to those in surrounding areas. LISA statistics can be computed in both univari-
ate and bivariate modes to map statistically significant clusters of phenomena of interest. 
Previous research has applied univariate LISA statistics to study spatial autocorrelation in 
social vulnerability (Cutter and Finch 2008; Koks et  al. 2015; Armas and Gavris 2016; 
Frigerio et al. 2018). More rare is the use of bivariate LISA for multidimensional explora-
tion of social vulnerability and natural hazard (e.g., Gaither et al. 2015).

3 � Data and methods

Figure 1 outlines the three methodological components of the analysis: construct a social 
vulnerability index, estimate population flood exposure, and conduct exploratory spatial 
analysis. We began by constructing a social vulnerability index for CONUS using demo-
graphic variables at the census tract scale. Then, using dasymetric mapping techniques, we 
calculated a tract-level measure of population flood exposure: percent habitable flooded 
area in each census tract. Finally, using the social vulnerability index and exposure meas-
ures, we applied bivariate LISA to map spatial clusters of extremes of flood exposure and 
surrounding social vulnerability.

Fig. 1   Spatial analysis flowchart
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3.1 � Social vulnerability index

We derived variables related to social, economic, and demographic parameters from the 
2012–2016 release of the American Community Survey (ACS), for each census tract in the 
CONUS (n = 71,901). The ACS data were used to build an indicator set of 29 variables 
(Table 1) drawn from the latest incarnation of the Social Vulnerability Index (SoVI) (HVRI 
2015), using the Vulnerability Mapping and Analysis Platform (UCF 2020). Most of the 
variables have a positive relationship with social vulnerability, i.e., they increase in value 
with increasing vulnerability. The few variables that have an inverse conceptual or empiri-
cal relationship with social vulnerability are bolded in Table 1.

We proceeded to create a social vulnerability index based on the SoVI algorithm of 
Cutter, Boruff, and Shirley (2003). Research examining the accuracy and stability of dif-
ferent social vulnerability indices has had conflicting findings (Schmidtlein et  al. 2008; 

Table 1   Input social 
vulnerability indicators

Boldface indicates variables that decrease in value with increasing 
social vulnerability.

Dimension Indicator

Age Population < 5 years or ≥ 65 years (%)
Median age

Dependence Households receiving social security benefits (%)
Nursing home residents per capita

Education Less than 12th grade education (%)
Employment Civilian unemployment (%)

Employment in extractive industries (%)
Employment in service industry (%)

Ethnicity Hispanic (%)
Family structure Children living in married couple families (%)

Female-headed households (%)
People per housing unit

Gender Female (%)
Female participation in labor force (%)

Health Population without health insurance (%)
Housing Renters (%)

Rent burdened (%)
Median gross rent
Mobile homes (%)
Unoccupied housing units (%)

Income Poverty (%)
Households earning over $200,000 annually (%)
Per capita income

Language Limited english proficiency (%)
Mobility Housing units with no car (%)
Race Asian (%)

Black (%)
Native American (%)

Wealth Median housing value
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Bakkensen et  al. 2017; Rufat et  al. 2019; Spielman et  al. 2020). We selected the SoVI 
algorithm and variable set due to its widespread adoption and the exploratory nature of 
this study. The SoVI algorithm employs principal components analysis (PCA) to reduce 
a large number of input indicators to a smaller and decipherable number of latent factors. 
Prior to the PCA, we reversed the sign of each bolded variable in Table 1 to account for the 
variable’s influence (positive/negative) on social vulnerability. We employed the statistical 
package SPSS (version 25) to implement the PCA, applied a Varimax rotation to the result-
ing components, and the Kaiser criterion to extract components with an eigenvalue of at 
least 1.0. This resulted in seven components that collectively explained 69% of the variance 
in the original indicator set. We then additively aggregated the factors into a social vulner-
ability index.1 The spatial distribution of the resulting index is displayed in Fig. 2.

Regions of high social vulnerability are most evident in rural areas of the US South-
west and US South, driven by high Native American populations in the Southwest and 
rural racialized poverty long associated the Black Belt region of the South (Wimberley 
and Morris 2002). The spatial distribution of high social vulnerability is more contiguous 
compared to previous national analysis at the county scale (Cutter and Finch 2008). By 
contrast, places with low social vulnerability are more spatially dispersed, and regionally 
occur to the highest degree in the Midwest and along the Northeastern Seaboard.

Fig. 2   Social vulnerability index for the CONUS at the census tract scale

1  See Cutter and Morath (2013) for a detailed description of the SoVI methodology.
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3.2 � Population flood exposure

To develop a tract-level measure of places exposed to inland flooding, we began with geo-
spatial datasets of flood hazard and land cover. Flood hazard for the 100- and 500-year 
return periods was represented using flood depth grids obtained from Fathom, which cover 
the CONUS at a horizontal resolution of 1 arc-second (~ 30 m). The flood grids reflect 
both fluvial (riverine) and pluvial (surface water) hazard, and represent all CONUS loca-
tions because there is no minimum catchment area associated with the underlying meth-
odology.2 Following Wing et al. (2017), we removed all cells from the pluvial grid with a 
depth of less than 15 cm, as this represents a typical ground-floor threshold depth beyond 
which damage may be expected. We then mosaiced the fluvial and pluvial grids, and in the 
resulting dataset classified all cells with a depth greater than zero as wet. Validation testing 
of Fathom maps based on this process has shown correspondence of 86%–92%, compared 
to high-quality and local-scale maps from FEMA and the US Geological Survey (Wing 
et al. 2017).

We obtained land cover data from the 2016 National land cover database (NLCD) of 
the US Geological Survey (NLCD 2020a). The NLCD is a 30-m resolution raster grid, 
with each cell representing one of twenty land cover types based on a modification of the 
Anderson Level II classification system.3 To restrict the selection of NLCD pixels to those 

Table 2   Habitability of land cover classes (USEPA 2015; NLCD 2020b)

NLCD level 1 class NLCD level 2 class EnviroAtlas habitability

Water 11. Open water Uninhabitable
12. Perennial Ice/Snow Uninhabitable

Developed 21. Developed, open space Habitable 2
22. Developed, low intensity Habitable 3
23. Developed, medium intensity Habitable 4
24. Developed, high intensity Habitable 5

Barren 31. Barren land (Rock/Sand/Clay) –
Forest 41. Deciduous forest Habitable 1

42. Evergreen forest Habitable 1
43. Mixed forest Habitable 1

Shrubland 51. Dwarf scrub NA—Alaska Only
52. Shrub/Scrub Habitable 1

Herbaceous 71. Grassland/Herbaceous Habitable 1
72. Sedge/Herbaceous NA—Alaska Only
73. Lichens NA—Alaska Only
74. Moss NA—Alaska Only

Planted/Cultivated 81. Pasture/Hay Habitable 1
82. Cultivated crops Habitable 1

Wetlands 90. Woody wetlands Habitable 1
95. Emergent herbaceous wetlands Uninhabitable

2  See Wing et  al. (2017) and Sampson et  al. (2015) for a detailed description of the Fathom modelling 
methods, data, and validity.
3  See Yang et al. (2018) for a description of the NLCD creation and validity.
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that could support human population, we used the classification scheme from the Envi-
roAtlas dasymetric population map (Pickard et al. 2015; USEPA 2015).

The EnviroAtlas dasymetric population dataset spatially classifies levels of human hab-
itability, based on land slope and NLCD land cover (Table 2). We retained only NLCD grid 
cells with land cover classes corresponding to those of EnviroAtlas Habitability classes 1 

Fig. 3   Flood hazard and population exposure for the 100-year return period. a Fluvial and pluvial flood 
hazard extent; b % Habitable flooded area per census tract
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through 5. This excluded locations with land cover types including water, perennial snow, 
and emergent wetlands. It should be noted that other notions of habitability have been 
applied for dasymetric mapping in flood exposure analysis. For example, the HAZUS flood 
loss estimation model restricts the distribution of built environment assets to developed and 
cultivated areas (NLCD classes 21–24, 81–82), while Qiang (2019) used only developed 
areas to distribute population.

For each census tract, we identified grid cells that are both habitable and in the flood-
plain. We then computed the ratio of flooded habitable cells to all habitable cells. The 
result is an exposure metric for populated places: percent flood-exposed habitable area per 
tract. Figure  3 shows the spatial distributions of the floodplain (Fig.  3a) and population 
exposure metric (Fig. 3b). The mean exposure value for the CONUS is 12%.

3.3 � Exploratory spatial analysis

We used the values of the flood exposure metric and social vulnerability index at each 
tract in exploratory spatial analysis using bivariate LISA statistics. Bivariate LISA maps 
depict the spatiality of how the value of one variable is surrounded by values of a second 
variable (Anselin 1995). More specifically, it identifies two forms of spatial dependence: 
positive spatial autocorrelation (clusters) and negative spatial autocorrelation (heterogene-
ity). Positive autocorrelation occurs where high values of variable 1 are surrounded by high 
values of variable 2 (High–High hotspots) or low values surrounded by low (Low–Low 
cold spots). In places with negative spatial autocorrelation, high values are surrounded by 
low values (High–Low clusters), or vice versa.

The bivariate LISA measures in this study inform how values of flood exposure are sur-
rounded by values of social vulnerability. To measure local and global spatial autocorrela-
tion and map resulting clusters and their statistical significance, we used the GeoDa spa-
tial data analysis software (version 1.14). Although LISA statistics cannot explain causal 
mechanisms underlying the resulting spatial clusters, they are well suited to identify places 
and develop hypotheses for further exploratory and explanatory analyses. Bivariate LISA 
analysis determines the statistical significance for each cluster and also generates a global 
spatial autocorrelation statistic for the entire study area that averages the local values 
(Anselin 2005).

4 � Results

4.1 � The geography of social vulnerability to floods

The global bivariate Moran’s I statistic is 0.1, indicating low positive spatial autocorrela-
tion. This means that on average in the CONUS, the spatial association between social 
vulnerability and flood exposure has only a small degree of spatial clustering. However, 
the global statistic can mask substantial local variation in spatial autocorrelation. Hence, 
we also computed bivariate LISA to map spatial autocorrelation for each census tract. The 
results demonstrate that there are distinct geographic patterns of spatial clustering. Figure 4 
provides maps of bivariate LISA clusters (4a) and their statistical significance (4b). Based 
on the significance map, the cluster locations remain relatively unchanged even as the sig-
nificance threshold increases from p < 0.05 to p < 0.01.
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The high–high (HH) hotspots (dark red) are regions where census tracts with higher 
than average flood exposure are surrounded by tracts with higher than average social 
vulnerability. The majority occur in the US South, while smaller regional hotspots occur 

Fig. 4   Bivariate LISA of 100-year flood exposure and surrounding social vulnerability. a Cluster map and b 
Cluster significance
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across the CONUS. These spatial patterns are discernable in the CONUS maps for 
social vulnerability (Fig. 2) and population exposure (Fig. 3B), but are even more pro-
nounced in the bivariate results. The states with the highest percentage of tracts in HH 
hotspots are Mississippi (44%), Louisiana (35%), Florida (26%), South Carolina (21%), 
and Arkansas (20%). Urban hotspots are difficult to visualize on the national map due 
to the small size of census tracts in these places, but they occur in major metropoli-
tan areas, including St. Louis, Chicago, and Houston (Fig. 5). On balance, the census 
tracts in the hotspots are decidedly rural, with a population density of 73 people per 
square mile in habitable areas, compared to the national average of 110 for the CONUS 
(Table 3). Collectively, the HH clusters are home to approximately 19.4 million people.

The high–low (HL) clusters (dark blue) are regions where tracts with high flood 
exposure have neighboring tracts with low social vulnerability. These clusters are most 
prominent in the agricultural Midwest and suburban areas of major cities. Tracts in HL 

Fig. 5   Bivariate LISA for selected metropolitan areas

Table 3   LISA cluster 
characteristics

LISA cluster Tract count Population 
(millions)

Density (people 
per sq. mile)

High–High 4776 19.4 73.4
High–Low 3271 16.0 221.0
Low–High 7680 28.2 56.6
Low–Low 12,110 58.1 257.7
Non-Significant 44,064 194.6 107.7
Total 71,901 316.3 110.3
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clusters have a population density of 221 people per square mile in habitable areas, 
indicating that these places are much more urban than the national statistic. In total, 
the HL clusters are populated by approximately 16 million people.

The low–high and low–low clusters also demarcate places of bivariate extremes. 
The low–high clusters represent areas with low flood exposure with neighboring high 
social vulnerability and are home to approximately 28 million people. Extreme floods 
or changes in flood probability in these places could have an outsized impact due to 
high population susceptibility. Tracts in low–low clusters are more numerous and pop-
ulated. These places have the lowest levels of flood exposure and social vulnerability 
and warrant little attention from the perspective of flood vulnerability.

Table 4   Distinguishing characteristics of high–high clusters

Italic rows highlight indicators that decrease in mean value when moving into a HH cluster.

Rank Indicator High–High All others % Change

1 Mobile homes (%) 15.5 4.4 250.1
2 Black (%) 31.5 13.6 130.9
3 Native American (%) 1.4 0.7 110.5
4 Employment in Extractive industries (%) 3.5 1.9 84.8
5 Households earning > $200,000 annually (%) 1.6 6.8 − 75.7
6 Asian (%) 1.3 4.9 − 73.9
7 Less than 12th grade education (%) 22.2 12.8 73.5
8 Female-headed households (%) 19.3 11.8 63.9
9 Median housing value $118,628 $274,417 − 56.8
10 Poverty (%) 26.0 17.2 51.1
11 Civilian unemployment (%) 35.6 24.7 44.1
12 Population without health insurance (%) 17.2 12.0 43.8
13 Limited english proficiency (%) 22.4 15.9 41.1
14 Per capita income $18,487 $30,885 − 40.1
15 Employment in service industry (%) 23.0 17.6 30.8
16 Households receiving social security benefits (%) 37.0 28.7 29.1
17 Housing units with no car (%) 12.2 9.5 28.4
18 Median gross rent $785 $1037 − 24.3
19 Hispanic (%) 19.9 16.1 24.1
20 Children living in married couple families (%) 52.9 63.7 − 17.0
21 Nursing home residents per capita 0.0047 0.0041 15.7
22 Population < 5 years or >= 65 years (%) 23.5 20.6 14.3
23 Rent burdened (%) 38.9 34.6 12.4
24 People per unit 2.7 2.5 11.8
25 Renters (%) 32.1 29.0 10.9
26 Female participation in labor force (%) 48.8 45.0 8.5
27 Unoccupied housing units (%) 18.1 19.7 − 8.1
28 Female (%) 51.1 48.2 6.0
29 Median age 39.5 40.4 − 2.2
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4.2 � Spatial indicators of social vulnerability to floods

Due to the exploratory nature of LISA, the resulting spatial clusters lack statistical 
explanatory power. However, they do indicate places to focus further attention (Anselin 
et al. 2007). We do so to address research question 2: which indicators distinguish HH 
hotspots from other places? Table  4 presents the results of the hotspot interrogation, 
identifying indicators that substantially differ in mean value between tracts in HH clus-
ters and all other tracts. The italicized rows highlight indicators that decrease in mean 
value when moving into a HH cluster. The results pertain to the 100-year flood with 
LISA cluster significance of 0.05. We conducted additional analyses for a significance 
value of 0.01 and for the 500-year return period. Each of these parameter changes pro-
duced only a minor shift in locations of clusters and the rank order of indicators.

Table 5   Distinguishing characteristics of high–low clusters

Italic rows highlight indicators that decrease in mean value when moving into a HL cluster.

Rank Indicator High–Low All others % Change

1 Asian (%) 8.7 3.4 156.7
2 Households earning > $200,000 annually (%) 10.7 5.0 114.3
3 Black (%) 5.0 18.9 − 73.8
4 Unoccupied housing units (%) 7.2 21.8 − 66.9
5 Mobile homes (%) 2.6 7.0 − 63.2
6 Native AMERICAN (%) 0.4 0.9 − 57.4
7 Less than 12th grade education (%) 7.0 15.8 − 56.0
8 Median housing value $345,085 $229,126 50.6
9 Poverty (%) 10.2 20.4 − 50.0
10 Per capita income $39,614 $26,660 48.6
11 Population without health insurance (%) 8.1 13.8 − 41.5
12 Housing units with no car (%) 6.6 10.6 − 38.5
13 Median gross rent $1,287 $937 37.4
14 Female-headed households (%) 8.7 13.9 − 37.4
15 Civilian unemployment (%) 18.6 28.1 − 34.1
16 Children living in married couple families (%) 77.1 58.9 30.8
17 Hispanic (%) 12.6 17.5 − 27.9
18 Employment in service industry (%) 14.6 19.3 − 24.5
19 Households receiving social security benefits (%) 23.8 31.3 − 24.1
20 Renters (%) 33.8 28.6 18.0
21 Limited english proficiency (%) 14.5 17.5 − 16.9
22 Employment in extractive industries (%) 2.0 2.2 − 12.4
23 Population < 5 years or >= 65 years (%) 19.0 21.5 − 11.5
24 Rent burdened (%) 32.4 35.9 − 9.9
25 Nursing home residents per Capita 0.0045 0.0042 7.8
26 Median age 38.0 40.7 − 6.7
27 Female (%) 50.2 48.4 3.9
28 People per unit 2.6 2.5 3.5
29 Female participation in labor force (%) 46.5 45.5 2.2
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Demographically, the HH hotspots are distinct from other places. Of the 29 indica-
tors, 15 have an average difference of at least 30% when moving into a HH cluster. The 
largest disparities are for indicators of housing and race, with the hotspots located in 
places with substantially higher percentages of mobile homes (250% change), African 
Americans (131%), and Native Americans (111%). Other indicators with large differ-
entials include dependence on extractive industries, female-headed households, lack of 
health insurance, and limited English proficiency. Socioeconomic indicators of wealth, 
income, and educational attainment are all much lower in hotspots of flood exposure and 
social vulnerability. The $156,000 difference in median housing value is particularly 
striking. We applied a t-test to evaluate if the differences in indicator values between 
HH hotspots and elsewhere are statistically significant. The p-value for all indicators 
was statistically significant (< 0.01), except for nursing home residents (0.046) and rent-
ers (0.266).

Table 5 identifies indicators that substantially differ in average value between tracts in 
HL clusters and all other tracts. The italicized   rows in Table 5 highlight indicators that 
decrease in mean value when moving into a HL cluster. The values of all indicators were 
statistically different between HL clusters and elsewhere (p < 0.01). The HL clusters are 
census tracts where high flood exposure is surrounded by low social vulnerability. Decon-
structing the HL clusters directs attention to the low extreme of the social vulnerability 
continuum. Instead of asking which social characteristics compound physical flooding in 
places with high exposure, the HL clusters draw attention to the population characteris-
tics of highly exposed places that are relatively free from added strain  from high social 
vulnerability.

The top distinguishing indicators for HL clusters are race and income, with these places 
home to more Asian residents (157%) and high-income households (114%). Other dom-
inant characteristics include lower proportions of  Black and Native American residents, 
vacant homes, and mobile homes, and higher socioeconomic status (housing wealth, edu-
cational attainment, income) compared to the HH hotspots. Vacant homes are an indicator 
of neighborhood distress (Molloy 2016). As with the HH hotspots, indicators of age, rent-
ers, and gender are weak discriminators. Many of the dominant HL indicators overlap with 
those of the HH hotspots, but with a change in direction. In other words, indicators that 
increase in value when entering a HH hotspot decrease when entering a HL cluster, and 
vice versa. Although the HL and HH indicators are mirror images in direction, they are not 
so in percent change. For example, indicators of vacant housing and Hispanic ethnicity are 
weak discriminators of HH hotspots but are distinguishing characteristics of HL clusters.

5 � Discussion

5.1 � Population characteristics of flood vulnerability hotspots

Although not explanatory, the LISA findings help identify places and social vulnerabil-
ity dimensions that merit deeper attention. What are the societal processes underlying 
such high population disparities in floodplains, and how can flood mitigation planning be 
improved to address them? The HH and HL clusters can contribute to this understanding, 
as they characterize extremes of social vulnerability in highly flood-exposed places. The 
HH hotspots draw attention to places and populations potentially facing stark inequity in 
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flood exposure, while the HL clusters are places where the spatial linkage between high 
exposure and high social vulnerability is weak.

For each indicator in Tables 4 and 5, we averaged the values in the percent change col-
umn. Table 6 includes all indicators with an average change of at least 40%, producing a set 
of 12 indicators of social vulnerability to high flood exposure in the USA. The threshold of 
40% is arbitrary, but sufficiently high to establish a set of indicators to prioritize for deeper 
investigation and hypothesis formulation. The table column ’Relationship with Social 
Vulnerability’ denotes the direction that each indicator changes (increase/decrease) when 
entering a HH cluster. Reversing the signs gives the direction when entering a HL cluster. 
The leading indicators and their rank order are robust to a change in the flood hazard from 
the 100-year to the 500-year return period.

In what ways are the exposure-social vulnerability clusters unique? Principally, the 
hotspots are places characterized by housing and racial disparities. Previous studies have 
investigated the flood exposure of mobile home residents and found them to be vulner-
able due to widespread siting of mobile home parks in floodplains, structural fragility, 
and poverty (Shen 2005; Baker et al. 2014; Rumbach et al. 2020). Percentages of Black 
and Native Americans are also higher in hotspots. Numerous studies have documented 
the heightened flood exposure of Black residents (Ueland and Warf 2006; Bullard and 
Wright 2009; Chakraborty et  al. 2019a). By contrast, the body of scholarship explor-
ing the flood exposure of Native Americans is thin (Vickery and Hunter 2016). Both 
populations share histories of historical and contemporary subjection to discrimination, 
marginalization, and exclusion that are well understood through environmental justice 
research to produce disproportionate exposure to hazards. Collectively, the prominence 
of housing and race indicators highlights the multidimensionality of social vulnerabil-
ity, in that its leading causes extend beyond the common focus on income.

The HH hotspots are also distinguished by the relative absence of some populations, 
particularly Asian residents and high-income households. Overall, the high ranking 
of socioeconomic indicators of income, wealth, education, and occupation align with 

Table 6   Priority indicators of social vulnerability to flood exposure in the CONUS

Mean % change Indicator Relationship with 
social vulnerability

Social vulner-
ability dimen-
sion

156.7 Mobile homes (%) + Housing
115.3 Asian (%) − Race
102.4 Black (%) + Race
95.0 Households earning > $200,000 annually (%) − Income
84.0 Native American (%) + Race
64.8 Less than 12th grade education (%) + Education
53.7 Median housing value − Wealth
50.6 Female-headed households (%) + Family structure
50.5 Poverty (%) + Income
48.6 Employment in extractive industries (%) + Employment
44.4 Per capita income − Income
42.6 Population without health insurance (%) + Health
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existing conceptual and empirical understanding of social vulnerability (Fothergill and 
Peek 2004; Winsemius et al. 2018; Qiang 2019). However, the direction of the relation-
ship with the Asian (%) variable runs counter to its conceptualization in US indicator 
sets. It may be that race and ethnicity indicators like Asian (%) and Hispanic (%) are too 
broadly defined to serve as valid proxies for socially vulnerable populations (Montgom-
ery and Chakraborty 2015).

Based on population density, the hotspots are more rural than the national average. 
Much of what is understood about social vulnerability to floods stems from studies of 
disasters in urban areas, particularly those focused on Hurricane Katrina. Our findings 
suggest devoting greater attention to the driving processes and distinguishing charac-
teristics of social vulnerability in rural flood-prone settings (Cross 2001; Horney et al. 
2017; Jamshed et al. 2020). Deeper investigation of rural places may benefit methodo-
logically from experimentation with alternative land use/land cover information, such as 
the US building footprint dataset (ArcGIS Online 2019). Research has shown estimates 
of exposed total population to be sensitive to the resolution of flood hazard and popula-
tion data (Huang and Wang 2020), particularly for rural areas (Smith et al. 2019).

Notably absent from Table  6 are indicators of age and renters that are ubiquitous in 
social vulnerability models and empirical studies of flood disaster impacts. Their absence 
does not necessarily signify inconsequential relevance to social vulnerability to floods. It 
could be that the indicators of age and land tenure we employed are weak proxies for the 
underlying social vulnerability processes. An alternative potential explanation is that age 
and renter variables are salient for identifying disproportionality in disaster impacts and 
recovery outcomes (Jonkman et al. 2009; NASEM 2019), but not for discriminating places 
with high flood exposure. These variables may also be influential in a manner that is more 
intersectional than primary (Rufat et al. 2015; Rumbach et al. 2020), such as low-income 
renters and elderly residents of mobile homes.

Although this study has focused on individual indicators that distinguish hotspots, the 
findings are also relevant to index construction and indicator validation. The variables in 
Tables 4 and 6 are directly applicable to indicator selection, while the % Change column 
could serve as an empirical basis for assigning differential weights in an index. Regarding 
validation, recent efforts have used disaster outcomes to assess the explanatory power of 
social vulnerability indicators (Bakkensen et al. 2017; Rufat et al. 2019). The results of this 
study provide priority indicators for similar evaluation based on flood exposure, and meth-
odology to do so for other hazard outcomes.

5.2 � Implications for flood mitigation

While the clusters identify locations of heightened vulnerability, the distinguishing social 
indicators within them can inform changes to flood mitigation programs, policies, and 
interventions aimed at making them more socially equitable (Cutter et al. 2013). Although 
interventions to reduce flood impacts span disaster phases (i.e., mitigation, preparedness, 
response, recovery), social vulnerability processes and the most flood-susceptible popula-
tions differ from phase to phase (Rufat et al. 2015). The results of this study enable inter-
rogation of the relationship between vulnerable populations and flood exposure, a critical 
undertaking given connections among exposure, built environment vulnerability, and social 
vulnerability in explaining flood damage (Highfield et al. 2014). Because the clusters are 
based on probabilistic flood hazard, our findings are most applicable to flood mitigation 
and planning.
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The cluster locations can be used to tailor mitigation priorities. For example, floodplain 
managers in HH hotspots could place greater emphasis on both implementing solutions 
that both benefit households with elevated exposure and are customized to be accessible to 
socially vulnerable populations. Places with similar cluster typology might also be logical 
partners to share knowledge and best practices (Chang et al. 2018). The HL clusters of the 
Central Plains and Northeast are flood prone yet have a low regional social vulnerability. 
These are potential places to prioritize exposure reduction. This includes traditional land-
altering structural approaches such as levees, flood walls, detention basins, and green infra-
structure, as well as nonstructural measures that remove people from risky areas like land 
use planning, buyouts, elevating buildings, and early warning systems.

But focusing flood mitigation solely on reducing physical exposure may fail to protect 
the most socially vulnerable. Given the high flood exposure of HL clusters, these places 
are certainly sensible targets for mitigation investment. But the HL clusters are also char-
acterized by higher levels of wealth, racial homogeneity, and home ownership, meaning 
the mitigation benefits are likely to accrue to those with higher than average coping capac-
ity. Indeed, previous studies have highlighted income inequities in flood insurance (FEMA 
2018), inequities in race, ethnicity, age, wealth, and housing tenure in buyouts (Muñoz 
and Tate 2016; Siders 2018; Elliott et al. 2020), and racial inequities in storm water infra-
structure (Hendricks 2017) and home reconstruction (Bates and Green 2009). Hence, it is 
important to design mitigation programs that reduce disparities in protection, so that flood-
exposed populations equitably reap mitigation opportunities and benefits.

Consider the role of the economic benefit-cost ratio, which is a leading selection crite-
rion for national funding of structural mitigation projects. Projects with high ratios receive 
priority for US government support, but high ratios are also often associated with high 
asset values. Median house value is an indicator of asset value, and a major distinguishing 
characteristic of both HL and HH clusters. Median house value in HL clusters far exceeds 
those of other places (Table 5), while home values in HH hotspots are much lower than 
elsewhere (Table 4). As such, selecting structural mitigation projects based on benefit-cost 
ratio may preferentially allocate resources to places with low social vulnerability, while at 
the same time lead to funding denials or delays in socially vulnerable neighborhoods.

If the mitigation goal is to optimize both reduction in  physical risk and remedy to 
socially vulnerable populations, HH hotspots can be prioritized. Interventions in these 
places are more likely to address multiple dimensions of flooding: high physical exposure 
and high social inequity. A social equity emphasis in mitigation means prioritizing resource 
investments based on satisfying human needs (Sayers et al. 2018; Emrich et al. 2020). Such 
an approach aligns with the rising prominence of social resilience in flood mitigation (Flatt 
et al. 2019), which emphasizes strengthening social equity and resources alongside the tra-
ditional focus on reducing built environment and sectoral impacts. Given the raft of social 
disparities in HH hotspots, prioritizing these locations for flood mitigation could be a boon 
for improving community resilience to floods. Deeper interrogation of HH hotspots should 
yield not only a better understanding of processes generating social vulnerability, but also 
of the capacities of people in these places that can be leveraged for vulnerability reduc-
tion. The indicators in Table 6 provide a tool to spatially target mitigation investments and 
evaluate social equity in implemented approaches.
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6 � Conclusion

Using a unique combination of spatially continuous flood grids and bivariate cluster analy-
sis at the CONUS scale, this study has mapped multidimensional hotspots of flood expo-
sure and social vulnerability and identified dominant demographic characteristics within 
them. Mobile homes and racial minorities were the most overrepresented in hotspots and 
warrant greater attention in both flood mitigation and development of social vulnerability 
indicators. Most current measures of social vulnerability are generalized, meaning similar 
sets of indicators tend to be applied across a wide range of hazards, geographies, and dis-
aster phases. Few research efforts have connected indicator selection with specific hazard 
contexts. A primary contribution of this study is the generation of a set of social vulner-
ability indicators for the context of flood exposure in the USA.

Although the analysis focus was 100-year fluvial and pluvial flooding for the national 
level at the census tract scale, similar analyses can be implemented for regions, states, 
or disaster impact areas and employ different hazard surfaces. The LISA methodology is 
generalizable to different geographic scopes, analysis scales, flood hazards, and index con-
struction methods. Adjusting these analysis parameters may very well yield different hot-
spots geographies and dominant indicators to explore (Qiang 2019). It also allows custom-
izing mitigation decisions to the hazard and geographic scope of interest.

The exploratory nature of the spatial analysis leads to new questions regarding mitiga-
tion decisions for project prioritization, resource allocation, and program design. Do the 
characteristics of hotspots substantially differ between urban and rural settings? Urban 
areas are often the focus of flood mapping and vulnerability analysis (NASEM 2019), 
but far less is understood about the interacting physical and social vulnerabilities of rural 
places (Rolfe et al. 2020). How do mitigation expenditures compare between HH and HL 
clusters? Numerous studies have investigated risk reduction approaches such as structural 
mitigation, buyouts, and flood insurance, but relatively few have explored the associated 
degree of social vulnerability. What is the relationship between social vulnerability indica-
tors of flood exposure, flood impacts, and flood recovery? Addressing these and related 
questions can provide evidence to support the development of more socially equitable strat-
egies for flood risk reduction.
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