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Abstract
Landslide susceptibility is the likelihood of a landslide occurring in an area. The logistic 
regression (LR) method is one of the most popular methods for landslide susceptibility 
assessment. For rainfall-induced landslides, yearly or monthly rainfall is commonly used 
to establish a landslide susceptibility model by the LR method. It is a static susceptibility 
model, which limits the application to predict future landslide probability under potential 
rainfall event. This study presents a revised logistic regression method to achieve dynamic 
landslide susceptibility prediction under cumulative daily rainfall. Five kinds of cumulative 
daily rainfall are used in the landslide susceptibility assessment. The latest landslide events 
are used to update the landslide susceptibility model. The receiver operation characteristic 
curve and area under curve are utilized to evaluate the prediction reliability. The landslide 
susceptibility assessment in Shenzhen is taken as an illustration of the proposed method. 
The result indicates the method is capable to achieve a high accuracy of 91.9% when the 
landslide susceptibility model is updated using seven extreme rainfall events in the past 
10 years. This method provides an advance prediction of the potential geo-hazards for a 
large area using the future rainfall forecast.

Keywords  Natural disaster · Landslide susceptibility · Rainfall-induced landslide · Logistic 
regression method

1  Introduction

Landslides, as one of the most common natural geologic hazards, could cause huge loss 
of lives and property. According to the geological hazard bulletins of China in the past 
10 years, 90% of landslides were directly triggered by rainfall. For example, hundreds 
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of landslides were triggered by the heavy rainfall event in Shenzhen on June 13–14, 
2008. A severe rainfall event attacked Zhouqu, Gansu province on August 7, 2010, 
which caused a catastrophic accident with 1765 people died or missed (Li et al. 2010). 
Landslide susceptibility map portrays the landslides spatial distribution. It describes the 
relative likelihood of landslide occurrence based on the predisposing factors of a locale 
or site (Gupta and Joshi 1990; Guzzetti et al. 1999). Landslide susceptibility maps are 
used to study the landslides’ spatial and temporal distribution, to analyze the slopes that 
are likely to fail, to develop mitigation measures. Landslide susceptibility assessment is 
regarded as an effective method for landslide prevention and mitigation in a large area.

Statistical methods are frequently used to analyze landslide susceptibility. The com-
mon statistical methods include logistic regression (LR) method (Koutsias and Kart-
eris 1998; Zhao et al. 2019), analytic hierarchy process (Wu and Chen 2009; Quan and 
Lee 2012), weight-of-evidence method (Lee et al. 2013; Riaz et al. 2018), support vec-
tor machines (Kavzoglu et  al. 2014; Kumar et  al. 2017) and artificial neural network 
method (Ermini et  al. 2005; Bui et  al. 2020; Liu et  al. 2020; Zhang et  al.2020). The 
LR method has been one of the most popular methods to analyze landslide susceptibil-
ity because the calculated result is viewed as landslide probability by taking landslides 
and non-landslides as binary variables. However, the LR model is rarely used to predict 
landslide probability under future possible rainfall event when it is based on yearly or 
monthly rainfall which does not reflect the relationship between landslides and short-
term cumulative rainfall. Hence, it is valuable to establish a reliable dynamic revised 
logistic regression (RLR) model for predicting future landslide probability.

The topographic and geological factors of slopes such as slope angle, elevation, 
lithology and aspect are important to assess the landslide susceptibility (Li et al. 2011; 
Li and Zhang 2011; Monsieurs et al. 2019; Zhu and Zhang 2019). The average annual 
rainfall or monthly rainfall is frequently used to establish the landslide susceptibility 
model (Chan et  al. 2018). This model ignores the influence of short-term cumulative 
rainfall on landslide. The stability of slopes are highly depended on water content in 
soils that is affected by geological characteristics and a short-term cumulative rainfall 
event (Zhang et al. 2014; Li et al. 2015). Therefore, it is reasonable to study the short-
term cumulative rainfall effect when establishing the susceptibility model for rainfall-
induced landslides.

A LR model is established based on the landslide events by a specific proportion 
(Akgun 2012; Steger et al. 2017) or by their spatial distributions (Conoscenti et al. 2016). 
The LR model is not a proper model if the landslide susceptibility result is dissatisfying. It 
ignores the potential to improve the model’s performance that is affected by the variations 
of landslides and predisposing factors. The landslide records are ponderable resources to 
revise the model. The landslide susceptibility model gets updated considering the new rela-
tion between landslide events and predisposing factors. By this way, it is possible to predict 
regional landslide probability precisely over a long-time span based on a RLR model.

The short-term cumulative rainfall effect and a dynamic reliable revision method are 
both indispensable to analyze or predict future landslide probability. This study focuses 
on the landslide susceptibility assessment based on a RLR method and its application to 
predict landslide probability by introducing short-term cumulative rainfall event. In Sect. 2, 
a brief introduction to the study area is presented. In Sect.  3, LR method, RLR method 
and validation method are introduced. The landslide susceptibility results are presented and 
discussed in Sects. 4 and 5 based on the data of study area and the methods above. The 
result shows that the proposed method has a better performance on landslide probability 
prediction, which is useful for further landslide evaluation, prevention and mitigation.
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2 � Study area and database analysis

2.1 � study area

The study area is Shenzhen which is located in the south of China. It is bound by the longi-
tudes of 113°45′ E to 114°37′ E and the latitude of 22°27′ N to 22°52′ N. The land area of 
Shenzhen is about 1997 km2. The location of the study area is illustrated in Fig. 1.

The climate of Shenzhen is a subtropical marine monsoon climate. The average annual 
rainfall ranges from 1700 to 2000 mm during 2008 to 2018. The rainfall occurring between 
May and September accounts for about 70% of the average annual rainfall. Shenzhen is 
characterized by hills that are scattered around the city. Landslides are easily triggered at 
special geological sites if the rainfall is heavy in a period.

One of the basic standards of landslide susceptibility assessment is “Past is the key to 
future.” It is worthy to analyze the relationship between landslides and the related fac-
tors (Zhang et al. 2011a, 2011b; Wang et al. 2019). In this study, landslide database, rain-
fall database and four geological databases (include slope angle, elevation, lithology and 
aspect) have been collected from the government departments, data archives and related 
scientific institute, respectively. The digital resources can be used directly during the land-
slide susceptibility assessment process. The paper records should be transformed into digi-
tal data prior to the application. The introduction to these databases is listed in Table 1.

2.2 � Database source

2.2.1 � Landslide inventory

Rainfall-induced landslide events frequently occurred in Shenzhen. Four hundred eighty-
six rainfall-induced landslide events were recorded from 2008 to 2018 according to the 
statistical standard of life or economic loss. Figure  2 depicts the locations and yearly 

Fig. 1   Location of the study area
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Table 1   Databases used in the study

Database Source

Landslide Planning and Natural Resources Bureau of Shenzhen Municipality
Rainfall Meteorological Bureau of Shenzhen Municipality
Slope Geospatial Data Cloud Site, Computer Network Information 

Center, Chinese Academy of SciencesElevation
Aspect
Lithology National Geological Archives

Fig. 2   Landslide locations (a) and distribution in each year (b) in Shenzhen from 2008 to 2018
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distributions of the landslide events. Landslides spread all over Shenzhen as shown in 
Fig. 2a. Landslides mainly occurred around mountains. Some landslides scattered around 
the hills that are nestled in urban areas. Landslide events varied among years as shown in 
Fig. 2b. A large number of landslides occurred in 2008 and 2018, respectively. Three hun-
dred fifty-four landslides occurred in 2008, which takes up 72.8% of those in the landslide 
inventory. Two hundred ninety-seven landslides occurred in June 2008. The number of the 
landslides for the four remarkable days (13 June, 14 June, 26 June and 27 June of 2008) is 
188, 48, 32 and 29, respectively. A total of 66 landslides occurred in 2018, and 56% of the 
landslides take place on 30 August.

2.2.2 � Rainfall database

Rainfall plays the predominant role in rainfall-induced landslides. The rainfall data from 
2008 to 2018 is provided by Shenzhen Meteorological Bureau. The rainfall data are 
obtained from ten representative meteorological stations which scatter in the region of 
Shenzhen. The stations’ location and typical daily rainfall records are listed in Table 2.

2.2.3 � Geology database

Slope angle, elevation, lithology and aspect are utilized as typical geology factors. The 
factors should be processed before the establishment of the LR model. Lee et al. (2004) 
prove that the LR model has a poor performance when LR model works with a combina-
tion of continuous and categorical variables. In addition, the authors (Lee et al. 2004; Zhao 
et al. 2019) point out that the LR model using categorical variables showed excellent fit to 
training data. Considering that lithology and aspect are categorical variables rather than 
continuous variables, slope angle and elevation are also processed as categorical variables.

These factors are divided into different intervals among which the landslide events are 
classified. Hence, the criterion of the interval for slope angle and elevation are to balance 
the number of landslides in each interval. The classification of lithology and aspect is 

Table 2   Rainfall records of ten meteorological stations

Daily rainfall data in 2008 is listed in the table. Date format is “DD-MM”

Station Location Daily rainfall (mm)

08/06 09/06 10/06 11/06 12/06 13/06 14/06 15/06 16/06 17/06

Zhuzilin (114°0′, 22°32′) 10.1 0 0 34.9 0.8 151 121.5 31.2 0 40.6
Caiwuwei (114°6′, 22°32′) 7.7 0 0.3 24 8.2 201.9 78.5 25.4 2 44.2
Nanshan (113°55′, 22°31′) 6.3 0 0 60.6 0.5 95.9 114.7 32.9 1.3 16.4
Yantian (114°15′, 22°34′) 20.3 0 0.4 22.6 3.9 98.9 84.3 27 41.5 51.2
Shiyan (113°53′, 22°34′) 13.6 0 0 14.3 2.9 370.4 61.4 0.9 0.5 16
Longgang (114°14′, 22°43′) 5.9 0 3.6 10.5 6.8 223.6 70.9 21.3 17.4 32.3
Guangming (113°57′, 22°45′) 18.4 0 0 9 3.6 330.5 17.8 1.8 0 6.5
Kengzi (114°21′, 22°44′) 4.5 0 0 7.9 16.5 283.5 50.4 14.6 15.4 68.8
Xichong (114°31′, 22°39′) 18.3 0 0 14.7 5.2 51.8 117.1 47.4 22.1 87.5
Minzhi (114°1′, 22°37′) 5.2 0 0 57.0 2.6 181.4 106.2 24.4 0.4 29.8
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according to their natural characteristics. The classifications of the four geology factors are 
shown in Table 3.

2.2.3.1  Slope angle  Slope angle is regarded as an important terrain feature that affects 
the stability of slopes. The larger slope angle of the hill is, the more likely to fail and slide. 
According to the database, the land area of slope angle that is below 8° accounts for 60% 
of the whole land area. The area of slope angle that ranges from 8° to 15°, and 15° to 25° 
accounts for 19% and 14% of the whole area, respectively. The distribution of slope angle 
is illustrated in Fig. 3a.

2.2.3.2  Elevation  Elevation reflects the average landform of a region. The weather con-
ditions are various in high-elevation areas. Hence, elevation is commonly regarded as an 
important factor for rainfall-induced landslides. Shenzhen is a coastal city where elevation 
ranges from the sea level (0 m) to 945 m. The average elevation is from 70 to 120 m. Shenz-
hen is characterized by a relatively high altitude in the southeast and a relatively low altitude 
in the central and the northwest. The elevation distribution of Shenzhen is shown in Fig. 3b.

2.2.3.3  Lithology  Lithology directly determines the physical and mechanical properties of 
rocks and soils. Geological map records the lithology type of the strata. It is noted that the 

Table 3   The classes of four factors and its frequency ratio based on data of June 13–14, 2008

Factor Class Number of 
landslide

A. Landslide 
ratio (%)

B. Class 
area ratio 
(%)

Frequency 
ratio (FR) 
(A/B)

Slope 0°–8° 35 14.83 57.57 0.26
angle 8°–15° 63 26.69 18.92 1.41

15°–25° 72 30.50 16.24 1.88
 > 25° 66 27.96 7.27 3.85

Elevation 0–25 m 20 8.47 25.12 0.34
25–50 m 41 17.37 22.94 0.76
50–75 m 78 33.47 17.74 1.89
 > 75 m 96 40.68 34.20 1.19

Lithology Alluvial 17 7.20 5.17 1.39
Sandstone 26 11.02 15.28 0.72
Coal-bearing clastic rock 5 2.12 1.91 1.11
Interbedded sandstone and shale 47 19.92 19.42 1.03
Limestone 27 11.44 15.62 0.73
Granite 114 48.31 42.60 1.13

Aspect 0°–45° 32 13.56 14.28 0.95
45°–90° 27 11.44 11.26 1.02
90°–135° 35 14.83 12.20 1.22
135°–180° 35 14.83 12.99 1.14
180°–225° 36 15.25 13.65 1.12
225°–270° 25 10.59 12.50 0.85
270°–315° 24 10.17 12.10 0.84
315°–360° 22 9.32 11.03 0.85



103Natural Hazards (2021) 106:97–117	

1 3

Fig. 3   Predisposing factors of Shenzhen: a slope angle, b elevation, c lithology and d aspect
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weathered soil and residual materials in the surface of the landscape are also referred by 
the same lithology (e.g., granite rock and granite residual soils are referred as granite col-
lectively). The digital lithological map is depicted based on the original paper lithological 
map (1: 200,000 scale). The lithological distribution is mapped in Fig. 3c. Granite is the 
most widespread lithological unit that covers 43% of the whole land area. It distributes at the 
high-elevation areas. The area of interbedded sandstone and shale is about 19% of the whole 
area. The area of sandstone is close to the area of limestone, which occupies about 15% and 
16% of the whole area, respectively. The alluvial covers 5% of the whole area.

2.2.3.4  Aspect  Aspect indicates the direction of a slope faces. The aspect of a slope is an 
important factor that affects water content in the slope soils because it affects the amount 
of sunlight striking the earth’s surface (Li et al. 2011, 2014; Måren et al. 2015). Different 
aspects lead to a huge discrepancy of effective rainfall especially in high-elevation areas, 
which has great influences on landslide occurrence. Aspect is measured starting from the 
north as 0° and one clockwise cycle back to the north as 360°. Aspect was classified into the 
eight cardinal directions with an increment of 45° (N, NE, E, SE, S, SW, W, NW, N) and flat 
land (slope angle is 0°). The distribution of the aspect is shown in Fig. 3d.

2.3 � Database analysis

The characteristics of landslides are extracted to analyze landslide susceptibility based on 
those databases above. The factors’ characteristics were extracted by specific grids based 
on the GIS platform. In this study, the SRTM DEM (30 m) was utilized because it is an 
open free resource which has been used for decades in scientific research. The high-reso-
lution DEM is not utilized because the performance of the landslide susceptibility model 
is not very sensitive to the spatial resolution from 5 to 30 m (Zhao et al. 2019). Besides, 
the high-resolution DEM (finer than 10  m) may decrease the representativeness of the 
local surface topography during the susceptibility assessment (Tarolli and Tarboton 2006). 
Therefore, it is reliable to extract the factors’ characteristics from the SRTM DEM (30 m).

The predisposing factors are characterized into classes for further analysis. Rainfall in 
five cumulative periods is considered. The rainfall threshold of each class depends on the 
cumulative period. The first classes of the cumulative rainfall from 1-day to 5-day are 100, 
120, 150, 180 and 200 mm, respectively. The increment each class is 50 mm for 1-day rain-
fall. The increment each class is 60 mm for 2-day to 5-day rainfall. Five cumulative rain-
fall maps were generated by the rainfall data of ten representative meteorological stations. 
Here, the kernel interpolation method was used to calculate the rainfall at various locations 
and generate the rainfall maps as it can effectively reduce the interpolation error by involv-
ing ridge parameters (Hoerl and Kennard 1970). The cumulative rainfall interpolations on 
June 13, 2008, are depicted in the examples in Fig. 4.

3 � Method

3.1 � LR method

The LR method is a predictive analysis process where the dependent variables are the 
events and the independent variables are formulated by the predisposing factors. The 
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dependent variables are dummy variables in the process of landslide susceptibility anal-
ysis. The value 0 refers to a non-landslide event (also called as negative cell) and 1 
refers to a landslide event (positive cell).

When using the P(Y = 1) = α + βx to calculate landslide probability, the outcome of 
the equation may be > 1 or < 0 mathematically, although the landslide probability must 
range from 0 to 1 from a practical point of view. To avoid this anomaly, the LR method 
forms the expression by creating the logit (P) which is defined as:

where P(Y = 1) represents the predicted probability of landslide occurrence during the 
landslide susceptibility analysis, xi (i = 1, 2, …, n) represents the ith predisposing factor, 
α and βi (i = 1, 2, …, n) are the coefficients of the predisposing factors. The process to cal-
culate the coefficients refers to the previous literatures (King and Zeng 2001; Hosmer and 
Lemeshow 2005).

Equation (1) is transformed to Eq. (2):

(1)log it(P) = ln
P(Y = 1)

1 − P(Y = 1)
= � + �1x1 + �2x2 +⋯ + �nxn

Fig. 4   Interpolation map of cumulative rainfall of a 1-day, b 2-day, c 3-day, d 4-day and e 5-day before June 
13, 2008.
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Both landslide events (positive cells) and non-landslide events (negative cells) are 
important to establish the model. The landslide samples were set as positive cells in the 
original LR model after the preliminary analysis of landslides information. The non-land-
slides were set as negative cells and inputted into the LR model. By the Data Management 
Tools in ArcGIS, non-landslide points were selected randomly all over Shenzhen based on 
the criteria that non-landslide points were 200 m away from the landslide points and not 
located at the grids of water. Meanwhile, ten subsets of non-landslides are created to calcu-
late the average value for evaluating the model’s performance considering the randomness 
of the non-landslide samples.

3.2 � RLR method

The LR model has a unique expression when it is established. Landslide susceptibility 
index (LSI) is frequently used to assess the relation between landslide events and pre-
disposing factors in the established landslide susceptibility model (Devkota et  al. 2013; 
Kavoura and Sabatakakis 2020). The LSIij of the class j of the factor i is shown as follows:

where Wi is the weight of the factor i, FRij is the frequency ratio (FR) of the class j of the 
factor i.

The weight of the factors (e.g., rainfall, slope angel, elevation, lithology and aspect) 
Wi can be evaluated by the area under curve (AUC) value using the method proposed by 
Kavoura and Sabatakakis (2020). The curve refers to the receiver operation characteristic 
(ROC) curve. Different scenarios are used to obtain each factor’s weight. The scenario-1 
consists of all five factors (rainfall, slope angle, elevation, lithology and aspect). From sce-
nario-2 to scenario-6, one of five factors is excluded in sequence to evaluate the weight of 
this excluded factor separately. If the AUC value is high, the weight of the excluded factor 
is small and vice versa. Note that five cumulative periods of rainfall are discussed in each 
scenario. The method to assess the relative weight by AUC is introduced simply as below:

where (1−AUC​ave) refers to the credibility of the excluded factor.

where Lij is the landslide ratio of the class j of the factor i, Aij is the area ratio of the class j 
of the factor i. FRij varies as more data are added in the LR model. It is noted that the dis-
tribution of every rainfall varies widely. This study assumes that the rainfall’s weight var-
ies, and FRij value keeps the same in order to avoid statistical anomaly caused by extreme 
rainfall events (e.g., rainfall concentrated in small regions or the quick movement of rain-
fall center).

The weight of each factor and the FR of each class of factor change when new land-
slide events are added into the previous landslide susceptibility model, which results in the 

(2)P(Y = 1) =
exp(� + �1x1 + �2x2 +⋯ + �nxn)

1 + exp(� + �1x1 + �2x2 +⋯ + �nxn)

(3)LSIij = Wi × FRij

(4)Wi =
1 − AUCave

∑

(1 − AUCave)

(5)FRij =
Lij

Aij
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variation of the LSI dependently. The ΔLSIij(k) which denotes the LSI variation of the class 
j of the factor i after the kth time of adding landslide events is obtained as follows:

where LSIij(k) is the LSI of the class j of the factor i after the kth time of adding landslide 
events (k = 1,2,…,m).

For the local grid g to be predicted, the corresponding total LSI variation ΔLSIijg(k) can 
be obtained as follows:

where ΔLSI(k)
ijg

 and LSI(k)
ijg

 are the LSI variation and the LSI of the class jg of the factor i cor-
responding to the grid g after the kth time of adding landslide events, respectively. LSI(k-1)

ijg
 

is the LSI of the class jg of the factor i corresponding to the grid g after the (k−1)th time of 
adding landslide events.

The coefficients change when new landslide events are added into the LR model. Then, 
Eq. (2) can be transformed to:

where Pg(k)(Y = 1) is the landslide probability for the local grid g to be predicted after the 
kth time of adding landslide events.

The process of event-added is regarded as a dynamic revision process by this way. As a 
consequence, the LR model is revised when landslide events and related factors are added. 
It is helpful to predict landslide probability in the future rainfall event.

3.3 � Validation method

Landslide database records the landslide events occurred from 2008 to 2018. There were 
188 landslides on 13 June and 38 landslides on 14 June of 2008, respectively. Two hundred 
twenty-six landslides were set as positive cells in the traditional LR model at first. King 
and Zeng (2001) proved that the LR model shows the best estimate to training samples 
when the non-landslide and landslide samples are applied equally if a limited landslide 
inventory is available. Therefore, it is the same amount of non-landslide samples as the 
landslide samples are applied in this study. Five factors were studied in the original LR 
model. Note that rainfall refers to five periods of cumulative rainfall (1-day to 5-day).

During the process of validation, the landslide samples were randomly divided into a 
training group (70% of the samples) and a validation group (30% of the samples). The non-
landslide samples are divided by the same way.

The ROC curve and AUC are used to assess the performance of the LR model. The 
ROC curve is constructed by plotting sensitivity (true positive rate, TPR) against speci-
ficity (false positive rate, FPR). The TPR is the proportion of cells that are correctly pre-
dicted to be positive in positive cells. The FPR is the proportion of cells that are incorrectly 

(6)ΔLSI
(k)

ij
= LSI

(k)

ij
− LSI

(k−1)

ij

(7)

ΔLSIg(k) =

n
∑

i=1

ΔLSI
(k)

ijg

=

n
∑

i=1

[

LSI
(k)

ijg
− LSI

(k−1)

ijg

]

(8)Pg(k)(Y = 1) =
exp

[

� + �1x1 + �2x2 +⋯ + �nxn + ΔLSIg(k)
]

1 + exp
[

� + �1x1 + �2x2 +⋯ + �nxn + ΔLSIg(k)
]
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predicted to be positive out of all negative observations. The performance of the LR model 
is regarded as acceptable, excellent and outstanding performance when the AUC is larger 
than 0.7, 0.8 and 0.9, respectively.

The simplified flowchart in this study is illustrated in Fig. 5.

4 � Results

4.1 � Performance of LR model

Table 4 lists the success rate of the validation samples. The cumulative rainfall affects the 
success rate of the LR model. The success rate of landslides is not the same as the success 

Fig. 5   Simplified flowchart of research methodology

Table 4   Success rate of validation samples of the original LR model

X-D refers to model based on x-day rainfall. N-L refers to non-landslide prediction. L refers to landslide 
prediction

Category Success rate of ten subsets (%)

1 2 3 4 5 6 7 8 9 10 Ave

1-D N-L 68.0 73.3 78.7 73.3 81.3 74.7 72.0 76.0 74.7 72.0 74.4
L 73.0 77.8 69.8 77.8 69.8 74.6 76.2 69.8 68.3 74.6 73.2

2-D N-L 76.0 73.3 80.0 76.0 76.0 72.0 77.3 76.0 69.3 72.0 74.8
L 77.8 72.4 76.2 77.8 71.4 76.2 76.2 69.8 74.6 76.3 74.9

3-D N-L 75.5 73.3 72.0 73.3 73.6 76.0 76.0 76.0 72.0 80.0 75.2
L 76.2 77.8 74.6 76.2 72.3 76.2 76.2 73.0 76.2 76.2 75.5

4-D N-L 73.3 74.7 76.0 77.3 73.0 76.0 77.3 80.0 73.3 78.7 76.0
L 73.0 77.8 74.6 76.2 75.8 77.8 77.8 75.8 74.2 74.2 75.7

5-D N-L 75.2 76.0 77.3 76.3 74.7 73.3 72.3 74.7 73.3 73.3 74.6
L 76.2 74.6 73.0 73.0 71.4 74.6 74.6 68.3 71.4 69.8 72.7
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rate of non-landslides in the same cumulative rainfall condition. The average success rate 
under 4-day cumulative rainfall is the highest where the average success rate is 76.0% for 
non-landslides validation and 75.7% for landslides validation. The average success rate 
under 5-day cumulative rainfall is the worst where the success rate is 74.6% for non-land-
slides and 72.7% for landslides validation.

Figure 6 depicts the distribution of the ROC curves and the AUC values. All combina-
tions show excellent fittings to their training data because the mean value of AUC is over 
0.8. Among five categories of cumulative rainfall, the mean AUC value of 4-day model is 
the highest (0.857) and the AUC of 3-day ranks the second (0.855). The mean AUC value 
of 1-day model is the lowest (0.842).

The model of 4-day rainfall has the highest success rate and AUC, which indicates it 
behaves the best performance. Therefore, the model of 4-day rainfall is utilized to predict 
landslide probability in next steps.

4.2 � Prediction by LR model

The outcome calculated by Eq.  (2) represents the landslide probability (Bhandary et  al. 
2013; Devkota et al. 2013). By introducing 4-day cumulative rainfall of June 23–26, 2008, 
into the model, the predictive landslide occurrence probability on 26 June was analyzed. 
Thirty-two landslide events were recorded on that day. The prediction to a landslide site is 
regarded as a successful prediction when the predictive landslide probability on site is over 
0.5 (Devkota et al. 2013; Jiang et al. 2013).

The first predictions by the LR model are not satisfying. Eighteen landslide events were 
predicted with a landslide probability over 0.5, which accounts for 56.3% (18/32) of the 
recorded landslide events. Fourteen landslide events are judged as non-landslides because 
the predictive probability is below 0.5. The original LR model is revised according to the 
variation of the LSI when new landslide events are added.

4.3 � Weight and FR value

Table  5 lists the weight of each factor in the original LR model. The weight differs 
from factor to factor. The weight of slope angle, rainfall, elevation, lithology and aspect 
decreases in order. The weight of slope angle is 0.242, which indicates the slope angle 
is the highest-weight factor in the original LR model. The weight of rainfall is 0.241 that 

Fig. 6   Performance of model based on five cumulative rainfall, a ROC curves and b AUC value
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is close to the weight to slope angle. The weight of elevation and lithology is 0.178 and 
0.175, respectively. Aspect is the least-weight factor, and its weight is 0.165. Slope angle 
and rainfall are most important predisposing factors in the original LR model.

When new landslide events are added into the LR model, the new weights of each fac-
tor are discussed. Figure 7 shows the varied weights during the event-added process. The 
weight of slope angle increases from 0.242 to 0.248 in the beginning and decreases to 
0.231. Then it keeps steady with the value of 0.231 from third time to the end. The rain-
fall’s weight decreases from 0.241 to 0.224 in the first two times and varies softly in the 
later revisions. The variation mode of elevation, lithology and aspect differs from slope 
angle and rainfall. Their weights have small growths at first two times and remain constant 
in the later times. Five factors’ weights begin to be steady gradually, which indicates that 
factors in the susceptibility model keep stable when landslide samples cover enough pre-
disposing conditions.

The FR of five factors performs different variations during the event-added process. Fig-
ure 8 illustrates the FR of each factor. The FR in the slope angle of 0° to 8°varies little 
when landslide events are added, and the FR of elevation under 25 m varies little as the 
same, which indicates landslides rarely took place in these two classes. The landslides are 
more inclined to took place in other classes of slope angle and elevation. The FR value of 
slope angle and elevation in other classes keeps rising slowly. It is a complicated variation 
in FR of lithology and aspect; the FR value increases randomly as the events are added.

Figure 9 shows the LSI results calculated as Eq.  (3) when landslide events are added 
into the original LR model. The LSI of each factor varies during the dynamic process. New 

Table 5   Weight of each factor in 
the original LR model of 4-day 
rainfall

Scenario Factor checked AUC​ave 1−AUC​ave Weight 
(1−AUC​ave)/
Summary

2 Rainfall 0.776 0.224 0.241
3 Slope angle 0.775 0.225 0.242
4 Elevation 0.835 0.165 0.178
5 Lithology 0.838 0.162 0.175
6 Aspect 0.847 0.153 0.165

Summary 0.929 1

Fig. 7   The weights of five factors 
during the event-added process 
based on model of 4-day rainfall.
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LSI of the LR model is more representative than the previous model. In this dynamic pro-
cess, the statistical anomaly of the model decreases, which helps to get a reliable relation 
between the model and factors.

4.4 � Performance of RLR model

Figure  10 shows the landslide prediction outcome based on the original LR model and 
RLR model. The accuracy of the RLR model is higher than that of the original LR model, 

Fig. 8   The frequency ratio of each class of a slope angle, b elevation, c lithology, d aspect and e 4-day 
rainfall
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which indicates the RLR method works. The prediction accuracy rises from 65.3% to 
91.9% as revision times increase. In the last prediction, the models were aimed to pre-
dict regional landslide probability on August 30, 2018, when 37 rainfall-triggered landslide 
events were recorded. The prediction accuracy reaches to 81.1% (30/37) of 4-day rainfall 
by the LR model. It rises to 91.9% (34/37) by the RLR model. The RLR model has an 
obvious improvement in future landslide probability prediction by introducing rainfall 
events compared with the original LR model.

Three landslide events were predicted as non-landslides by the RLR model of 4-day 
rainfall. They located at the hills which are closed to the roadway in the urban areas, 

Fig. 9   The landslide susceptibility index (LSI) during event-added process of a slope angle, b elevation, c 
lithology, d aspect and e 4-day rainfall
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where inner geological structures of the hills may have been highly influenced by human 
activities in the past few years. According to the calculation of the RLR model on 4-day 
rainfall, the landslide susceptibility distribution in Shenzhen is illustrated in Fig.  11. 
The locations of realistic landslide events are highly consistent with the regions where 
landslide susceptibility value is over 0.5.

Fig. 10   Landslide prediction 
accuracy based on original (LR) 
and revised (RLR) model of the 
cumulative rainfall of 4-day

Fig. 11   Landslide susceptibility map (4-day rainfall) and the locations of recorded landslide events on 
August 30, 2018
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5 � Discussions

5.1 � Influence of cumulative rainfall effect

The model of 4-day cumulative rainfall yields the highest AUC value among the original 
LR models from 1-day to 5-day cumulative rainfall. The AUC of the 3-day rainfall model 
is the second highest. There are two main reasons that can be explained to this trend. First, 
short-term cumulative rainfall will lead to a huge discrepancy in water content of the soils, 
which significantly affects the slope stability (Li et al. 2017; Song et al. 2017, 2018). Sec-
ond, the rainfall interval between two rainfall events commonly extends to days or weeks 
in Shenzhen from the weather records, which indicates that short-term cumulative rainfall 
is more representative to take susceptibility assessment for rainfall-induced landslides. The 
result is this study also agree that the period of useful antecedent rainfall for landslide pre-
diction should not exceed a week (Ma et al. 2014; Monsieurs et al. 2019).

5.2 � Performance of LR model in event‑added process

The proposed method takes the variation of weight and FR of factors into consideration. 
The LR model is revised by the LSI variation when more landslide events are added. 
The weight and FR vary during the revision process. Consider that the changes are help-
ful to revise the random statistic dispersion caused by some extreme landslide events. For 
instance, the weight of each factor increases except rainfall during the first time of event 
added. The recorded landslide events were occurred on June 25–26, 2008, when typhoon 
Fengshen swept Shenzhen with a speed over 30 m/s. A moderate future rainfall event easily 
triggers slopes to slide because some natural slopes were probably destabilized by plant-
uprooting during the extreme typhoon event.

5.3 � Prediction accuracy of RLR model

The original LR model predicts poorly in landslide probability. The prediction accuracy of 
the original LR model is less than 60%. However, the RLR model achieves the update that 
helps to predict landslide probability better. The RLR model gets a more satisfying predic-
tion with an accuracy of 91.9% that is higher than the accuracy of the LR model. Besides, 
the proposed method shows a satisfying prediction accuracy compared with previous stud-
ies on landslide susceptibility by the LR method or neighboring areas (Table 6). Therefore, 

Table 6   Comparison of landslide prediction accuracies by LR method

Author (year) Study area Numbers of 
factors

Prediction accuracy (%)

Dai and Lee (2003) Hong Kong, China 7 89.5
Bhandary et al. (2013) Shikoku, Japan 8 Below 65.0
Jiang et al. (2013) Shenzhen, China 1 79.8
Ramani et al. (2011) Kodaikkanal, India 10 85.3
Lee et al. (2013) Gangwo, Korea 15 85.4
This paper Shenzhen, China 5 91.9
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it can be stated that the results achieved in this study are meaningful to landslide prediction 
and prevention.

6 � Conclusions

This study demonstrates that the RLR model can be successfully used to predict landslide 
probability by introducing cumulative rainfall. Some remarkable conclusions can be drawn:

(1)	 It is possible to establish a LR model to predict landslide probability based on short-
term cumulative rainfall. The performance of the LR model varies with cumulative 
rainfall periods. The LR model of 4-day rainfall shows best reliability in the study area.

(2)	 It is significant to update the LR model when the landslide events are added into the 
model. The RLR model gets revised according to the changes of weight and FR. The 
RLR model performs better than the original model to predict landslide probability. The 
new RLR model is optimal to get advance predictions on future landslide probability, 
which is helpful to regional landslide prevention and mitigation.
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