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Abstract
This study performs a comparative evaluation of Frequency Ratio (FR), Analytic Hierarchy 
Process (AHP), and Fuzzy AHP (FAHP) modeling techniques for forest fire susceptibility 
mapping in Pauri Garhwal, Uttarakhand, India. Locations of past forest fire events reported 
from November 2002 to July 2019 were collected from the Uttarakhand Forest Department 
and Forest Survey of India and combined with the ground observations obtained from the 
manual survey. Then, the locations were categorized into two groups of 70% (10,500 loca-
tions) and 30% (4500 locations), randomly, for training and validation purposes, respec-
tively. Forest fire susceptibility mapping was performed on the basis of fourteen differ-
ent topographic, biological, human-induced and climatic criteria such as Digital Elevation 
Model, Slope, Aspect, Curvature, Normalized Difference Vegetation Index, Normalized 
Difference Moisture Index, Topographic Wetness Index, Soil, Distance to Settlement, Dis-
tance to Road, Distance to Drainage, Rainfall, Temperature, and Wind Speed. The Receiver 
Operating Characteristic curve and the Area Under the Curve (AUC) were implemented 
for validation of the three achieved Forest Fire Susceptibility Maps. The AUC plot evalua-
tion revealed that FAHP has a maximum prediction accuracy of 83.47%, followed by AHP 
(81.75%) and FR (77.21%). Thus, the map produced by FAHP exhibits the most satisfac-
tory properties. Results and findings of this study will help in developing more efficient 
fire management strategies in both the open and the protected forest areas (Rajaji and Jim 
Corbett National Park) of the district.
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1 Introduction

According to the recent reports of global Forest Resources Assessment (FRA) of the Food 
and Agriculture Organization (FAO), United Nations, world forests occupy an area of 4.06 
billion hectares, representing 30.60% of the planet’s total surface area (Fao 2015). Forests 
are the primary natural resources and nature’s most enormous bounty to humanity that play 
a central role in sustaining ecological balance and shaping the journey of human civiliza-
tion. But forests around the world are under threat, jeopardizing all the advantages. The 
threats manifest themselves in the form of deforestation and forest degradation. Along with 
other factors, forest fires are the significant cause of deforestation and forest degradation 
(Hosonuma et al. 2012). The increasing rate of forest fires directly causing a steep reduc-
tion in biodiversity, deforestation, and climate change, across the world. The significance 
of the damage caused by forest fires vary in different regions since fire intensity depends 
on local topographical patterns and climatic conditions (Jazireie 2005). India is one of the 
ten most forest-rich countries in the world. According to the latest India State of Forest 
Report (ISFR) by Forest Survey of India (FSI), the total forest cover of India is estimated 
as 802,100 km2, which constitutes 24.39% of the country’s geographical area (Jadhav et al. 
2019). The recent years have witnessed an alarming rise in forest fires across India. Accord-
ing to the Real-Time Forest Alert System of FSI, the number of forest fires increased to 
14,107 from 4225 between November 2018 and February 2019 (Elavarasan et al. 2019). 
These cases of forest fires occur regularly in many parts of India. In 12 months, approxi-
mately 20,000 occurrences of forest fires are stated in Indian forests, particularly from the 
states having the most rugged topography. These states are Himachal Pradesh, Jammu and 
Kashmir, Manipur, Nagaland, Tamil Nadu, and Uttarakhand (Sahana and Ganaie 2017). 
Amongst all these hilly states, Uttarakhand stands out as having the most forest fires in 
highly rugged topography (AVHRR and VIRSAA 2016).

The northern state of India, Uttarakhand is mostly forested (24,240 km2, 45.32% of the 
state’s geographical area) and consistently displays forest fire activity from February to 
June, with a peak in fire events in May and June (AVHRR and VIRSAA 2016). Every 
year, forest fires in different districts of Uttarakhand (Uttarkashi, Dehradun, Rudraprayag, 
Tehri, and Pauri Garhwal) cause significant loss to the forest ecosystem, diversity of flora 
and fauna and economic wealth. Pauri Garhwal district is home to one of the last remain-
ing stretches of dense forests in Uttarakhand. Chir pine (Pinus roxburghii), deodar (Cedrus 
deodara), and blue pine (Pinus wallichiana) trees of the district are very susceptible to fires 
(Negi and Kumar 2016). According to Global Forest Watch, in May 2018, this district wit-
nessed the highest number of fires among all districts in the country (Hughes 2018). The 
uncontrolled forest fires not only kill thousands of smaller mammals, ground-nesting birds, 
insects, and reptiles but also cause severe long-term effects by destroying habitats and food 
sources in the protected forest range of the Rajaji and the Jim Corbett National Park of the 
district. To minimize the devastating impact of forest fires and to maintain healthy forest 
reserves, solutions must be developed using state of the art space technology. These solu-
tions will help the disaster response units and administrations to prepare for forest fire risk 
assessment, management, and prevention.

Efforts to study the factors governing forest fire spread and other measures of fire behav-
ior were started with the development of different theoretical (Wallace 1946; van Wag-
ner 1967; Albini 1985), semi-empirical (Frandsen 1971; Catchpole et al. 1998; Vega et al. 
1998) and empirical models (Cheney et  al. 1998; Hargrove et  al. 2000). These models 
were based on the series of equations that correlate different climatic attributes to the fire 
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behavior indicators and provide the most elementary notions of forest fire dynamics. Later, 
in Mediterranean Europe, the United States, Canada, and Australia, to develop completely 
operational models which could forecast all types of forest fire behaviors, these equa-
tions are integrated to develop different forest fire computational systems (like McArthur 
fire-danger Grasslands and Forest Meters) (Noble et  al. 1980). The gradual introduction 
of computers as work tools in the 1980s prompted the appearance of forest fire opera-
tional models, which were based on different mathematical concepts. Since then, several 
researchers developed and tested different operational models such as Behave (Burgan 
1984), Csiro fire calculator (Crane 1982), FARSITE (Finney 1998), FBP System (Taylor 
and Alexander 1966), FireLab (Guarnieri et al. 1998) to predict fire behaviors and iden-
tify fire risk zones. These computationally enriched probabilistic models started allowing 
operators to utilize the Geographic Information System (GIS) layers. The adaptation of 
GIS helped forest fire researchers to make a qualitative leap forward, which was primarily 
needed for forest fire risk assessment and future planning (Blanchi et al. 2002). In contrast 
to probabilistic techniques, statistical techniques are more appropriate for modeling for-
est fires when the study area is large (Cumming 2001). This is because statistical tech-
niques can receive and execute the geospatial dataset of a vast area with diverse scales 
and resolutions. Various statistical techniques were developed and implemented for forest 
fire modeling, such as logistic regression (Vasconcelos et al. 2001), Monte Carlo simula-
tions (Gardner et al. 1999), and multiple linear regression (Chuvieco and Salas 1996; Cruz 
et al. 2002). In the last one decade, large number of researchers have implemented machine 
learning and deep learning techniques like support vector machines (Zammit et al. 2006; 
Petropoulos et al. 2010), random forest (Oliveira et al. 2012), maximum entropy (Liu and 
Yang 2013), deep convolutional neural network (Zhang et al. 2016), and artificial neural 
network (Zhang et al. 2009; Satir et al. 2016) for mapping and modeling different forest fire 
indicators. Nowadays, GIS, in integration with Remote Sensing technology, is increasingly 
employed in all the different perspectives of forest fire prediction, prevention and man-
agement (Sahana and Ganaie 2017; Chuvieco and Salas 1996; Chuvieco and Congalton 
1989; Ambrosia et al. 1998; Keane et al. 2001; Jaiswal et al. 2002; Erten et al. 2004; Dong 
et al. 2005; Pradhan et al. 2007; Chavan et al. 2012; Adab et al. 2013; Pourghasemi 2016; 
Ljubomir et al. 2019).

Frequency Ratio (FR) is an easy to implement statistical forest fire susceptibility map-
ping technique. The FR has a key advantage that it is able to analyze the historical link 
between forest fire causative criteria and the distribution of past forest fire locations as well 
as determine whether a given range of causative criteria values will be threatening in the 
case of forest fire occurrences or not (Sahana and Ganaie 2017; Pradhan et al. 2007). Sta-
tistical modeling technique-based FFSMs are prone to uncertainties due to size and distri-
bution of available training dataset (Sahana and Ganaie 2017; Pradhan et al. 2007; Chavan 
et al. 2012). Multi-Criteria Decision Analysis (MCDA) techniques have been developed to 
make decisions in situations where decision-making criteria are conflicting, and the selec-
tion between alternatives is complex (Greco et al. 2016). The most popular and commonly 
used MCDA technique is the AHP. AHP is a heuristic-based flexible, robust, and simple 
MCDA approach which uses the crisp numerical values of intrinsic data elements for the 
evaluation of criteria (Bouyssou et al. 2006). It disintegrates the problem into a hierarchy 
and guarantees that both qualitative and quantitative perspectives are integrated into the 
investigation. Since AHP addresses the issue of the subjectivity inherent in individual eval-
uations, it is recognized as an improvement compared to other statistical decision-making 
techniques. However, AHP has its own limitations. The crisp numerical values cannot con-
sider the complexity and the uncertainty associated with the judgment of decision makers. 
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The decision difficulty of forest fire risk analysis is normally under ambiguity (Bouyssou 
et  al. 2006; Chandio et  al. 2013). Thus, conventional AHP technique might not enough 
to provide effective decision in forest fire susceptibility mapping. As fuzziness is a natu-
ral component of decision-making problems, the FAHP technique has been developed to 
address this issue by enabling decision makers to define approximate preferences through 
fuzzy numbers (Kahraman et al. 2003). This gives a much better and more exact represen-
tation of the relationship between criteria and alternatives.

The aim of the current study is to perform a comparative assessment of GIS and Remote 
Sensing enabled FR, AHP and FAHP techniques for forest fire susceptibility mapping. Sat-
ellite images, topographic maps, meteorological datasets and different auxiliary informa-
tion collected from diversified sources are used with selected techniques to produce FFSMs 
in the Pauri Garhwal district of Uttarakhand, India. This study is one of the few detailed 
research works conducted for identification and mapping of forest fire susceptibility zones 
in one of the most adversely affected districts of Pauri Garhwal in Uttarakhand, India. The 
main difference between this study and the approaches described in the aforementioned 
researches is that we have implemented FAHP technique and compared the results with 
AHP and FR techniques in the selected study area. Also, a diversified set of expert view-
points are utilized for determining the rules and conditioning criteria weights in AHP and 
FAHP. Fourteen causative criteria helped to thoroughly investigate the possible influences 
of every possible forest fire precondition and activity with reference to topographical, bio-
logical, anthropogenic and climatic characteristics of selected study area. Therefore, it is 
predicted to have better results than the past studies.

2  Material and methods

2.1  Study area

The study area of this research is the Pauri Garhwal district of Uttarakhand state of India. 
Location map of the study area is shown in Fig. 1. The geographic location extent of Pauri 
Garhwal district lies in between 78°24′ E to 79°23′ E Longitude and 29°45′ N to 30°15′ N 
Latitude. Being situated at the foothills of the Garhwal Himalaya, this region comprises 
of dense forest areas, tall grassland, shrub land and cultivated farmlands, thus ideally pro-
viding enough forest fuel and favorable conditions for forest fires. This district has total 
geographic area of 5329 km2, out of which the major area of total 3269 km2 is under forest 
cover. Total forest area is divided into three major forest divisions, namely Garhwal forest 
division (Garhwal Circle), Lansdowne forest division (Shivalik Circle) and Corbett tiger 
reserve (under control of Director Corbett tiger reserve) (Tyagi and Veer 2016). Together 
these three divisions hold 519 km2 of very dense forest, 1954 km2 of moderately dense 
forest and 796 km2 open forest cover. The protected forest range of Rajaji and Jim Corbett 
National Park provide a safe home for native plants and animals. A major part of Jim Cor-
bett National Park (912.67 km2) and Rajaji National Park (249.80 km2) fall in Pauri Garh-
wal district. This district is also enriched with different tree species. Reverie forests pre-
sent in areas of lower elevations. Different varieties of bamboos found in patches or mixed 
with the main species. The altitudinal variation of Chir pine forests are found from 900 to 
1500 m. Oak forests present at altitude ranging from 800 m to the highest elevations. Deo-
dar forests are confined to areas of maximum elevation (Gaur and Bartwal 1993; Dobhal 
2005; Sharma et al. 2010). In the last ten years, in terms of forest fire incidents, among all 
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the districts of Uttarakhand, maximum incidents were reported in Pauri Garhwal (Negi and 
Kumar 2016). Besides, natural and accidental reasons, human intentional activities, are the 
prominent reason of the forest fires in Pauri Garhwal (Pandey and Ghosh 2018).

2.2  Data used

The collection and preparation of forest fire causative criteria was an elemental and an 
indispensable step for forest fire susceptibility mapping. Single satellite image from Land-
sat-8 satellite of Oct 21, 2019 and four elevation images of the Shuttle Radar Topography 
Mission (SRTM) satellite of Sep 23, 2014 were obtained from United States Geological 
Survey (USGS) earth explorer web portal for the selected study area. Details of Landsat-8 
satellite image and SRTM DEM images are presented in Table 1. These satellite images 
together with other vector and raster data products were used for carrying out the current 
study. Details of data model and sources of different criteria maps are presented in Table 2. 
Maps for elevation, slope, aspect, curvature and TWI (Topographic Wetness Index) were 
developed from SRTM DEM. NDMI (Normalized Difference Moisture Index), and NDVI 
(Normalized Difference Vegetation Index) layers were developed from the Landsat-8 sat-
ellite image. Distance to settlement, distance to road and distance to drainage network 
were developed from digital topographical maps from Survey of India (SOI) and Quick 
bird images (Google Earth). Soil data was collected from the National Bureau of Soil 

Fig. 1  Location map of the study area with past forest fire locations (November 2002−July 2019)
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Survey and Land Use Planning (NBSS-LUP). Climate data (Rainfall, temperature, and 
wind speed) was acquired from Indian Meteorological Department (IMD). All raster data-
sets were scaled to 30 m spatial resolution. 

2.3  Forest fire location points

The acquisition of forest fire incidents into a spatial inventory is requisite for forest fire 
susceptibility mapping and validation. Forest fire points were utilized in conducting the FR 
analysis and model (FR, AHP and FAHP) validations. In March 2019, a field survey was 
conducted in Satpuli, Pauri, Lansdowne, Rajaji and Jim Corbett National Park to access the 
rich forest diversity and forest fire incident locations in the study area. Figure 2 presents 
different field photographs depicting rich forest cover of Pauri Garhwal and different for-
est fire locations from March 2019, May 2018 and April 2016 forest fire events. Forest fire 
incidents photographs were collected from local residents and Uttarakhand Forest Depart-
ment, India. Different forest beats of Rajaji and Jim Corbett National Park were visited 
and field photographs were taken at forest fire locations. These all locations were digitized 
and combined with the forest fire dataset (November 2002–July 2019), acquired from the 

Table 1  Specifications of satellite datasets

Satellite ID Sensor Acquisition date Resolution

Landsat-8 LC08_L1TP_146039_20191021
_20191030_01_T1

OLI 21-Oct-2019 30 m

SRTM SRTM1N29E078V3, NA 23-Sep-2014 30 m
SRTM1N29E079V3,
SRTM1N30E078V3,
SRTM1N30E079V3

Table 2  Details of data models and sources of different criteria layers

No Layer Data Model Sources

1 DEM Raster SRTM DEM, (USGS)
2 Slope Raster
3 Aspect Raster
4 Curvature Raster
5 TWI Raster
6 Distance to settlement Vector (Polygon) Toposheet, Survey of India and Google Earth
7 Distance to road Vector (Polyline)
8 Distance to drainage Vector (Polyline)
9 Soil Vector (Polygon) National Bureau of Soil Survey and Land 

Use Planning, India (NBSS-LUP)
10 NDVI Raster Landsat-8 OLI (USGS)
11 NDMI Raster
12 Rainfall Tabular (Attribute) Indian Meteorological Department (IMD)
13 Temperature Tabular (Attribute)
14 Wind speed Tabular (Attribute)
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Uttarakhand Forest Department and Forest Survey of India (FSI) to prepare the forest fire 
training and validation point datasets (AVHRR and VIRSAA 2016). Out of total 15,000 
forest fire points, 70% of the total forest fire points (10,500) were randomly selected and 
implemented as a training set in the FR technique to generate the FFSM of the study area. 
Figure 3a presents forest fire training point map. The remaining well distributed 30% of the 
total forest fire points (4500) were utilized to validate the FFSMs developed with FR, AHP 
and FAHP techniques. Figure 3b depicts forest fire validation point map.

2.4  Preparation of thematic layers using remote sensing and GIS

The SRTM satellite provides 30 m DEM images, which enable the ability to map forest 
topography through different quantitative terrain descriptors. As presented in Table 1, 

Fig. 2  Field survey a photographs from b Satpuli, c Pauri and d Lansdowne town of Pauri Garhwal district 
depicting [e–g] rich forest covers and different forest fire incidents: [h–k] March 2019, [l–n] May 2018 and 
[o–r] April 2016 (Source Local Residents, Field Survey, and Uttarakhand Forest Department, India)
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four SRTM DEM images covering entire study area were downloaded from USGS earth 
explorer web portal. These images were first mosaicked and then masked to extract 
DEM map of Pauri Garhwal. The  DEM  was projected to UTM projection with zone 
43 and the horizontal and vertical  datum  was considered as  World Geodetic System 
1984 (WGS 84). The undulated terrain of Pauri Garhwal was classified into six eleva-
tion classes with 500 m altitude interval. The slope map was developed from extracted 
DEM image. Slope function inside ArcGIS Spatial Analyst module was used for the 
development of slope map. As the study area has undulated topography, resultant slope 
was divided into four different slope zone. An aspect map represents the direction and 
steepness of a continuous terrain. This map is valuable for recognizing landscape char-
acteristics such as hills and valleys, measuring the quantity of solar illumination for 
surfaces, and predicting fire risks and fire compliance. Aspect map was developed by 
using the Aspect function in ArcGIS Spatial Analyst module. This map was classified 
into nine aspect classes (Flat, North, Northeast, East, Southeast, South, Southwest, West 
and Northwest). Curvature of a surface depicts convergence and divergence of a slope. 
It influences the acceleration and the deceleration of flow across the terrain and often 
used to determine soil erosion as well as the spread of water over the terrain. Curvature 
map was developed by using Curvature function in ArcGIS 3D Analyst module. It was 
classified into three classes such as Convex, Flat and Concave. TWI measures topo-
graphic controls of basic hydrological processes (Schillaci et al. 2015). As presented in 
the Eq. 1, TWI is a function of both the slope and the upstream contributing area.

where CA defines the local upslope catchment area and Slope represents the steepest out-
ward slope for each grid cell (Tarboton 1997). Equation 1 was implemented with ArcGIS 
model builder.

(1)TWI = ln
[
CA∕Slope

]

Fig. 3  Forest fire locations (a). Training point map (used only in FR) and (b). Validation point map (used in 
FR, AHP and FAHP)
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Landsat-8 satellite image was first stacked and then masked with the shape file of the 
study area. Extracted image was used for vegetation cover and moisture extraction using 
NDVI and NDMI indices, respectively. NDVI determines vegetation by computing the nor-
malized separation between the Near-Infrared (which tree/crop well reflect) and the Red 
light (which tree/crop well absorb) using Eq. 2. NDMI quantifies vegetation water content 
by computing the normalized separation between the Short-Wave-Infrared (which tree/crop 
water well reflect) and the Near-Infrared (which tree/crop well absorb) using Eq. 3. His-
togram analysis and ground validations were used to determine threshold values for their 
classification. Vegetation cover extraction and moisture estimation are the essential and 
most widely used parameters for satellite-driven forest fire susceptibility mapping (Werf 
et al. 2010). Developed green forest classification was validated with India State of Forest 
Report by Forest Survey of India (Jadhav et al. 2019).

where NIR defines the Near Infrared Band and SWIR defines the Short-Wave Infrared 
Band. As NDVI and NDMI are normalized indices they range in between − 1 to + 1.

Distance to settlement and distance to road were prepared from Quick bird images 
(Google Earth) and digital topographical maps from Survey of India (SOI). Digital top-
ographical maps were scanned, rectified and digitized to develop settlements and roads. 
For more detailed mapping, settlements and roads were also extracted from Google Earth 
images. Together, these two datasets provided detailed thematic maps for settlements 
and roads. The drainage map was prepared with the Survey of India topographical map 
by first scanning it, then rectifying and digitizing it using ArcGIS software. Distance to 
settlement, distance to road and distance to drainage network maps were developed using 
Euclidean distance function in ArcGIS Spatial Analyst module. The soil map of the study 
area was collected from the National Bureau of Soil Survey and Land Use Planning, India 
(NBSS-LUP).

The rainfall, temperature and wind speed datasets for Bironkhol, Landsdown, Pauri and 
Srinagar IMD Station over 20 years (1998–2018) time period were procured from Indian 
Meteorological Department (IMD). The annual average rainfall, temperature and wind 
speed distribution maps were prepared using nonlinear Inverse Distance-Weighted (IDW) 
spatial interpolation technique. IDW estimates the value at an unobserved location con-
sidering the values of neighboring observed points, which are computed inversely by their 
distance to the points (Wu et al. 2010; Ruelland et al. 2008).

2.5  Frequency ratio

When evaluating the probability of an event within a certain time interval and within a 
specific spatial extent, it is of major significance to determine the conditions that can cause 
the event and the process that could trigger the event. Mathematically, FR defines the prob-
ability of occurrence of an attribute. If we construct an incident E, and certain attributes 
attributed to F, the FR probability of F can be described with Eq. 4 (Pradhan et al. 2007; 
Sahoo et al. 2017):

(2)NDVI =
(NIR − Red)

(NIR + Red)

(3)NDMI =
(SWIR − NIR)

(SWIR + NIR)
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FR is frequently and effectively used in different applications like landslide risk 
zonation, flood hazard mapping, forest fire susceptibility analysis, groundwater potential 
delineation, etc. (Senici et  al. 2010; Rahmati et  al. 2016; Al-Abadi 2017; Hong et  al. 
2017). This technique is a popular choice for forest fire susceptibility mapping using 
different geospatial datasets (Pradhan et al. 2007; Sahoo et al. 2017; Senici et al. 2010; 
Pourtaghi et  al. 2015). To compute the FR for each class of the causative criteria, an 
interrelationship has been established between the forest fire inventory map and criteria 
map using Eq. 5.

where A defines the number of forest fire pixels for each class of each causative criterion; B 
defines the total number of pixels with forest fire events; M symbolizes the number of pix-
els for each class of the parameter; and N defines total number of pixels. FR values specify 
the proportional association to forest fire occurrence. The greater the value, the higher the 
probability of forest fire, and the lower the value, lowers the risk of forest fire. The calcu-
lated FR value is summed to develop a Forest Fire Susceptibility Map (FFSM) using Eq. 6.

where FFSI represents forest fire susceptibility index and n symbolizes the number of 
selected causative criteria. FFSI is reclassified to develop FFSM.

2.6  Analytic hierarchy process (AHP)

AHP is one of the most extensively implemented MCDA techniques for forest fire risk 
zonation and susceptibility analysis (Chavan et al. 2012; Stipaničev et al. 2007; Mahdavi 
2012; Thakur and Singh 2014; Chhetri and Kayastha 2015; Eskandari 2017). In this study, 
AHP is utilized to examine the thematic layers representing causative criteria and to gen-
erate the FFSM using ESRI ArcGIS software. Topographic, biological, human, and cli-
matic criteria are identified and organized in a hierarchy concerning the aim of the current 
research work. The next step is to compute the relative weightage for individual criterion, 
considering that all the criteria have different superiority and sensitivity in forest fire gener-
ation. Relative weights are assigned to individual criterion and their sub-classes from prior 
knowledge of criteria characteristics, local field experience, personal observation, particu-
larities of the decided study area and expert’s suggestions. The members of the group of 
experts are selected from Indian Institute of Technology-Roorkee, India, Indian Institute of 
Remote Sensing-ISRO, Dehradun, India, and Uttarakhand Forest Department, India. After 
the assignment of relative ranks to individual criterion using Table 3, pair-wise compari-
sons are made between all possible pairs of the forest fire causative criteria, and the results 
of these comparisons are used to develop a pair-wise comparison matrix. Now, values of 
all criteria are normalized by the eigenvalue–eigenvector method, and the resultant normal-
ized pair-wise matrix is analyzed for consistency (Saaty 1980). After achieving the consist-
ency of criteria, the coefficients of the significance (weights) are determined. Mathematical 
descriptions of different steps are summarized in the following points:

(4)P(E∕F) = P(E ∩ F)∕P(F)

(5)FR =
A∕B

M∕N

(6)FFSI = FR1 + FR2 +…+ FRn



1199Natural Hazards (2021) 105:1189–1230 

1 3

1. Principal eigenvalue (�max) is calculated with eigenvector using Eq. 7 (Kanga et al. 
2017):

where Wt represents the corresponding eigenvector of �max , Wti defines weight for 
ranking, CV represents the consistency vector and n symbolizes total number of 
classes. CV is computed by multiplying pair-wise comparison matrix with the weight 
matrix as presented in Eq. 8. � is computed by dividing the elements of CV by corre-
sponding weights. Average of these values is represented by �max.

where aij defines pair-wise comparison matrix in which aii = 1 and aij = 1∕aji . Wti 
defines the weight value for ranking. Values of i and j ranges from 1 to n (number of 
criteria).

2. Consistency Index (CI) represents the degree of consistency and calculated with Eq. 9 
(Saaty 1980). Consistency Ratio (CR) defines the final consistency of weights assigned 
to causative criteria (Eq. 10) (Kanga et al. 2017; Kayet et al. 2018).

where n is the number of classes. CR should be less than 0.10 for consistent weights 
(Barzilai 1998). Random Index (RI) value is referred from Table 4.

(7)�max =
1

n

n∑
Wti=1

(CV)i

Wti

(8)CV = aij ×Wti

CV =

⎡
⎢⎢⎢⎢⎣

a11 a12 a13 … a1n
a21 a22 a23 … a2n
… … … … …

… … … … …

an1 an2 an3 … ann

⎤
⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎣

Wt1
Wt2
…

…

Wtn

⎤⎥⎥⎥⎥⎦

(9)CI =

(
�max − n

)
(n − 1)

(10)CR =
CI

RI

Table 3  Saaty’s scale for pair-wise comparisons (Saaty 1980)

Intensity of importance Definition Explanation

1 Equally important Two elements contribute equally to the objective
3 Moderately important Decision slightly support one element over another
5 Strongly important Decision strongly support one element over another
7 Very strongly important One element is supported very strongly over another
9 Extremely important Highest possible order for supporting one element over 

another
2,4,6,8 Intermediate values When compromise is required
Reciprocals Opposites Used for inverse comparison
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3. FFSI is calculated by integrating all the causative criteria of forest fires using weighted 
linear combination equation presented in Eq. 11 (Kanga et al. 2017; Kayet et al. 2018):

where  NWt symbolizes the normalized weight,  Cf represents the rank value, m defines 
number of criteria and n defines the number of classes.

2.7  Fuzzy set theory and fuzzy membership function

In 1965, Zadeh proposed the concept of fuzzy logic to manage ambiguity and uncertainty 
in the input data elements (Zadeh 1965). The critical principle of fuzzy logic is that the 
fuzzy system members are described with fuzzy membership functions. In 2010, Zimmer-
man described the fuzzy set theory as presented in the Eq. 12 (Zimmermann 2010). Let X 
is a set of elements expressed generically by x, then a fuzzy set Ã in X is a set of ordered 
pairs:

where 𝜇Ã(x) defines membership function, computed with Eq. 13, which maps elements to 
the membership space,

where X defines the universal set for a specific problem and 𝜇Ã(x) refers to grade of mem-
bership for element x in fuzzy set A (Zadeh 1965; Jiang and Eastman 2000; Wood and 
Dragicevic 2007).

To develop a fuzzy logic-based model, the suitable membership function and its param-
eters must be correctly decided. As per the nature of causative criteria and the defined 
objective, liner (monotonically increasing or monotonically decreasing), sigmoidal (mono-
tonically increasing or symmetric) and discrete categorical data membership functions 
were implemented in the current study. The fuzzy membership function tool in ESRI Arc-
GIS software was used to derive membership functions.

2.8  Fuzzy AHP

FAHP is a technique of incorporating vagueness or fuzziness of human thoughts in deci-
sion making (Kahraman et  al. 2003). In the current study, we implemented Triangular 
Fuzzy Numbers (TFNs) to extend the crisp numerical definition of criteria for forest fire 
susceptibility mapping (Vahidnia et  al. 2008). The membership function �A(x) presented 

(11)FFSI =

m∑
t=1

n∑
f=1

(
NWt ∗ Cf

)

(12)Ã = {x,𝜇Ã(x)|x )}

(13)𝜇Ã(x) ∶ X → [0, 1]

Table 4  Random index (RI) for different number of criteria (n)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.54 1.56 1.57
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in Fig. 4 and described in Eq. 14, defines the level of association of an element x in the 
domain X using the fuzzy number A.

where l, m, and u represent the lower, mean and upper bounds of the TFN, respectively.
Many FAHP techniques have been proposed in literature (Wang et al. 2008; Tiryaki and 

Ahlatcioglu 2009). Current study deploys Buckley fuzzy extent analysis (Buckley 1985), 
which is easier to compute than other FAHP techniques. Buckley’s fuzzy extent analysis 
has following five steps:

1. Considering the opinion of different experts, the pair-wise triangular fuzzy comparison 
matrix (Eq. 15) is formed.

where Ã defines the pair-wise comparison matrix and ak
ij
 symbolizes the expert’s choice 

of ith attribute over jth attribute. aij = (lij,mij, uij) and a−1
ij

=
(

1

uji
,

1

mji

,
1

lji

)
 for i, j = 1,…, 

n and i ≠ j using Table 5.

(14)�A(x) =

⎧
⎪⎨⎪⎩

x−l

m−l
, l ≤ x ≤ m

u−x

u−m
, m ≤ x ≤ u

0, otherwise

(15)Ãk = ak
ij
=

⎡
⎢⎢⎢⎢⎢⎣

ak
11

ak
12

… … ak
1n

ak
21

ak
22

… … ak
2n

… … . … … …

… … … … …

ak
n1

ak
n2

… … ak
nn

⎤⎥⎥⎥⎥⎥⎦

Fig. 4  Triangular fuzzy number 
representation

Table 5  Triangular fuzzy 
numbers (TFNs) of linguistic 
variables for pair-wise 
comparisons

Linguistic variables TFNs Reciprocal TFNs

Extreme strongly (9,9,9) (1/9,1/9,1/9)
Very strongly (6,7,8) (1/8,1/7,1/6)
Strong (4,5,6) (1/6,1/5,1/4)
Moderately strong (2,3,4) (1/4,1/3,1/2)
Equally strong (1,1,1) (1,1,1)
Intermediate (7,8,9), (5,6,7),

(3,4,5), (1,2,3)
(1/9,1/8,1/7), (1/7,1/6,1/5), 

(1/5,1/4,1/3), 
(1/3,1/2,1/1)



1202 Natural Hazards (2021) 105:1189–1230

1 3

2. As more than one experts are consulted, preferences of each expert aij are averaged and 
mean value ďij is computed with Eq. 16. The updated matrix ( Ã ) is presented in Eq. 17.

3. Next, the geometric mean of fuzzy comparison values of each criteria is computed with 
Eqs. 18 and used in 19 to compute the fuzzy weights.

where řl represents TFN and W̌l represents the fuzzy weights.
4. Since 

(
li,mi, ui

)
 are still TFNs, they require to first de-fuzzified (Chou and Chang 2008) 

and then normalized with Eqs. 20 and 21, respectively.

where Mi is a crisp and non-fuzzy number and NWi represents normalized weights.
5. Similar to Eq. 11, FFSI is calculated by multiplying each alternative weight with related 

criteria using Eq. 22.

where  NFWt represents the normalized fuzzy weight,  FCf defines the normalized score 
of each class, m defines the number of criteria and n defines the number of classes.

2.9  Validation of forest fire susceptibility maps

Validation is a critical step in forest fire susceptibility mapping which is vital for deter-
mining the predictive capability of selected modeling techniques (Mohammadi et al. 2014; 
Pourghasemi et  al. 2016). To access the accuracy of the forest fire susceptibility map-
ping using FR, AHP and FAHP techniques, in the current study the AUC-ROC curve was 

(16)ďij =

∑K

k=1
ak
ij

K

(17)Ã =

⎡
⎢⎢⎢⎢⎢⎣

ď11 ď12 … … ď1n
ď21 ď22 … … ď2n
… … … … …

… … … … …

ďn1 dn2 … … ďnn

⎤
⎥⎥⎥⎥⎥⎦

(18)řl =
(∏n

j=1
ďij

)1∕n

, i = 1, 2… n

(19)W̌l = řl ⊗
(
ř1 ⊗ ř2 … ⊗ řn

)−1
=

(
li, mi, ui

)

(20)Mi =
li + mi + ui

3

(21)NWi =
Mi∑n

i=1
Mi

(22)FFSI =

m∑
t=1

n∑
f=1

(
NFWt*FCf

)
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implemented with forest fire validation dataset. It is the standard technique most frequently 
employed in GIS and Remote Sensing-based susceptibility mapping studies to evaluate the 
modeling accuracy (Rahmati et  al. 2016; Mallick et  al. 2019; Shahabi et  al. 2015; Park 
et al. 2011). The ROC depicts the trade-off between the two rates (Negnevitsky 2005) and 
AUC provides  scale and classification-threshold-invariant way to measure the quality of 
the model’s predictions capability (Bradley 1997).

3  Result

3.1  Thematic layers

Fourteen different criteria (DEM, Slope, Aspect, Curvature, Distance to Settlement, Dis-
tance to Road, Distance to Drainage, NDVI, NDMI, TWI, Soil, Rainfall, Temperature and 
Wind Speed) were integrated for forest fire susceptibility mapping in the selected study 
area. Map presenting causative criteria are shown in Fig. 5. Criteria layers are raster, vec-
tor and tabular in nature and classified using natural break (Jenks), manual, equal interval 
and textural units. Table 6 summarizes criteria layer, corresponding data types and classi-
fication methods. The detailed description of individual layer is presented in the following 
sub-sections.

3.1.1  DEM

Elevation is a critical physiographic criterion that governs fire behavior by affecting the 
volume and schedule of rainfall, as well as exposure to prevailing wind (Chuvieco and 
Congalton 1989; Buechling and Baker 2004; Gaither et  al. 2011). Elevation also affects 
the vegetation patterns, air humidity and warmer-drier conditions of soils and fuels dur-
ing the fire season (Falkowski et al. 2005). The elevation map (DEM) of the study area is 
divided into six elevation zones of 500 m interval, that is, (1) < 500 m, (2) 500–1000 m, (3) 
1000–1500 m, (4) 1500–2000 m, (5) 2000–2500 m (6) > 2500 m (Fig. 5a). The study area 
is primarily occupied by lower altitude regions, followed by relatively high regions with 
hilly areas. The four elevation zones (up to 2000 m) occupy 92.55% of the entire region, 
while the next two elevation zones (of hilly region) occupy 7.45% of the study area.

3.1.2  Slope

One of the critical criteria that affects the rate of fire spread is the slope degree (Vie-
gas 2004). Fire propagation is faster in higher slope regions and less instantly in lower 
slope regions (Mermoz et al. 2005). The slope map is categorized into four classes such 
as (1) < 20°, (2) 20°–30°, (3) 30°–40°, and (4) > 40° (Fig. 5b). Pauri Garhwal is primar-
ily owned by medium slope range, followed by relatively high slope regions. The highest 
slope region (> 30°) occupies 27.13% of the entire region, while the medium slope range 
(20°–30°) occupies 31.83% of the total area.

3.1.3  Aspect

Aspect affects the amount of sunlight and temperature a site receives. As the selected 
study area lies inside the northern hemisphere, south-facing aspects receive maximum 
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solar radiation while north-facing aspects remain coolest (Hayes 1941; Cerdà et  al. 
1995; Courtney Mustaphi and Pisaric 2013). Also, during the day, east aspects receive 
higher ultraviolet and straight sunlight in comparison to the west aspect (Beaty and Tay-
lor 2001). Aspects also control the vegetation patterns, temperatures variations, winds 
flow, humidity, and fuel moistures (Pourtaghi et al. 2015; Iwan et al. 2004). The aspect 
map is divided into nine classes such as (1) Flat, (2) North, (3) Northeast, (4) East, (5) 
Southeast, (6) South, (7) Southwest, (8) West and (9) Northwest using equal interval 
(Fig. 5c). North aspect region occupies 36.42%, South aspect region occupies 38.42%, 
East aspect region occupies 34.83%, West aspect region occupies 39.22% and Flat 
region occupies 0.78% of the study area.

3.1.4  Curvature

Curvature defines the rate of change of gradient (slope) (Troeh 1965). In this way, an 
increase in gradient (positive) represents the convex curvature (for example, Hill), a 
decrease in gradient (negative) represents the concave curvature (for example Valley), 
and constant gradient (zero) represents the flat surface (Childs et al. 2004). Curvature 
governs the propagation of fire (Vakalis et al. 2004). In the current study, the curvature 
map is divided into three classes, such as (1) Convex, (2) Flat, and (3) Concave. As 
shown in Fig. 5d, 43.66% has convex terrain and 50.09% of the study area has concave 
terrain. While remaining 6.25% is flat.

3.1.5  Distance to settlement

The closeness of forest space to the rural and the urban settlements is a critical param-
eter for evaluating the extent of urbanization-induced anthropogenic stress and other 
associated problems like forest fires, deforestation, overexploitation of forest resources, 
etc. (Jaiswal et  al. 2002; DeFries and Pandey 2010). People residing near the forest 
areas can, directly and indirectly, induce accidental fires (Erten et al. 2004). As different 
settlement patches are inhabited within the forest range of Pauri Garhwal, so it is essen-
tial to include distance to settlement as a causative criterion. The proximity of these set-
tlements with the forest and small dwelling spacings (< 2 m) provide ample opportunity 
for direct flame impingement to spread the fire from forest to dwelling and dwelling 
to dwelling, with the combination of high fuel loads and small, reasonably ventilated 
enclosures resulting in speedy development times from ignition through flashover into 
fully developed stages (Erten et  al. 2004). As a result, fires can spread into multiple 
dwellings extremely fast. The finite element technique and a standard fire model were 
generally used for determining the displacements and strains developed in structural 
members exposed to fire (Erten et al. 2004). As shown in Fig. 5e, distance to settlement 
map is divided into four classes, such as (1) < 500 m, (2) 500–1000 m (3) 1000–1500 m 
and (4) > 1500 m. Buffer zone of 500 m helps to find a close correlation between forest 
fire incidents and settlements boundaries.

Fig. 5  Forest fire causative criteria map a DEM, b Slope, c Aspect, d Curvature, e Distance to settlement, f 
Distance to road, g Distance to drainage, h NDVI, i NDMI, j TWI, k Soil, l Rainfall, m Temperature, and n 
Wind speed

▸
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3.1.6  Distance to road

Forest road network is an essential infrastructure framework of the forest landscape that 
plays a crucial role in the management and the development of forested areas (Arienti et al. 
2010; Jain et al. 1996). However, different physical actions by man, animal, or vehicle on 
these transportation corridors can influence an unwanted fire. Therefore, proximity to the 
transportation network becomes an essential criterion in studying the susceptibility of the 
forest fire (Jaiswal et al. 2002; Demir 2007). As shown in Fig. 5f, distance to road network 
map is divided into four classes, such as (1) < 300 m, (2) 300–600 m (3) 600–900 m and 
(4) > 900 m. Based on the extent of the study area, spatial distribution, and structure of the 
underlying transportation structure, we selected a 300 m road buffer interval.

3.1.7  Distance to drainage

Pauri Garhwal district has an extensive drainage network of some of the perennial rivers 
(Dobhal 2005; Devi et al. 2015). This drainage network has a substantial influence on forest 
fire, as the distance from river/streams constrains impact, scope, and severity of forest fire 
(Sahana and Ganaie 2017; Chandra 2005). The drainage develops a buffer region that does 
not support the fire to expand. As shown in Fig. 5g, distance to drainage map is divided 
into four classes, such as (1) < 200 m, (2) 200–400 m (3) 400–600 m and (4) > 600 m.

3.1.8  NDVI

NDVI measures the plant photosynthetic activity, which in turn closely related to the soil 
water availability (Gamon et al. 1995; Pettorelli et al. 2005). By enabling the observation 
of vegetation health indicator in a localized range, the NDVI images can recognize vegeta-
tion cover that has potentially become forest fire fuel and presents an insight into the pos-
sible dangers of fire (Gandhi et al. 2015). The vegetation vigor and the hydric state of fuels 
helps to determine fire ignition probability, conditioning to some extent, and rate of spread 

Table 6  Causative criteria, data types and classification methods

No. Layer Data type Classification method

1 DEM Raster Natural break
2 Slope Raster Natural break
3 Aspect Raster Equal interval-directional units
4 Curvature Raster Natural break
5 Distance to settlement Vector (Polygon) Manual
6 Distance to road Vector (Polyline) Manual
7 Distance to drainage Vector (Polyline) Manual
8 NDVI Raster Natural break
9 NDMI Raster Natural break
10 TWI Raster Natural break
11 Soil Vector (Polygon) Textural units-soil types
12 Rainfall Tabular (Attribute) Natural break
13 Temperature Tabular (Attribute) Natural break
14 Wind speed Tabular (Attribute) Natural break
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of fire (Heinsch and Andrews 2010). As shown in Fig. 5h, NDVI map is divided into five 
classes, such as (1) < 0.10, (2) 0.10–0.30 (3) 0.30–0.40 (4) 0.40–0.50 and (5) > 0.50.

3.1.9  NDMI

NDMI is susceptible to the moisture levels in crops and trees (Wang et al. 2013). NDMI 
helps to define crop’s or forest’s water stress level areas that are particularly susceptible to 
forest fire, while NDVI shows how much vegetation is available for burning or to use as 
fuel (Yebra et al. 2013). As shown in Fig. 5i, NDMI map is divided into five classes, such 
as (1) <  − 0.10, (2) − 0.10–0.01, (3) 0.01–0.1, (4) > 0.1–0.3 and (5) > 0.3.

3.1.10  TWI

The topography is a first-order representation of the spatial variation of hydrological 
requirements (Dawes and Short 1994). It is a physical criterion that measures the topo-
graphic control on hydrological processes and defines the degree of accumulation of water 
(Sörensen et al. 2006). Water accumulates at any particular place within the catchment area 
and moves down with the slope of the terrain. Thus, TWI defines the spatial distribution of 
soil moisture and directly impacts the development of scenarios for forest fires (Adab et al. 
2013). As shown in Fig. 5j, TWI map is divided into four classes, such as (1) < 3.0, (2) 
3.0–6.0 (3) 6.0–9.0, and (4) > 9.0.

3.1.11  Soil

Soil is one of the essential criteria in the description of forest fire and also indirectly influ-
ences the entire ecosystem of a specific region (Sharma et al. 2010; Gairola et al. 2012). 
Soils of the region have been formed either through paedogenetic processes (physical and 
chemical properties of rocks and minerals) or are transported soils (carried and depos-
ited by the streams) (Jaiswal et al. 2002). A wide range of variations in soil type can be 
observed in the entire study region (Gairola et al. 2012). As shown in Fig. 5k, soil map is 
divided into twelve classes such as (1) Aeric Fluvaquents, (2) Dystric Eutrudepts, (3) Flu-
ventic Eutrudepts, (4) Lithic Udorthents, (5) Typic Cryopsamments, (6) Typic Udorthents, 
(7) Typic Ustifluvents, (8) Typic Ustipsamments, (9) Typic Ustorthents, (10) Udic Haplus-
tepts, (11) Udifluventic Haplustepts and (12) Ustic Torripsamments using textural units. 
The study area is primarily occupied by Typic Udorthents soil cover (74.84%), followed by 
Dystric Eutrudepts soil cover (11.87%) and Lithic Udorthents soil cover (8.88%).

3.1.12  Rainfall

Rainfall has an inverse relation with forest fires. Low rainfall increases the risk of forest 
fire by reducing moisture content of the fuels and making them susceptible to fires (Jain 
et al. 2013; Mondal and Sukumar 2016). The influence of precipitation on fire spreading 
is to reduce the air humidity, humidity of habitat and moisture content of the fuels (Mon-
dal and Sukumar 2016). In zone of minimum precipitation, moisture content of the fuels 
is reduced, making the ignition prominent (Rawat 2003). Annual average rainfall map of 
Pauri Garhwal district is developed by using 1998 to 2018 rainfall data procured from the 
Indian Meteorological Department. As shown in Fig. 5l, rainfall map is divided into five 
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classes such as (1) < 1000 mm, (2) 1000–1300 mm (3) 1300–1600 mm (4) 1600–1900 mm 
and (5) > 1900 m.

3.1.13  Temperature

Temperature has a direct relation with forest fires. High temperature increases the risk of 
forest fire by making fuels highly susceptible to fires, mainly due to dryness (Flannigan 
et  al. 2016). The frequency of forest fires is more from April to June (summer season) 
when both air and soil temperature are high. With the increase in temperature, forest fire 
fuel start reducing its moisture content and becomes more susceptible to ignition. Increas-
ing temperature directly impacts the destructive nature, coverage, and frequency of for-
est fires (Chuvieco et  al. 2004). Fires can occur at any temperature, but their frequency 
depends upon increasing temperature. Annual air average temperature map of Pauri Garh-
wal district is developed by using 1998 to 2018 air temperature data procured from the 
Indian Meteorological Department. As shown in Fig. 5m, temperature map is divided into 
five classes such as (1) < 18 °C, (2) 18–19 °C, (3) 19–20 °C, (4) 20–21 °C, and (5) > 21 °C.

3.1.14  Wind speed

Wind Speed boosts the amount of fresh oxygen in the existing fire, which appears in an 
immediate and rapid flame ignition (Karafyllidis and Thanailakis 1997; Dimri and Gun-
want 2012). It also drops the degree of surface moisture, which enhances the drying of the 
fuel. High-speed and powerful-wind heads toward the rapid expansion of a fire cover. High 
wind speed in the summer period enhances the forest fire frequency (Kanga et al. 2017). 
Wind Speed map of Pauri Garhwal district is developed by using 1998 to 2018 wind speed 
data procured from the Indian Meteorological Department. As shown in Fig.  5n, wind 
speed map is divided into five classes such as (1) < 2.5 m/s, (2) 2.5–3 m/s, (3) 3–3.5 m/s, 
(4) 3.5–4 m/s, (5) > 4 m/s.

3.2  Forest fire susceptibility mapping

In the current study, FFSMs of Pauri Garhwal, Uttarakhand, have been developed by 
implementing FR, AHP and FAHP techniques along with fourteen different causative crite-
ria. Detailed description of results obtained with individual technique are presented in the 
following sub-sections.

3.2.1  FR‑FFSM

The spatial relationships that exist in between the incidence of forest fires and selected 
causative criteria were inferred using training dataset (10,500 points) and FR technique. 
Table 7 shows the frequency ratios of each influencing criteria. FFSI was computed using 
the linear summation of frequency ratios. FFSM was prepared by classifying the FFSI into 
five intervals (very high, high, moderate, low and very low) using natural break method. 
Figure  6 shows the FFSM of Pauri Garhwal, Uttarakhand, developed with FR tech-
nique. Absolute area statistics and percentage distribution of five different susceptibility 
classes are exhibited in Table 8. The FR technique shows that 19.58% of the area has very 
high, 34.25% of has high, 22.02% has moderate, 18.11% has low, and 6.04% has very low 
forest fire susceptibility.
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Table 7  Spatial relation of forest fire causative criteria and forest fire locations using FR

No. Criteria No. of pixel in 
domain

% Pixels in 
domain (a)

No. of 
forest fire 
pixel

% of forest 
fire pixel (b)

Frequency 
ratio value 
(b/a)

1 DEM (m) (C1)
  < 500 907,071 14.96 1707 16.26 1.09
 500–1000 1,770,201 29.19 6179 58.85 2.02
 1000–1500 1,748,077 28.83 802 7.64 0.27
 1500–2000 1,186,993 19.57 1496 14.25 0.73
 2000–2500 386,330 6.37 310 2.95 0.46
 > 2500 65,277 1.08 6 0.06 0.06

2 Slope (degree) (C2)
  < 20 2,488,541 41.04 5110 48.67 1.19
 20–30 1,930,133 31.83 3194 30.42 0.96
 30–40 1,248,458 20.59 1717 16.35 0.79
  > 40 396,817 6.54 479 4.56 0.70

3 Aspect (C3)
 Flat 47,330 0.78 4 0.04 0.05
 North 737,113 12.16 1077 10.26 0.84
 Northeast 723,212 11.93 1299 12.37 1.04
 East 683,385 11.27 1273 12.12 1.08
 Southeast 704,987 11.63 1335 12.71 1.09
 South 789,859 13.03 1561 14.87 1.14
 Southwest 834,249 13.76 1706 16.25 1.18
 West 795,998 13.13 1258 11.98 0.91
 Northwest 747,816 12.33 987 9.4 0.76

4 Curvature (C4)
 Convex 2,647,611 43.66 4542 43.26 0.99
 Flat 379,167 6.25 600 5.71 0.91
 Concave 3,037,171 50.09 5358 51.03 1.02

5 Distance to settlement (m) (C5)
  < 500 2,099,181 34.62 910 8.67 0.25
 500–1000 1,283,175 21.16 1245 11.86 0.56
 1000–1500 677,620 11.17 1160 11.05 0.99
  > 1500 2,003,973 33.05 7185 68.43 2.07

6 Distance to road (m) (C6)
  < 300 1,083,660 17.87 697 6.64 0.37
 300–600 650,984 10.74 551 5.25 0.49
 600–900 527,633 8.70 601 5.72 0.66
  > 900 3,801,672 62.69 8651 82.39 1.31

7 Distance to drainage (m) (C7)
  < 200 288,743 4.76 361 3.44 0.72
 200–400 519,164 8.56 776 7.39 0.86
 400–600 225,805 3.72 313 2.98 0.80
  > 600 5,030,237 82.95 9050 86.19 1.04
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Table 7  (continued)

No. Criteria No. of pixel in 
domain

% Pixels in 
domain (a)

No. of 
forest fire 
pixel

% of forest 
fire pixel (b)

Frequency 
ratio value 
(b/a)

8 NDVI (C8)

  < 0.10 108,561 1.79 53 0.5 0.28

 0.10–0.30 5,353,431 88.28 9856 93.87 1.06

 0.30–0.40 425,039 7.01 476 4.53 0.65

 0.40–0.50 174,971 2.89 115 1.1 0.38

  > 0.50 1947 0.03 0 0 0.00
9 NDMI (C9)

  < 0.05 1837 0.03 0 0 0.00
 0.5–0.1 1,051,124 17.33 1160 11.05 0.64
 0.1–0.2 2,857,534 47.12 4722 44.97 0.95
 0.2–0.3 2,146,054 35.39 4610 43.9 1.24
  > 0.3 7400 0.12 8 0.08 0.67

10 TWI (C10)
  < 3 975 0.02 0 0 0.00
 43,619 3,956,817 65.25 6957 66.26 1.02
 43,714 1,742,199 28.73 3041 28.96 1.01

  > 9 363,958 6 502 4.78 0.80
11 Soil (C11)

 Aeric Fluvaquents 27,882 0.46 52 0.5 1.09
 Dystric Eutrudepts 719,653 11.87 1820 17.33 1.46
 Fluventic Eutrudepts 6152 0.1 1 0.01 0.10
 Lithic Udorthents 538,311 8.88 364 3.47 0.39
 Typic Cryopsam-

ments
105,289 1.74 151 1.44 0.83

 Typic Udorthents 4,538,532 74.83 7849 74.75 1.00
 Typic Ustifluvents 92 0.01 0 0 0.00
 Typic Ustipsam-

ments
4781 0.08 3 0.03 0.38

 Typic Ustorthents 23,042 0.38 164 1.56 4.11
 Udic Haplustepts 50,485 0.83 43 0.41 0.49
 Udifluventic Hap-

lustepts
38,992 0.64 42 0.4 0.63

 Ustic Torripsam-
ments

10,738 0.18 11 0.1 0.56

12 Rainfall (mm) (C12)
  < 1000 21,326 0.35 0 0 0.00
 1000–1300 1,445,536 23.84 916 8.72 0.37
 1300–1600 1,689,820 27.87 2019 19.23 0.69
 1600–1900 2,748,269 45.32 7213 68.7 1.52
  > 1900 158,998 2.62 352 3.35 1.28
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3.2.2  AHP‑FFSM

All selected criteria layers (DEM, Slope, Aspect, Curvature, Distance to Settlement, Dis-
tance to Road, Distance to Drainage, NDVI, NDMI, TWI, Soil, Rainfall, Temperature 
and Wind Speed) were integrated in AHP to delineate FFSM using ArcGIS raster calcu-
lator. According to the importance or the contribution of the criteria, pair-wise compari-
son matrix was developed by the experts to compute the weights for each criteria layer 
(Table 9). As shown in Table 10, CI and CR were calculated to validate the significance of 
weights. As, CR (0.054) of all pair-wise comparisons is less than 0.10 (Table 10), pair-wise 
comparison matrix is consistent in nature. Table  11 presents relative weights, potential-
ity and rating assigned to individual class and their sub-classes. After obtaining the final 
weights of criteria, the linear weighted combination was used to generate the final FFSM. 
As depicted in Fig. 7 and Table 8, the FFSM was divided into five intervals (very high, 
high, moderate, low and very low) using natural break method. The AHP technique shows 
that 19.74% of the area has very high, 34.79% has high, 24.25% has moderate, 14.79% has 
low, and 6.44% has very low forest fire susceptibility.   

Table 7  (continued)

No. Criteria No. of pixel in 
domain

% Pixels in 
domain (a)

No. of 
forest fire 
pixel

% of forest 
fire pixel (b)

Frequency 
ratio value 
(b/a)

13 Temperature (°C) (C13)

  < 18 42,532 0.7 6 0.06 0.09

 18–19 796,785 13.14 394 3.75 0.29

 19–20 1,427,245 23.54 2587 24.64 1.05

 20–21 1,987,769 32.78 4346 41.39 1.26

  > 21 1,809,618 29.84 3167 30.16 1.01
14 Wind speed (m/s) (C14)

  < 2.5 594,064 9.79 1317 12.54 1.28
 2.5–3.0 2,137,528 35.25 5576 53.1 1.51
 3.0–3.5 2,368,847 39.06 2994 28.51 0.73
 3.5–4.0 608,448 10.03 458 4.36 0.43
  > 4 355,062 5.85 155 1.48 0.25

Table 8  Classification of forest fire susceptibility using FR, AHP and FAHP

Class Forest fire sus-
ceptibility class

FR AHP FAHP

Area (Sq. km) % Area (Sq. km) % Area (Sq. km) %

1 Very high 1043.48 19.58 1051.86 19.74 1067.32 20.03
2 High 1825.10 34.25 1853.88 34.79 2002.89 37.58
3 Moderate 1173.65 22.02 1292.08 24.25 1310.82 24.60
4 Low 965.06 18.11 788.01 14.79 582.78 10.94
5 Very low 321.74 6.04 343.20 6.44 365.20 6.85
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Fig. 6  Forest fire susceptibility map using FR

Table 9  Pair-wise comparison matrix for AHP

Criteria C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

DEM (C1) 1 1/3 4 1 2 6 6 1/4 1 8 1/2 1 1/5 2
Slope (C2) 3 1 9 6 6 9 9 2 4 9 2 3 2 9
Aspect (C3) 1/4 1/9 1 1/2 1 4 4 1/4 1/2 6 1/7 1/4 1/3 4
Curvature (C4) 1 1/6 2 1 2 9 9 1/2 1 8 1/2 2 1/2 3
Dist. to settlement (C5) 1/2 1/6 1 1/2 1 6 6 1/6 1/6 2 1/4 1/2 1/3 2
Dist. to road (C6) 1/6 1/9 1/4 1/9 1/6 1 1 1/9 1/8 1 1/8 1/5 1/6 1/2
Dist. to drainage (C7) 1/6 1/9 1/4 1/9 1/6 1 1 1/8 1/5 1 1/9 1/4 1/8 1/3
NDVI (C8) 4 1/2 4 2 6 9 8 1 2 9 1 2 1 4
NDMI (C9) 1 1/4 2 1 6 8 5 1/2 1 9 1/3 4 1/2 3
TWI (C10) 1/8 1/9 1/6 1/8 1/2 1 1 1/9 1/9 1 1/9 1/4 1/7 1/2
Soil (C11) 2 1/2 7 2 4 8 9 1 3 2 1/4 4 1 2
Rainfall (C12) 1 1/3 4 1/2 2 5 4 1/2 1/4 4 1/4 1 1 2
Temperature (C13) 5 1/2 3 2 3 6 8 1 2 7 1 1 1 4
Wind speed (C14) 1/2 1/9 1/4 1/3 1/2 2 3 1/4 1/3 2 1/2 1/2 1/4 1
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Table 11  Potentiality, rating and weight of causative criteria with corresponding sub-classes

No. Criteria Class Potentiality for FFSM Rating Weight

1 DEM (C1)  < 500 Very high 5 0.07
500–1000 Very high 5
1000–1500 Moderate 4
1500–2000 High 3
2000–2500 Low 2
 > 2500 Very low 1

2 Slope (C2)  < 20 Low 1 0.21
20–30 Moderate 3
30–40 High 4
 > 40 Very high 5

3 Aspect (C3) Flat High 4 0.04
North Very low 1
Northeast Low 2
East Moderate 3
Southeast High 4
South Very high 5
Southwest Very high 5
West Moderate 3
Northwest Low 2

4 Curvature (C4) Convex Moderate 3 0.08
Flat Very high 5
Concave High 4

5 Dist. to Settlement (C5)  < 500 Very high 5 0.04
500–1000 High 4
1000–1500 Low 2
 > 1500 Very low 1

6 Dist. To road (C6)  < 200 Very high 5 0.01
200–400 High 4
400–600 Low 2
 > 600 Very low 1

7 Dist. to drainage (C7)  < 300 Very high 5 0.01
300–600 High 4
600–900 Low 2
 > 900 Very low 1

8 NDVI (C8)  < 0.10 Very low 1 0.13
0.10–0.30 Moderate 3
0.30–0.40 High 4
0.40–0.50 High 4
 > 0.50 Very high 5

9 NDMI (C9)  < 0.05 Very low 1 0.09
0.5–0.1 Low 2
0.1–0.2 Moderate 3
0.2–0.3 High 4
 > 0.3 Very high 5
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3.2.3  FAHP‑FFSM

In FAHP, all selected criteria layers were integrated to delineate FFSM using ArcGIS fuzzy 
membership tool and ArcGIS raster calculator. Fuzzy membership functions used for indi-
vidual criteria layer with the function specific control points and resultant utility are presented 
in Table 12. These functions mapped an input criteria layer into the corresponding fuzzy out-
put layer having values from 0 and 1, to indicate the degree of membership of that layer. The 
output fuzzy criteria layers are presented in Fig. 8. In the next step fuzzy pair-wise comparison 
matrix was generated with TFNs. Table 13 presents fuzzy pair-wise comparison matrix with 
relative fuzzy, averaged and normalized weights of fuzzy criteria layers. After obtaining the 

Table 11  (continued)

No. Criteria Class Potentiality for FFSM Rating Weight

10 TWI (C10)  < 3.0 Low 2 0.01

3.0–6.0 Moderate 3

6.0–9.0 High 4

 > 9.0 Very high 5
11 Soil (C11) Aeric Fluvaquents Very low 1 0.12

Dystric Eutrudepts High 4
Fluventic Eutrudepts High 4
Lithic Udorthents Very high 5
Typic Cryopsamments Moderate 3
Typic Udorthents Very high 5
Typic Ustifluvents Very low 1
Typic Ustipsamments Very low 1
Typic Ustorthents Very low 1
Udic Haplustepts Low 2
Udifluventic Haplustepts Low 2
Ustic Torripsamments Very low 1

12 Rainfall (C12)  < 1000 Very low 1 0.06
1000–1300 Low 2
1300–1600 Moderate 3
1600–1900 High 4
 > 1900 Very high 5

13 Temperature (C13)  < 18 Very low 1 0.12
18–19 Low 2
19–20 Moderate 3
20–21 High 4
 > 21 Very high 5

14 Wind speed (C14)  < 2.5 Very low 1 0.03
2.5–3.0 Low 2
3.0–3.5 Moderate 3
3.5–4.0 High 4
 > 4.0 Very high 5
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normalized weights of criteria, the linear weighted combination was used to generate the final 
FFSM. As shown in Fig. 9 and Table 8, the FFSM was divided into five intervals using natural 
break method. The FAHP technique shows that 20.03% of the area has very high, 37.58% has 
high, 24.60% has moderate, 10.94% has low, and 6.85% has very low forest fire susceptibility.

3.3  Validation

Validation of FR, AHP and FAHP techniques was performed in order to check their prediction 
accuracy. The ROC curves for FFSMs developed with FAHP, AHP and FR are presented in 
Fig. 10. The AUC plot evaluation revealed that FAHP has a maximum prediction accuracy 
of 83.47%, followed by AHP (81.75%) and FR (77.21%). As a result, developed FFSMs are 
proved to be accurate and effective for forest fire hazard preparation in the selected study area.

4  Discussion

Uncontrolled forest fires pose a great threat not only to the entire eco-system and bio-diver-
sity of the forest but also to the forest wealth, human life and the local climate of the region. 
Considering the causes and the impacts of forest fires, it is essential to identify forest fire 

Fig. 7  Forest fire susceptibility map using AHP
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susceptibility zones, where urbanization is growing in the close proximity of forest regions. 
In the current study, one statistical (FR), and two heuristic (AHP and FAHP) forest fire sus-
ceptibility mapping techniques were applied with different spatial and non-spatial causa-
tive criteria in one of the most forest enriched and bio-diversified Pauri Garhwal district of 
Garhwal Himalaya. Analysis of the causative criteria together with the FFSMs developed 
using FR, AHP and FAHP techniques help to understand the reasons and impacts of drasti-
cally increasing forest fire incidents in the region.

• The current research work presented that the most important causative criteria for 
forest fire identification are slope, followed by NDVI, temperature, and soil. The sig-
nificance of these factors is already reported in different studies worldwide, which is 
consistent with the outcomes of the current study (Eskandari 2017; Pourghasemi et al. 
2016; Eugenio et al. 2016; Suryabhagavan et al. 2016). Nature of the terrain (Curva-
ture) (Alexander 1985; Weber 1989; Hilton et  al. 2018) and moisture (NDMI) (For-
nacca et al. 2018; Torres et al. 2018) are also found as an important causative criteria in 
forest fire occurrence for this region. On the other hand, in opposite to the major reason 
of human influence in forest fire reported by different researchers (Jaiswal et al. 2002; 
Erten et al. 2004; Pandey and Ghosh 2018; Bui et al. 2017), current study found that 
the distance to settlement and distance to road have lower impact in comparison to top-
ographical and biological factors in the development of forest fires in the selected study 
area. This may be because, besides anthropogenic proximity influences, human inten-
tional activities, especially to promote new flush of grasses, collection of minor forest 
produce or shifting cultivation are the prominent causes for triggering the forest fires in 
this region (Pandey and Ghosh 2018). There is a requirement of more specific causative 
criteria for defining the after human agriculture actives and human-forest interconnec-
tion.

• Forest fire susceptibility mapping described that the majority of the degraded and the 
deciduous forest cover from both the protected (Rajaji and Jim Corbett National Park) 
and the open forest zones (Birokhal, Naunidanda, Kot, Pokhara, Pabo Rikhnikhal, and 
Yamkeshwar block from Garhwal and Lansdowne forest division) fell under high to 
very high fire susceptibility classes. Near about complete Rajaji national park fell inside 
very high susceptibility class and major area of Jim Corbett national park is under high 
susceptibility class. Severity of forest fire incidents in Rajaji national park and Jim Cor-
bett national park is already reported by Porwal et al. (1997) and Sharma and Hussin 
(1996), respectively. Forest fire susceptibility classes presented in these studies are in 
consistent with the outcomes of the current study. Whereas, Dwarichal, Garhwal and 
Zahrikhal blocks from Garhwal and Lansdowne forest division mainly have moist for-
est range and falls in moderate and low fire susceptibility classes. These results are rel-
atively similar to the results of other researchers conducted different locational studies 
in selected region of Pauri Garhwal (Pandey and Ghosh 2018; Saklani 2008; Kumari 
et al. 2017).

• Validation of the results described that, of the three mapping techniques implemented 
in this study, FAHP was superior to AHP and FR in successfully recognizing potential 
forest fire susceptibility classes. But, the performance of AHP and FR was reasonable 

Fig. 8  Causative criteria, based on fuzzy membership functions, a DEM, b Slope, c Aspect, d Curvature, e 
Distance to settlement, f Distance to road, g Distance to drainage, h NDVI, i NDMI, j TWI, k Soil, l Rain-
fall, m Temperature and n Wind speed

▸
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Fig. 9  Forest fire susceptibility map using FAHP

Fig. 10  ROC curves for FAHP, AHP and FR
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for this study, analyzing their AUC values. The FAHP technique had a higher predic-
tive accuracy compared with the AHP and FR techniques, which is consistent with the 
results of Sharma et al. (2012). Various researchers implemented different combination 
of FAHP, AHP and FR technique in different part of Brazil, Ethiopia, India, Iran, Tur-
key and Thailand (Eugenio et al. 2016; Suryabhagavan et al. 2016; Sharma et al. 2012; 
Hashjin et al. 2012; Akbulak et al. 2018; Nuthammachot and Stratoulias 2019; Meten 
et  al. 2015). Their results showed that all the three techniques have the capability to 
produce a high-reliability FFSMs. But, in comparative assessment, the FAHP technique 
performed more accurately, compensating MCDM by codifying the expert knowledge 
for forest fire hazard and integrating it with the inherent fuzzy characteristics of the 
causative criteria.

The current study successfully utilizes the knowledge regarding the interrelation in 
between the forest fire risks and the contributions of topographic, climatic, biological and 
human induced causative criteria for FFSM. Although various uncertain characteristics of 
forest fire susceptibility require to be resolved, a level of uncertainty will always persist in 
any forest fire susceptibility mapping because of the uncertainty inherent in causative cri-
teria. The uncertainty inherent lies both in the criteria weighting and in the level of impor-
tance by individual criterion. Thus, it is recommended to apply other statistical, probabilis-
tic and machine learning techniques to develop FFSMs and compare them with the current 
results. This will bring more insights into how forest fire susceptibility mapping techniques 
select the conditioning criteria, how the forest fire phenomena are modeled under different 
statistical scenarios, and the reliability of the techniques.

5  Conclusion

Forest fires, both natural and  human-induced,  present a prominent threat to most of the 
forests and grasslands around the world.  The current study demonstrated the capabil-
ity of Remote Sensing and GIS techniques for developing forest fire susceptibility maps 
(FFSMs) in one of the most adversely affected forest fire prone districts of Pauri Garh-
wal, Uttarakhand, India. The study results and findings illustrated that the rich and diverse 
forest cover, undulated terrain, unplanned and uncontrolled urbanization, climate pattern 
and other features add favorable conditions to forest fire occurrence in Pauri Garhwal. The 
validation of the results (AUC > 0.5) emphasizes the importance of considering a large set 
of causative criteria when conducting forest fire susceptibility study. This study concludes 
that, of the one statistical (FR), and two heuristic (AHP and FAHP) techniques, with the 
advantage of addressing the inherent fuzzy characteristics of the geospatial datasets and 
also by incorporating the subjective judgments in the modeling process, FAHP decided 
much more specific contributions of individual criteria layer in final forest fire susceptibil-
ity mapping. Developed FFSMs present essential information for firefighters, forest rang-
ers, and local administrators to establish potential fire hazard zones, with the intent that 
they can timely and successfully perform fire prevention services. Moreover, in the pro-
tected forest range and national parks of Pauri Garhwal, FFSMs helps wildlife planners in 
developing fire prevention and mitigation strategies for the management of fuel material 
and safety of natural features and endemic species. This will also strengthen the path for 
developing efficient and effective land use planning, rural development, and sustainable 
agriculture.
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In summary, the combination of thematic layers and geospatial analysis techniques 
implemented in this study produced an agreeable result and can be comprehensively 
deployed in other places for forest fire susceptibility mapping. Results are specifically con-
clusive in Indian perspective, where more than 36% of forest cover (657,000 km2) prone to 
frequent forest fires and of this, 10% highly prone and around 21% highly to extremely fire 
prone (FSI 2019).
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